code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"""
}
def __lowercase ( snake_case = "dhaka", snake_case = 5 ):
"""simple docstring"""
__magic_name__ :List[str] = min(snake_case, 5_0 ) # Prevent abuse!
__magic_name__ :List[str] = {
'''q''': query,
'''tbm''': '''isch''',
'''hl''': '''en''',
'''ijn''': '''0''',
}
__magic_name__ :Union[str, Any] = requests.get('''https://www.google.com/search''', params=snake_case, headers=snake_case )
__magic_name__ :int = BeautifulSoup(html.text, '''html.parser''' )
__magic_name__ :int = ''''''.join(
re.findall(R'''AF_initDataCallback\(([^<]+)\);''', str(soup.select('''script''' ) ) ) )
__magic_name__ :List[Any] = json.dumps(snake_case )
__magic_name__ :str = json.loads(snake_case )
__magic_name__ :Dict = re.findall(
R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''', snake_case, )
if not matched_google_image_data:
return 0
__magic_name__ :Dict = re.sub(
R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''', '''''', str(snake_case ), )
__magic_name__ :Union[str, Any] = re.findall(
R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''', snake_case, )
for index, fixed_full_res_image in enumerate(snake_case ):
if index >= max_images:
return index
__magic_name__ :Tuple = bytes(snake_case, '''ascii''' ).decode(
'''unicode-escape''' )
__magic_name__ :Union[str, Any] = bytes(snake_case, '''ascii''' ).decode(
'''unicode-escape''' )
__magic_name__ :List[str] = urllib.request.build_opener()
__magic_name__ :Tuple = [
(
'''User-Agent''',
'''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''',
)
]
urllib.request.install_opener(snake_case )
__magic_name__ :Any = f'''query_{query.replace(" ", "_" )}'''
if not os.path.exists(snake_case ):
os.makedirs(snake_case )
urllib.request.urlretrieve( # noqa: S310
snake_case, f'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = download_images_from_google_query(sys.argv[1])
print(f"{image_count} images were downloaded to disk.")
except IndexError:
print("""Please provide a search term.""")
raise
| 0 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _lowerCAmelCase:
"""simple docstring"""
a : int =PegasusConfig
a : List[str] ={}
a : Optional[int] ='''gelu'''
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ):
UpperCamelCase_: List[Any] = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = seq_length
UpperCamelCase_: List[str] = is_training
UpperCamelCase_: Any = use_labels
UpperCamelCase_: Optional[Any] = vocab_size
UpperCamelCase_: Tuple = hidden_size
UpperCamelCase_: List[Any] = num_hidden_layers
UpperCamelCase_: Any = num_attention_heads
UpperCamelCase_: Optional[Any] = intermediate_size
UpperCamelCase_: Optional[int] = hidden_dropout_prob
UpperCamelCase_: int = attention_probs_dropout_prob
UpperCamelCase_: Union[str, Any] = max_position_embeddings
UpperCamelCase_: Dict = eos_token_id
UpperCamelCase_: Union[str, Any] = pad_token_id
UpperCamelCase_: List[Any] = bos_token_id
def _a ( self ):
UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return config, inputs_dict
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder()
UpperCamelCase_: Optional[int] = inputs_dict['input_ids']
UpperCamelCase_: Optional[int] = input_ids[:1, :]
UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_: Optional[int] = inputs_dict['head_mask']
UpperCamelCase_: Optional[int] = 1
# first forward pass
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str:
if attention_mask is None:
UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_: int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else ()
a : Tuple =(
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
a : List[str] =True
a : List[str] =False
a : Tuple =False
def _a ( self ):
UpperCamelCase_: Dict = TFPegasusModelTester(self )
UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase )
def _a ( self ):
self.config_tester.run_common_tests()
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
a : Dict =[
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
a : int =[
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
a : Union[str, Any] ='''google/pegasus-xsum'''
@cached_property
def _a ( self ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self ):
UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase )
assert self.expected_text == generated_words
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' )
UpperCamelCase_: Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , )
UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )
return generated_words
@slow
def _a ( self ):
self._assert_generated_batch_equal_expected()
| 57 | 0 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
__UpperCamelCase = 10
def snake_case_ ( self: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4]
__UpperCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(A_,self.block_size,0 ),A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.'
__UpperCamelCase, __UpperCamelCase = process_story(A_ )
self.assertEqual(A_,[] )
def snake_case_ ( self: Optional[int] ):
'''simple docstring'''
__UpperCamelCase = ''
__UpperCamelCase, __UpperCamelCase = process_story(A_ )
self.assertEqual(A_,[] )
self.assertEqual(A_,[] )
def snake_case_ ( self: List[str] ):
'''simple docstring'''
__UpperCamelCase = (
'It was the year of Our Lord one thousand seven hundred and '
'seventy-five\n\nSpiritual revelations were conceded to England '
'at that favoured period, as at this.\n@highlight\n\nIt was the best of times'
)
__UpperCamelCase, __UpperCamelCase = process_story(A_ )
__UpperCamelCase = [
'It was the year of Our Lord one thousand seven hundred and seventy-five.',
'Spiritual revelations were conceded to England at that favoured period, as at this.',
]
self.assertEqual(A_,A_ )
__UpperCamelCase = ['It was the best of times.']
self.assertEqual(A_,A_ )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3, 4] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(A_,0 ).numpy(),expected.numpy() )
def snake_case_ ( self: str ):
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(A_,23 ).numpy(),expected.numpy() )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(A_,1 ).numpy(),expected.numpy() )
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = 101
__UpperCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
__UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
__UpperCamelCase = compute_token_type_ids(A_,A_ )
np.testing.assert_array_equal(A_,A_ )
| 1 |
import unittest
import numpy as np
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ )
if shape_a[0] != shape_b[0]:
UpperCamelCase_: Any = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCAmelCase__ )
if shape_b[1] != shape_c[1]:
UpperCamelCase_: int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCAmelCase__ )
UpperCamelCase_: Dict = pseudo_inv
if a_inv is None:
try:
UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] )
UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase )
self.assertAlmostEqual(_lowerCamelCase , det_a * det_s )
def _a ( self ):
UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 57 | 0 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
UpperCAmelCase_ = pytest.mark.integration
UpperCAmelCase_ = {"""comet"""}
UpperCAmelCase_ = importlib.util.find_spec("""fairseq""") is not None
UpperCAmelCase_ = {"""code_eval"""}
UpperCAmelCase_ = os.name == """nt"""
UpperCAmelCase_ = {"""bertscore""", """frugalscore""", """perplexity"""}
UpperCAmelCase_ = importlib.util.find_spec("""transformers""") is not None
def SCREAMING_SNAKE_CASE_ ( _snake_case :Any ) -> List[str]:
@wraps(_snake_case )
def wrapper(self :Optional[Any] , _snake_case :Dict ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('''"test requires Fairseq"''' )
else:
test_case(self , _snake_case )
return wrapper
def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple ) -> str:
@wraps(_snake_case )
def wrapper(self :Optional[int] , _snake_case :List[str] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('''"test requires transformers"''' )
else:
test_case(self , _snake_case )
return wrapper
def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> Union[str, Any]:
@wraps(_snake_case )
def wrapper(self :List[Any] , _snake_case :str ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('''"test not supported on Windows"''' )
else:
test_case(self , _snake_case )
return wrapper
def SCREAMING_SNAKE_CASE_ ( ) -> str:
_A = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names())
@for_all_test_methods(
_A , _A , _A)
@local
class lowerCamelCase__ ( parameterized.TestCase):
"""simple docstring"""
a__ : List[Any] = {}
a__ : Tuple = None
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' )
def snake_case_ ( self : Any , __lowerCAmelCase : Any ) -> List[Any]:
_A = '''[...]'''
_A = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path )
_A = datasets.load.import_main_class(metric_module.__name__ , dataset=__lowerCAmelCase )
# check parameters
_A = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(__lowerCAmelCase , metric_module.__name__ ):
with self.use_local_metrics():
try:
_A = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def snake_case_ ( self : int , __lowerCAmelCase : int ) -> Optional[Any]:
_A = '''[...]'''
_A = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , __lowerCAmelCase ) ).module_path )
# run doctest
with self.use_local_metrics():
_A = doctest.testmod(__lowerCAmelCase , verbose=__lowerCAmelCase , raise_on_error=__lowerCAmelCase )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ) -> Optional[int]:
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](__lowerCAmelCase ):
yield
else:
yield
@contextmanager
def snake_case_ ( self : Optional[int] ) -> List[Any]:
def load_local_metric(__lowerCAmelCase : List[str] , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Optional[int] ):
return load_metric(os.path.join('''metrics''' , __lowerCAmelCase ) , *__lowerCAmelCase , **__lowerCAmelCase )
with patch('''datasets.load_metric''' ) as mock_load_metric:
_A = load_local_metric
yield
@classmethod
def snake_case_ ( cls : Dict , __lowerCAmelCase : Any ) -> List[str]:
def wrapper(__lowerCAmelCase : Optional[int] ):
_A = contextmanager(__lowerCAmelCase )
_A = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('''bleurt''' )
def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> Any:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags
class lowerCamelCase__ ( _A):
"""simple docstring"""
def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> int:
assert len(input_dict['''input_ids'''] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor:
_A = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('''bertscore''' )
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> Any:
import torch
def bert_cos_score_idf(_snake_case :List[Any] , _snake_case :Optional[int] , *_snake_case :Union[str, Any] , **_snake_case :Optional[int] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(_snake_case ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('''bert_score.scorer.get_model''' ), patch(
'''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf:
_A = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('''comet''' )
def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> Union[str, Any]:
def load_from_checkpoint(_snake_case :Dict ):
class lowerCamelCase__ :
"""simple docstring"""
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Any , *__lowerCAmelCase : Any , **__lowerCAmelCase : str ) -> Tuple:
assert len(__lowerCAmelCase ) == 2
_A = [0.19, 0.92]
return scores, sum(__lowerCAmelCase ) / len(__lowerCAmelCase )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('''comet.download_model''' ) as mock_download_model:
_A = None
with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint:
_A = load_from_checkpoint
yield
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
_A = load_metric(os.path.join('''metrics''' , '''seqeval''' ) )
_A = '''ERROR'''
_A = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(_snake_case , match=re.escape(_snake_case ) ):
metric.compute(predictions=[] , references=[] , scheme=_snake_case )
| 2 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
# Load configuration defined in the metadata file
with open(UpperCAmelCase__ ) as metadata_file:
UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ )
UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ )
# add an entry for [MASK2]
UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ )
UpperCamelCase_: str = 'MLukeTokenizer'
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
# Initialize the embeddings of the special tokens
UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase_: Union[str, Any] = state_dict[bias_name]
UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.'''
UpperCamelCase_: str = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias']
UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase_: Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase_: Union[str, Any] = state_dict[key]
else:
UpperCamelCase_: Dict = state_dict[key]
UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(UpperCAmelCase__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' )
UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase_: Optional[int] = (0, 9)
UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: str = model(**UpperCAmelCase__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
UpperCamelCase_: int = 'Tokyo is the capital of <mask>.'
UpperCamelCase_: Dict = (2_4, 3_0)
UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: Dict = model(**UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist()
UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase_: Optional[Any] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) )
model.save_pretrained(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> int:
UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )]
UpperCamelCase_: Tuple = {}
for entry in data:
UpperCamelCase_: Optional[int] = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase_: Union[str, Any] = entity_id
break
UpperCamelCase_: Dict = F'''{language}:{entity_name}'''
UpperCamelCase_: Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
A_ : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 57 | 0 |
'''simple docstring'''
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def UpperCAmelCase_ ( self , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
return F'''gaussian_noise_s={seed}_shape={"_".join([str(A_ ) for s in shape] )}.npy'''
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
def UpperCAmelCase_ ( self , A_=0 , A_=(4, 4, 64, 64) , A_=False )-> List[str]:
'''simple docstring'''
UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa
UpperCamelCase = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ )
return image
def UpperCAmelCase_ ( self , A_=False , A_="CompVis/stable-diffusion-v1-4" )-> Union[str, Any]:
'''simple docstring'''
UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa
UpperCamelCase = 'bf16' if fpaa else None
UpperCamelCase , UpperCamelCase = FlaxUNetaDConditionModel.from_pretrained(
A_ , subfolder='unet' , dtype=A_ , revision=A_ )
return model, params
def UpperCAmelCase_ ( self , A_=0 , A_=(4, 77, 768) , A_=False )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa
UpperCamelCase = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]],
[17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]],
[8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]],
[3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]],
# fmt: on
] )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=A_ )
UpperCamelCase = self.get_latents(A_ , fpaa=A_ )
UpperCamelCase = self.get_encoder_hidden_states(A_ , fpaa=A_ )
UpperCamelCase = model.apply(
{'params': params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample
assert sample.shape == latents.shape
UpperCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
UpperCamelCase = jnp.array(A_ , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(A_ , A_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]],
[17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]],
[8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]],
[3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]],
# fmt: on
] )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Any:
'''simple docstring'''
UpperCamelCase , UpperCamelCase = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=A_ )
UpperCamelCase = self.get_latents(A_ , shape=(4, 4, 96, 96) , fpaa=A_ )
UpperCamelCase = self.get_encoder_hidden_states(A_ , shape=(4, 77, 1024) , fpaa=A_ )
UpperCamelCase = model.apply(
{'params': params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample
assert sample.shape == latents.shape
UpperCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
UpperCamelCase = jnp.array(A_ , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(A_ , A_ , atol=1e-2 )
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[Any] = logging.get_logger(__name__)
A_ : Optional[Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Dict ='''distilbert'''
a : List[str] ={
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ):
UpperCamelCase_: Tuple = vocab_size
UpperCamelCase_: str = max_position_embeddings
UpperCamelCase_: Optional[int] = sinusoidal_pos_embds
UpperCamelCase_: Union[str, Any] = n_layers
UpperCamelCase_: Optional[int] = n_heads
UpperCamelCase_: int = dim
UpperCamelCase_: Tuple = hidden_dim
UpperCamelCase_: Any = dropout
UpperCamelCase_: Optional[Any] = attention_dropout
UpperCamelCase_: List[str] = activation
UpperCamelCase_: Optional[Any] = initializer_range
UpperCamelCase_: Optional[Any] = qa_dropout
UpperCamelCase_: List[str] = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
@property
def _a ( self ):
if self.task == "multiple-choice":
UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 57 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class a ( a__ ):
snake_case__ = '''megatron-bert'''
def __init__( self , _snake_case=2_90_56 , _snake_case=10_24 , _snake_case=24 , _snake_case=16 , _snake_case=40_96 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case="absolute" , _snake_case=True , **_snake_case , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , **_snake_case )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = position_embedding_type
lowerCAmelCase = use_cache
| 4 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : int = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
'''simple docstring'''
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __get__( self , _lowercase , _lowercase=None ):
"""simple docstring"""
if obj is None:
return self
if self.fget is None:
raise AttributeError("""unreadable attribute""" )
_lowerCAmelCase = """__cached_""" + self.fget.__name__
_lowerCAmelCase = getattr(_lowercase , _lowercase , _lowercase )
if cached is None:
_lowerCAmelCase = self.fget(_lowercase )
setattr(_lowercase , _lowercase , _lowercase )
return cached
def A (__lowerCamelCase :int ):
_lowerCAmelCase = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'invalid truth value {val!r}' )
def A (__lowerCamelCase :Union[str, Any] ):
if is_torch_fx_proxy(__lowerCamelCase ):
return True
if is_torch_available():
import torch
if isinstance(__lowerCamelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(__lowerCamelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(__lowerCamelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(__lowerCamelCase , np.ndarray )
def A (__lowerCamelCase :List[Any] ):
return isinstance(__lowerCamelCase , np.ndarray )
def A (__lowerCamelCase :str ):
return _is_numpy(__lowerCamelCase )
def A (__lowerCamelCase :Dict ):
import torch
return isinstance(__lowerCamelCase , torch.Tensor )
def A (__lowerCamelCase :Union[str, Any] ):
return False if not is_torch_available() else _is_torch(__lowerCamelCase )
def A (__lowerCamelCase :Union[str, Any] ):
import torch
return isinstance(__lowerCamelCase , torch.device )
def A (__lowerCamelCase :List[str] ):
return False if not is_torch_available() else _is_torch_device(__lowerCamelCase )
def A (__lowerCamelCase :Dict ):
import torch
if isinstance(__lowerCamelCase , __lowerCamelCase ):
if hasattr(__lowerCamelCase , __lowerCamelCase ):
_lowerCAmelCase = getattr(__lowerCamelCase , __lowerCamelCase )
else:
return False
return isinstance(__lowerCamelCase , torch.dtype )
def A (__lowerCamelCase :Dict ):
return False if not is_torch_available() else _is_torch_dtype(__lowerCamelCase )
def A (__lowerCamelCase :str ):
import tensorflow as tf
return isinstance(__lowerCamelCase , tf.Tensor )
def A (__lowerCamelCase :Optional[int] ):
return False if not is_tf_available() else _is_tensorflow(__lowerCamelCase )
def A (__lowerCamelCase :Tuple ):
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(__lowerCamelCase , """is_symbolic_tensor""" ):
return tf.is_symbolic_tensor(__lowerCamelCase )
return type(__lowerCamelCase ) == tf.Tensor
def A (__lowerCamelCase :int ):
return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowerCamelCase )
def A (__lowerCamelCase :Optional[int] ):
import jax.numpy as jnp # noqa: F811
return isinstance(__lowerCamelCase , jnp.ndarray )
def A (__lowerCamelCase :List[str] ):
return False if not is_flax_available() else _is_jax(__lowerCamelCase )
def A (__lowerCamelCase :Dict ):
if isinstance(__lowerCamelCase , (dict, UserDict) ):
return {k: to_py_obj(__lowerCamelCase ) for k, v in obj.items()}
elif isinstance(__lowerCamelCase , (list, tuple) ):
return [to_py_obj(__lowerCamelCase ) for o in obj]
elif is_tf_tensor(__lowerCamelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(__lowerCamelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(__lowerCamelCase ):
return np.asarray(__lowerCamelCase ).tolist()
elif isinstance(__lowerCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def A (__lowerCamelCase :Optional[int] ):
if isinstance(__lowerCamelCase , (dict, UserDict) ):
return {k: to_numpy(__lowerCamelCase ) for k, v in obj.items()}
elif isinstance(__lowerCamelCase , (list, tuple) ):
return np.array(__lowerCamelCase )
elif is_tf_tensor(__lowerCamelCase ):
return obj.numpy()
elif is_torch_tensor(__lowerCamelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(__lowerCamelCase ):
return np.asarray(__lowerCamelCase )
else:
return obj
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = fields(self )
# Safety and consistency checks
if not len(_lowercase ):
raise ValueError(F'{self.__class__.__name__} has no fields.' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' )
_lowerCAmelCase = getattr(self , class_fields[0].name )
_lowerCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(_lowercase ):
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = first_field.items()
_lowerCAmelCase = True
else:
try:
_lowerCAmelCase = iter(_lowercase )
_lowerCAmelCase = True
except TypeError:
_lowerCAmelCase = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(_lowercase ):
if (
not isinstance(_lowercase , (list, tuple) )
or not len(_lowercase ) == 2
or not isinstance(element[0] , _lowercase )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
_lowerCAmelCase = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
_lowerCAmelCase = element[1]
elif first_field is not None:
_lowerCAmelCase = first_field
else:
for field in class_fields:
_lowerCAmelCase = getattr(self , field.name )
if v is not None:
_lowerCAmelCase = v
def __delitem__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' )
def _lowercase ( self , *_lowercase , **_lowercase ):
"""simple docstring"""
raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' )
def _lowercase ( self , *_lowercase , **_lowercase ):
"""simple docstring"""
raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' )
def _lowercase ( self , *_lowercase , **_lowercase ):
"""simple docstring"""
raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' )
def __getitem__( self , _lowercase ):
"""simple docstring"""
if isinstance(_lowercase , _lowercase ):
_lowerCAmelCase = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self , _lowercase , _lowercase ):
"""simple docstring"""
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(_lowercase , _lowercase )
super().__setattr__(_lowercase , _lowercase )
def __setitem__( self , _lowercase , _lowercase ):
"""simple docstring"""
super().__setitem__(_lowercase , _lowercase )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(_lowercase , _lowercase )
def _lowercase ( self ):
"""simple docstring"""
return tuple(self[k] for k in self.keys() )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@classmethod
def _lowercase ( cls , _lowercase ):
"""simple docstring"""
raise ValueError(
F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' )
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : int = '''longest'''
_lowercase : str = '''max_length'''
_lowercase : List[Any] = '''do_not_pad'''
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[Any] = '''pt'''
_lowercase : Optional[Any] = '''tf'''
_lowercase : List[str] = '''np'''
_lowercase : int = '''jax'''
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , _lowercase ):
"""simple docstring"""
_lowerCAmelCase = context_managers
_lowerCAmelCase = ExitStack()
def __enter__( self ):
"""simple docstring"""
for context_manager in self.context_managers:
self.stack.enter_context(_lowercase )
def __exit__( self , *_lowercase , **_lowercase ):
"""simple docstring"""
self.stack.__exit__(*_lowercase , **_lowercase )
def A (__lowerCamelCase :str ):
_lowerCAmelCase = infer_framework(__lowerCamelCase )
if framework == "tf":
_lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models
else:
_lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def A (__lowerCamelCase :List[str] ):
_lowerCAmelCase = model_class.__name__
_lowerCAmelCase = infer_framework(__lowerCamelCase )
if framework == "tf":
_lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models
else:
_lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def A (__lowerCamelCase :MutableMapping , __lowerCamelCase :str = "" , __lowerCamelCase :str = "." ):
def _flatten_dict(__lowerCamelCase :Optional[Any] , __lowerCamelCase :Optional[int]="" , __lowerCamelCase :Dict="." ):
for k, v in d.items():
_lowerCAmelCase = str(__lowerCamelCase ) + delimiter + str(__lowerCamelCase ) if parent_key else k
if v and isinstance(__lowerCamelCase , __lowerCamelCase ):
yield from flatten_dict(__lowerCamelCase , __lowerCamelCase , delimiter=__lowerCamelCase ).items()
else:
yield key, v
return dict(_flatten_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) )
@contextmanager
def A (__lowerCamelCase :Any , __lowerCamelCase :bool = False ):
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def A (__lowerCamelCase :Dict , __lowerCamelCase :List[str]=None ):
if is_numpy_array(__lowerCamelCase ):
return np.transpose(__lowerCamelCase , axes=__lowerCamelCase )
elif is_torch_tensor(__lowerCamelCase ):
return array.T if axes is None else array.permute(*__lowerCamelCase )
elif is_tf_tensor(__lowerCamelCase ):
import tensorflow as tf
return tf.transpose(__lowerCamelCase , perm=__lowerCamelCase )
elif is_jax_tensor(__lowerCamelCase ):
return jnp.transpose(__lowerCamelCase , axes=__lowerCamelCase )
else:
raise ValueError(f'Type not supported for transpose: {type(__lowerCamelCase )}.' )
def A (__lowerCamelCase :Tuple , __lowerCamelCase :List[Any] ):
if is_numpy_array(__lowerCamelCase ):
return np.reshape(__lowerCamelCase , __lowerCamelCase )
elif is_torch_tensor(__lowerCamelCase ):
return array.reshape(*__lowerCamelCase )
elif is_tf_tensor(__lowerCamelCase ):
import tensorflow as tf
return tf.reshape(__lowerCamelCase , __lowerCamelCase )
elif is_jax_tensor(__lowerCamelCase ):
return jnp.reshape(__lowerCamelCase , __lowerCamelCase )
else:
raise ValueError(f'Type not supported for reshape: {type(__lowerCamelCase )}.' )
def A (__lowerCamelCase :str , __lowerCamelCase :Any=None ):
if is_numpy_array(__lowerCamelCase ):
return np.squeeze(__lowerCamelCase , axis=__lowerCamelCase )
elif is_torch_tensor(__lowerCamelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=__lowerCamelCase )
elif is_tf_tensor(__lowerCamelCase ):
import tensorflow as tf
return tf.squeeze(__lowerCamelCase , axis=__lowerCamelCase )
elif is_jax_tensor(__lowerCamelCase ):
return jnp.squeeze(__lowerCamelCase , axis=__lowerCamelCase )
else:
raise ValueError(f'Type not supported for squeeze: {type(__lowerCamelCase )}.' )
def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Dict ):
if is_numpy_array(__lowerCamelCase ):
return np.expand_dims(__lowerCamelCase , __lowerCamelCase )
elif is_torch_tensor(__lowerCamelCase ):
return array.unsqueeze(dim=__lowerCamelCase )
elif is_tf_tensor(__lowerCamelCase ):
import tensorflow as tf
return tf.expand_dims(__lowerCamelCase , axis=__lowerCamelCase )
elif is_jax_tensor(__lowerCamelCase ):
return jnp.expand_dims(__lowerCamelCase , axis=__lowerCamelCase )
else:
raise ValueError(f'Type not supported for expand_dims: {type(__lowerCamelCase )}.' )
def A (__lowerCamelCase :Optional[Any] ):
if is_numpy_array(__lowerCamelCase ):
return np.size(__lowerCamelCase )
elif is_torch_tensor(__lowerCamelCase ):
return array.numel()
elif is_tf_tensor(__lowerCamelCase ):
import tensorflow as tf
return tf.size(__lowerCamelCase )
elif is_jax_tensor(__lowerCamelCase ):
return array.size
else:
raise ValueError(f'Type not supported for expand_dims: {type(__lowerCamelCase )}.' )
def A (__lowerCamelCase :List[Any] , __lowerCamelCase :Optional[int] ):
for key, value in auto_map.items():
if isinstance(__lowerCamelCase , (tuple, list) ):
_lowerCAmelCase = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value]
elif value is not None and "--" not in value:
_lowerCAmelCase = f'{repo_id}--{value}'
return auto_map
def A (__lowerCamelCase :Tuple ):
for base_class in inspect.getmro(__lowerCamelCase ):
_lowerCAmelCase = base_class.__module__
_lowerCAmelCase = base_class.__name__
if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("""torch""" ) or name == "PreTrainedModel":
return "pt"
elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'Could not infer framework from class {model_class}.' )
| 5 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : List[str] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Union[str, Any] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Any , __A :Any , __A :Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = np.array(__A )
SCREAMING_SNAKE_CASE__ = np.array([len(__A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self :Dict , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self :str ) -> List[Any]:
"""simple docstring"""
return len(self.lengths )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def _snake_case ( self :List[str] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.params.max_model_input_size
SCREAMING_SNAKE_CASE__ = self.lengths > max_len
logger.info(f'''Splitting {sum(__A )} too long sequences.''' )
def divide_chunks(__A :Dict , __A :Optional[Any] ):
return [l[i : i + n] for i in range(0 , len(__A ) , __A )]
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
if self.params.mlm:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""]
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
SCREAMING_SNAKE_CASE__ = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
SCREAMING_SNAKE_CASE__ = np.insert(__A , 0 , __A )
if sub_s[-1] != sep_id:
SCREAMING_SNAKE_CASE__ = np.insert(__A , len(__A ) , __A )
assert len(__A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__A )
new_tok_ids.extend(__A )
new_lengths.extend([len(__A ) for l in sub_seqs] )
SCREAMING_SNAKE_CASE__ = np.array(__A )
SCREAMING_SNAKE_CASE__ = np.array(__A )
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = len(self )
SCREAMING_SNAKE_CASE__ = self.lengths > 11
SCREAMING_SNAKE_CASE__ = self.token_ids[indices]
SCREAMING_SNAKE_CASE__ = self.lengths[indices]
SCREAMING_SNAKE_CASE__ = len(self )
logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def _snake_case ( self :str ) -> Any:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""unk_token"""]
SCREAMING_SNAKE_CASE__ = len(self )
SCREAMING_SNAKE_CASE__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
SCREAMING_SNAKE_CASE__ = (unk_occs / self.lengths) < 0.5
SCREAMING_SNAKE_CASE__ = self.token_ids[indices]
SCREAMING_SNAKE_CASE__ = self.lengths[indices]
SCREAMING_SNAKE_CASE__ = len(self )
logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(f'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def _snake_case ( self :List[Any] , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [t[0] for t in batch]
SCREAMING_SNAKE_CASE__ = [t[1] for t in batch]
assert len(__A ) == len(__A )
# Max for paddings
SCREAMING_SNAKE_CASE__ = max(__A )
# Pad token ids
if self.params.mlm:
SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""pad_token"""]
else:
SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""unk_token"""]
SCREAMING_SNAKE_CASE__ = [list(t.astype(__A ) ) + [pad_idx] * (max_seq_len_ - len(__A )) for t in token_ids]
assert len(tk_ ) == len(__A )
assert all(len(__A ) == max_seq_len_ for t in tk_ )
SCREAMING_SNAKE_CASE__ = torch.tensor(tk_ ) # (bs, max_seq_len_)
SCREAMING_SNAKE_CASE__ = torch.tensor(__A ) # (bs)
return tk_t, lg_t
| 6 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[List[PIL.Image.Image], np.ndarray]
a : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 57 | 0 |
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _snake_case ( _snake_case : SplitDict ) -> Optional[Any]:
'''simple docstring'''
_A = split_dict._to_yaml_list()
assert len(_snake_case ) == len(_snake_case )
_A = SplitDict._from_yaml_list(_snake_case )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_A = None
# the split name of split_dict takes over the name of the split info object
_A = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_snake_case ), SplitInfo(dataset_name='my_dataset' )] )
def _snake_case ( _snake_case : Any ) -> Dict:
'''simple docstring'''
_A = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 7 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
A_ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case (UpperCAmelCase__ ) -> str:
UpperCamelCase_: Tuple = {}
with open(UpperCAmelCase__ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[Any] = line.strip()
if line:
UpperCamelCase_: List[Any] = line.split()
UpperCamelCase_: Optional[Any] = line_number
UpperCamelCase_: Any = words[0]
UpperCamelCase_: List[Any] = value
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
for attribute in key.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: Dict = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Optional[Any] = hf_pointer
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Tuple = shape_pointer.shape
# let's reduce dimension
UpperCamelCase_: int = value[0]
else:
UpperCamelCase_: Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase_: Optional[int] = value
elif weight_type == "weight_g":
UpperCamelCase_: Any = value
elif weight_type == "weight_v":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "bias":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = value
else:
UpperCamelCase_: int = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: List[Any] = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: List[Any] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Any = '.'.join([key, hf_param_name] )
else:
UpperCamelCase_: Union[str, Any] = key
UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0]
A_ : str = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any:
UpperCamelCase_: Optional[int] = False
for key, mapped_key in MAPPING.items():
UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase_: Optional[Any] = True
if "*" in mapped_key:
UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2]
UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ )
if "weight_g" in name:
UpperCamelCase_: Union[str, Any] = 'weight_g'
elif "weight_v" in name:
UpperCamelCase_: Dict = 'weight_v'
elif "bias" in name:
UpperCamelCase_: int = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_: str = 'weight'
else:
UpperCamelCase_: Union[str, Any] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return is_used
return is_used
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
UpperCamelCase_: List[Any] = []
UpperCamelCase_: Dict = fairseq_model.state_dict()
UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_: Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase_: List[Any] = True
else:
UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not is_used:
unused_weights.append(UpperCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1]
UpperCamelCase_: int = name.split('.' )
UpperCamelCase_: int = int(items[0] )
UpperCamelCase_: Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase_: int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase_: List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(UpperCAmelCase__ )
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict:
if config_path is not None:
UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ )
else:
UpperCamelCase_: List[str] = WavaVecaConfig()
if is_seq_class:
UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ )
UpperCamelCase_: Tuple = idalabel
UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
feature_extractor.save_pretrained(UpperCAmelCase__ )
elif is_finetuned:
if dict_path:
UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase_: Dict = target_dict.pad_index
UpperCamelCase_: Tuple = target_dict.bos_index
UpperCamelCase_: Optional[Any] = target_dict.eos_index
UpperCamelCase_: Union[str, Any] = len(target_dict.symbols )
UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) )
return
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
UpperCamelCase_: str = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase_: List[str] = 0
UpperCamelCase_: List[Any] = 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer(
UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , )
UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase_: Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ )
processor.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ )
else:
UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ )
if is_finetuned or is_seq_class:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ )
UpperCamelCase_: str = model[0].eval()
recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
A_ : int = parser.parse_args()
A_ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 57 | 0 |
'''simple docstring'''
import torch
from diffusers import DiffusionPipeline
class SCREAMING_SNAKE_CASE (a__ ):
def __init__( self , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase)
def __call__( self):
'''simple docstring'''
__A : int = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
__A : Dict = 1
__A : int = self.unet(_UpperCAmelCase , _UpperCAmelCase).sample
__A : Any = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase).prev_sample
__A : int = scheduler_output - scheduler_output + torch.ones_like(_UpperCAmelCase)
return result
| 8 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils )
UpperCamelCase_: Dict = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
UpperCamelCase_: Tuple = test_metrics
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _a ( self ):
self.test_metrics.main()
@require_multi_gpu
def _a ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
| 57 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowerCAmelCase ( UpperCAmelCase_ ):
"""simple docstring"""
A__ : str = ["image_processor", "tokenizer"]
A__ : str = "LayoutLMv3ImageProcessor"
A__ : Tuple = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
def __init__( self : Optional[int] , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , **_snake_case : int ):
"""simple docstring"""
A__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _snake_case , )
A__ = kwargs.pop('feature_extractor' )
A__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_snake_case , _snake_case )
def __call__( self : Optional[int] , _snake_case : List[str] , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _snake_case : Union[List[List[int]], List[List[List[int]]]] = None , _snake_case : Optional[Union[List[int], List[List[int]]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[Any] , ):
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
# first, apply the image processor
A__ = self.image_processor(images=_snake_case , return_tensors=_snake_case )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_snake_case , _snake_case ):
A__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
A__ = features['words']
A__ = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , )
# add pixel values
A__ = features.pop('pixel_values' )
if return_overflowing_tokens is True:
A__ = self.get_overflowing_images(_snake_case , encoded_inputs['overflow_to_sample_mapping'] )
A__ = images
return encoded_inputs
def _a ( self : int , _snake_case : List[str] , _snake_case : Union[str, Any] ):
"""simple docstring"""
A__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_snake_case ) != len(_snake_case ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F''' {len(_snake_case )} and {len(_snake_case )}''' )
return images_with_overflow
def _a ( self : Union[str, Any] , *_snake_case : List[Any] , **_snake_case : Any ):
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case , **_snake_case )
def _a ( self : List[str] , *_snake_case : Optional[int] , **_snake_case : int ):
"""simple docstring"""
return self.tokenizer.decode(*_snake_case , **_snake_case )
@property
def _a ( self : Optional[Any] ):
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def _a ( self : Any ):
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , )
return self.image_processor_class
@property
def _a ( self : int ):
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _snake_case , )
return self.image_processor
| 9 |
import math
class _lowerCAmelCase:
"""simple docstring"""
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: int = 0.0
UpperCamelCase_: Tuple = 0.0
for i in range(len(_lowerCamelCase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
for i in range(len(_lowerCamelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def snake_case () -> None:
# Training Examples ( m, n )
UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCamelCase_: Dict = SelfOrganizingMap()
UpperCamelCase_: List[Any] = 3
UpperCamelCase_: List[str] = 0.5
for _ in range(UpperCAmelCase__ ):
for j in range(len(UpperCAmelCase__ ) ):
# training sample
UpperCamelCase_: int = training_samples[j]
# Compute the winning vector
UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# Update the winning vector
UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# classify test sample
UpperCamelCase_: Dict = [0, 0, 0, 1]
UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 57 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = ["ReformerTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = ["ReformerTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ReformerAttention",
"ReformerForMaskedLM",
"ReformerForQuestionAnswering",
"ReformerForSequenceClassification",
"ReformerLayer",
"ReformerModel",
"ReformerModelWithLMHead",
"ReformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 |
from collections import namedtuple
A_ : Tuple = namedtuple('from_to', 'from_ to')
A_ : int = {
'cubicmeter': from_to(1, 1),
'litre': from_to(0.001, 1000),
'kilolitre': from_to(1, 1),
'gallon': from_to(0.00454, 264.172),
'cubicyard': from_to(0.76455, 1.30795),
'cubicfoot': from_to(0.028, 35.3147),
'cup': from_to(0.000236588, 4226.75),
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 | 0 |
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def lowerCAmelCase (__A , __A , __A):
"""simple docstring"""
if isinstance(__A , torch.Tensor):
return image
elif isinstance(__A , PIL.Image.Image):
_a = [image]
if isinstance(image[0] , PIL.Image.Image):
_a = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos''']))[None, :] for i in image]
_a = np.concatenate(__A , axis=0)
_a = np.array(__A).astype(np.floataa) / 2_55.0
_a = image.transpose(0 , 3 , 1 , 2)
_a = 2.0 * image - 1.0
_a = torch.from_numpy(__A)
elif isinstance(image[0] , torch.Tensor):
_a = torch.cat(__A , dim=0)
return image
def lowerCAmelCase (__A , __A , __A , __A=0.99_95):
"""simple docstring"""
if not isinstance(__A , np.ndarray):
_a = True
_a = va.device
_a = va.cpu().numpy()
_a = va.cpu().numpy()
_a = np.sum(va * va / (np.linalg.norm(__A) * np.linalg.norm(__A)))
if np.abs(__A) > DOT_THRESHOLD:
_a = (1 - t) * va + t * va
else:
_a = np.arccos(__A)
_a = np.sin(__A)
_a = theta_a * t
_a = np.sin(__A)
_a = np.sin(theta_a - theta_t) / sin_theta_a
_a = sin_theta_t / sin_theta_a
_a = sa * va + sa * va
if inputs_are_torch:
_a = torch.from_numpy(__A).to(__A)
return va
def lowerCAmelCase (__A , __A):
"""simple docstring"""
_a = F.normalize(__A , dim=-1)
_a = F.normalize(__A , dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def lowerCAmelCase (__A , __A):
"""simple docstring"""
for param in model.parameters():
_a = value
class __A ( A ):
'''simple docstring'''
def __init__(self , A , A , A , A , A , A , A , A=None , A=None , A=None , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(
vae=A , text_encoder=A , clip_model=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , coca_model=A , coca_tokenizer=A , coca_transform=A , )
_a = (
feature_extractor.size
if isinstance(feature_extractor.size , A )
else feature_extractor.size['''shortest_edge''']
)
_a = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , A )
set_requires_grad(self.clip_model , A )
def a__ (self , A = "auto" ) -> Union[str, Any]:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A )
def a__ (self ) -> Optional[Any]:
"""simple docstring"""
self.enable_attention_slicing(A )
def a__ (self ) -> int:
"""simple docstring"""
set_requires_grad(self.vae , A )
def a__ (self ) -> Union[str, Any]:
"""simple docstring"""
set_requires_grad(self.vae , A )
def a__ (self ) -> Dict:
"""simple docstring"""
set_requires_grad(self.unet , A )
def a__ (self ) -> str:
"""simple docstring"""
set_requires_grad(self.unet , A )
def a__ (self , A , A , A ) -> Optional[Any]:
"""simple docstring"""
_a = min(int(num_inference_steps * strength ) , A )
_a = max(num_inference_steps - init_timestep , 0 )
_a = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def a__ (self , A , A , A , A , A , A=None ) -> List[str]:
"""simple docstring"""
if not isinstance(A , torch.Tensor ):
raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(A )}''' )
_a = image.to(device=A , dtype=A )
if isinstance(A , A ):
_a = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A )
]
_a = torch.cat(A , dim=0 )
else:
_a = self.vae.encode(A ).latent_dist.sample(A )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a = 0.18215 * init_latents
_a = init_latents.repeat_interleave(A , dim=0 )
_a = randn_tensor(init_latents.shape , generator=A , device=A , dtype=A )
# get latents
_a = self.scheduler.add_noise(A , A , A )
_a = init_latents
return latents
def a__ (self , A ) -> Tuple:
"""simple docstring"""
_a = self.coca_transform(A ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
_a = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
_a = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def a__ (self , A , A ) -> List[Any]:
"""simple docstring"""
_a = self.feature_extractor.preprocess(A )
_a = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
_a = self.clip_model.get_image_features(A )
_a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A )
_a = image_embeddings_clip.repeat_interleave(A , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def a__ (self , A , A , A , A , A , A , A , ) -> Union[str, Any]:
"""simple docstring"""
_a = latents.detach().requires_grad_()
_a = self.scheduler.scale_model_input(A , A )
# predict the noise residual
_a = self.unet(A , A , encoder_hidden_states=A ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
_a = self.scheduler.alphas_cumprod[timestep]
_a = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_a = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
_a = torch.sqrt(A )
_a = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , A ):
_a = self.scheduler.sigmas[index]
_a = latents - sigma * noise_pred
else:
raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a = 1 / 0.18215 * sample
_a = self.vae.decode(A ).sample
_a = (image / 2 + 0.5).clamp(0 , 1 )
_a = transforms.Resize(self.feature_extractor_size )(A )
_a = self.normalize(A ).to(latents.dtype )
_a = self.clip_model.get_image_features(A )
_a = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=A )
_a = spherical_dist_loss(A , A ).mean() * clip_guidance_scale
_a = -torch.autograd.grad(A , A )[0]
if isinstance(self.scheduler , A ):
_a = latents.detach() + grads * (sigma**2)
_a = noise_pred_original
else:
_a = noise_pred_original - torch.sqrt(A ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(self , A , A , A = None , A = None , A = 512 , A = 512 , A = 0.6 , A = 50 , A = 7.5 , A = 1 , A = 0.0 , A = 100 , A = None , A = "pil" , A = True , A = 0.8 , A = 0.1 , A = 0.1 , ) -> str:
"""simple docstring"""
if isinstance(A , A ) and len(A ) != batch_size:
raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(A )} generators.''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if isinstance(A , torch.Generator ) and batch_size > 1:
_a = [generator] + [None] * (batch_size - 1)
_a = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
_a = [x[0] for x in coca_is_none if x[1]]
_a = ''', '''.join(A )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(A ):
raise ValueError(
f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.'''
f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
_a = self.get_image_description(A )
if style_prompt is None:
if len(A ):
raise ValueError(
f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.'''
f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' )
_a = self.get_image_description(A )
# get prompt text embeddings for content and style
_a = self.tokenizer(
A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , )
_a = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
_a = self.tokenizer(
A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=A , return_tensors='''pt''' , )
_a = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
_a = slerp(A , A , A )
# duplicate text embeddings for each generation per prompt
_a = text_embeddings.repeat_interleave(A , dim=0 )
# set timesteps
_a = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
_a = {}
if accepts_offset:
_a = 1
self.scheduler.set_timesteps(A , **A )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
_a , _a = self.get_timesteps(A , A , self.device )
_a = timesteps[:1].repeat(A )
# Preprocess image
_a = preprocess(A , A , A )
_a = self.prepare_latents(
A , A , A , text_embeddings.dtype , self.device , A )
_a = preprocess(A , A , A )
_a = self.prepare_latents(
A , A , A , text_embeddings.dtype , self.device , A )
_a = slerp(A , A , A )
if clip_guidance_scale > 0:
_a = self.get_clip_image_embeddings(A , A )
_a = self.get_clip_image_embeddings(A , A )
_a = slerp(
A , A , A )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_a = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_a = content_text_input.input_ids.shape[-1]
_a = self.tokenizer([''''''] , padding='''max_length''' , max_length=A , return_tensors='''pt''' )
_a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
_a = uncond_embeddings.repeat_interleave(A , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_a = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_a = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
_a = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
_a = torch.randn(A , generator=A , device='''cpu''' , dtype=A ).to(
self.device )
else:
_a = torch.randn(A , generator=A , device=self.device , dtype=A )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
_a = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_a = {}
if accepts_eta:
_a = eta
# check if the scheduler accepts generator
_a = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
_a = generator
with self.progress_bar(total=A ):
for i, t in enumerate(A ):
# expand the latents if we are doing classifier free guidance
_a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_a = self.scheduler.scale_model_input(A , A )
# predict the noise residual
_a = self.unet(A , A , encoder_hidden_states=A ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
_a , _a = noise_pred.chunk(2 )
_a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
_a = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
_a , _a = self.cond_fn(
A , A , A , A , A , A , A , )
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(A , A , A , **A ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
_a = 1 / 0.18215 * latents
_a = self.vae.decode(A ).sample
_a = (image / 2 + 0.5).clamp(0 , 1 )
_a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_a = self.numpy_to_pil(A )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
| 11 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
A_ : int = logging.get_logger(__name__)
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ):
warnings.warn(
'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use CLIPImageProcessor instead.' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 57 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase__ : str = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Union[str, Any] = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 12 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
A_ : Optional[int] = 256
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[str, Any] =['''melgan''']
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
super().__init__()
# From MELGAN
UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training.
UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples
UpperCamelCase_: Tuple = 1_2_8
self.register_modules(
notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , )
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range
if clip:
UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value )
# Scale to [0, 1].
UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Dict = input_range
UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs
# Scale to [0, 1].
UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = input_tokens > 0
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder(
encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder(
encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = noise_time
if not torch.is_tensor(_lowerCamelCase ):
UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0:
UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
UpperCamelCase_: Any = self.decoder(
encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase )
return logits
@torch.no_grad()
def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(_lowerCamelCase )}.''' )
UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa )
UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
for i, encoder_input_tokens in enumerate(_lowerCamelCase ):
if i == 0:
UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
UpperCamelCase_: Any = ones
UpperCamelCase_: str = self.scale_features(
_lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
UpperCamelCase_: List[str] = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_lowerCamelCase )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCamelCase_: int = self.decode(
encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample
UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] )
UpperCamelCase_: Any = mel[:1]
UpperCamelCase_: List[str] = mel.cpu().float().numpy()
UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_lowerCamelCase , _lowerCamelCase )
logger.info('Generated segment' , _lowerCamelCase )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
UpperCamelCase_: int = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_lowerCamelCase )
| 57 | 0 |
'''simple docstring'''
import sys
from collections import defaultdict
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self ) -> int:
__lowerCamelCase : Any = []
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any:
return self.node_position[vertex]
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple:
__lowerCamelCase : Optional[int] = pos
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
__lowerCamelCase : str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
__lowerCamelCase : Optional[Any] = 2 * start + 1
else:
__lowerCamelCase : int = 2 * start + 2
if heap[smallest_child] < heap[start]:
__lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
__lowerCamelCase , __lowerCamelCase : int = (
heap[start],
positions[start],
)
__lowerCamelCase , __lowerCamelCase : str = temp, tempa
__lowerCamelCase : Dict = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ )
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any:
__lowerCamelCase : Any = position[index]
while index != 0:
__lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
__lowerCamelCase : Union[str, Any] = heap[parent]
__lowerCamelCase : Any = position[parent]
self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ )
else:
__lowerCamelCase : Tuple = val
__lowerCamelCase : List[str] = temp
self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
break
__lowerCamelCase : Tuple = parent
else:
__lowerCamelCase : Union[str, Any] = val
__lowerCamelCase : Tuple = temp
self.set_position(SCREAMING_SNAKE_CASE_ , 0 )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
__lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1
for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ):
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]:
__lowerCamelCase : Any = positions[0]
__lowerCamelCase : Union[str, Any] = sys.maxsize
self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
return temp
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str:
__lowerCamelCase : List[Any] = Heap()
__lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ )
__lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
__lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex
__lowerCamelCase : Tuple = []
for vertex in range(len(UpperCAmelCase_ ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase_ )
heap.node_position.append(UpperCAmelCase_ )
__lowerCamelCase : Tuple = []
__lowerCamelCase : Dict = 1
__lowerCamelCase : str = sys.maxsize
for neighbor, distance in adjacency_list[0]:
__lowerCamelCase : Any = 0
__lowerCamelCase : Any = distance
heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ )
for _ in range(1 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
__lowerCamelCase : Union[str, Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase_ )]
):
__lowerCamelCase : Dict = distance
heap.bottom_to_top(
UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ )
__lowerCamelCase : str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
A__ : Tuple = int(input("""Enter number of edges: """).strip())
A__ : str = defaultdict(list)
for _ in range(edges_number):
A__ : Optional[int] = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 13 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
A_ : Optional[Any] = ['names', 'prefix']
A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
A_ : List[Any] = ['encoding_errors', 'on_bad_lines']
A_ : Optional[Any] = ['date_format']
@dataclass
class _lowerCAmelCase( datasets.BuilderConfig ):
"""simple docstring"""
a : str =","
a : Optional[str] =None
a : Optional[Union[int, List[int], str]] ="infer"
a : Optional[List[str]] =None
a : Optional[List[str]] =None
a : Optional[Union[int, str, List[int], List[str]]] =None
a : Optional[Union[List[int], List[str]]] =None
a : Optional[str] =None
a : bool =True
a : Optional[Literal["c", "python", "pyarrow"]] =None
a : Dict[Union[int, str], Callable[[Any], Any]] =None
a : Optional[list] =None
a : Optional[list] =None
a : bool =False
a : Optional[Union[int, List[int]]] =None
a : Optional[int] =None
a : Optional[Union[str, List[str]]] =None
a : bool =True
a : bool =True
a : bool =False
a : bool =True
a : Optional[str] =None
a : str ="."
a : Optional[str] =None
a : str ='"'
a : int =0
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : bool =True
a : bool =True
a : int =0
a : bool =True
a : bool =False
a : Optional[str] =None
a : int =10000
a : Optional[datasets.Features] =None
a : Optional[str] ="strict"
a : Literal["error", "warn", "skip"] ="error"
a : Optional[str] =None
def _a ( self ):
if self.delimiter is not None:
UpperCamelCase_: Optional[Any] = self.delimiter
if self.column_names is not None:
UpperCamelCase_: int = self.column_names
@property
def _a ( self ):
UpperCamelCase_: Any = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase( datasets.ArrowBasedBuilder ):
"""simple docstring"""
a : Dict =CsvConfig
def _a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _lowerCamelCase ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_: List[Any] = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = [files]
UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_: Tuple = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = [files]
UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _a ( self , _lowerCamelCase ):
if self.config.features is not None:
UpperCamelCase_: List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase )
return pa_table
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCamelCase_: Dict = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise
| 57 | 0 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
a__ = '''.'''
if __name__ == "__main__":
a__ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''')
a__ = []
a__ = []
with open(doctest_file_path) as fp:
for line in fp:
a__ = line.strip()
a__ = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
a__ = '''\n'''.join(non_existent_paths)
raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''')
if all_paths != sorted(all_paths):
raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
| 14 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : str = logging.get_logger(__name__)
A_ : Union[str, Any] = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Tuple ='''open-llama'''
def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
UpperCamelCase_: int = vocab_size
UpperCamelCase_: List[Any] = max_position_embeddings
UpperCamelCase_: Dict = hidden_size
UpperCamelCase_: Dict = intermediate_size
UpperCamelCase_: Union[str, Any] = num_hidden_layers
UpperCamelCase_: Dict = num_attention_heads
UpperCamelCase_: Union[str, Any] = hidden_act
UpperCamelCase_: Union[str, Any] = initializer_range
UpperCamelCase_: List[Any] = rms_norm_eps
UpperCamelCase_: Union[str, Any] = use_cache
UpperCamelCase_: Dict = kwargs.pop(
'use_memorry_efficient_attention' , _lowerCamelCase )
UpperCamelCase_: Union[str, Any] = hidden_dropout_prob
UpperCamelCase_: Any = attention_dropout_prob
UpperCamelCase_: int = use_stable_embedding
UpperCamelCase_: Tuple = shared_input_output_embedding
UpperCamelCase_: str = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , )
def _a ( self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
f'''got {self.rope_scaling}''' )
UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase )
UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 57 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : List[str] = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class A ( UpperCAmelCase__ ):
'''simple docstring'''
A__ = '''cvt'''
def __init__(self : str , _UpperCAmelCase : str=3 , _UpperCAmelCase : str=[7, 3, 3] , _UpperCAmelCase : Any=[4, 2, 2] , _UpperCAmelCase : Any=[2, 1, 1] , _UpperCAmelCase : Any=[64, 192, 384] , _UpperCAmelCase : Optional[Any]=[1, 3, 6] , _UpperCAmelCase : Tuple=[1, 2, 10] , _UpperCAmelCase : List[str]=[4.0, 4.0, 4.0] , _UpperCAmelCase : Any=[0.0, 0.0, 0.0] , _UpperCAmelCase : Any=[0.0, 0.0, 0.0] , _UpperCAmelCase : Optional[Any]=[0.0, 0.0, 0.1] , _UpperCAmelCase : List[str]=[True, True, True] , _UpperCAmelCase : str=[False, False, True] , _UpperCAmelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase : List[Any]=[3, 3, 3] , _UpperCAmelCase : List[str]=[1, 1, 1] , _UpperCAmelCase : List[Any]=[2, 2, 2] , _UpperCAmelCase : Dict=[1, 1, 1] , _UpperCAmelCase : List[Any]=[1, 1, 1] , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : str=1E-1_2 , **_UpperCAmelCase : Optional[Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
lowercase__ = num_channels
lowercase__ = patch_sizes
lowercase__ = patch_stride
lowercase__ = patch_padding
lowercase__ = embed_dim
lowercase__ = num_heads
lowercase__ = depth
lowercase__ = mlp_ratio
lowercase__ = attention_drop_rate
lowercase__ = drop_rate
lowercase__ = drop_path_rate
lowercase__ = qkv_bias
lowercase__ = cls_token
lowercase__ = qkv_projection_method
lowercase__ = kernel_qkv
lowercase__ = padding_kv
lowercase__ = stride_kv
lowercase__ = padding_q
lowercase__ = stride_q
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
| 15 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ):
UpperCamelCase_: Tuple = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = image_size
UpperCamelCase_: Tuple = patch_size
UpperCamelCase_: Tuple = num_channels
UpperCamelCase_: Dict = embed_dim
UpperCamelCase_: List[Any] = hidden_sizes
UpperCamelCase_: List[str] = depths
UpperCamelCase_: List[str] = num_heads
UpperCamelCase_: Optional[int] = window_size
UpperCamelCase_: Tuple = mlp_ratio
UpperCamelCase_: Dict = qkv_bias
UpperCamelCase_: str = hidden_dropout_prob
UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob
UpperCamelCase_: int = drop_path_rate
UpperCamelCase_: Dict = hidden_act
UpperCamelCase_: List[str] = use_absolute_embeddings
UpperCamelCase_: Dict = patch_norm
UpperCamelCase_: Optional[Any] = layer_norm_eps
UpperCamelCase_: List[str] = initializer_range
UpperCamelCase_: List[Any] = is_training
UpperCamelCase_: Optional[int] = scope
UpperCamelCase_: str = use_labels
UpperCamelCase_: List[str] = type_sequence_label_size
UpperCamelCase_: Union[str, Any] = encoder_stride
UpperCamelCase_: Dict = out_features
UpperCamelCase_: str = out_indices
def _a ( self ):
UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_: List[Any] = None
if self.use_labels:
UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase_: Optional[Any] = self.get_config()
return config, pixel_values, labels
def _a ( self ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: int = model(_lowerCamelCase )
UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
UpperCamelCase_: int = None
UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCamelCase_: List[Any] = 1
UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = self.type_sequence_label_size
UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase_: Union[str, Any] = 1
UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self ):
UpperCamelCase_: Dict = self.prepare_config_and_inputs()
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs
UpperCamelCase_: int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[int] =(
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
a : Any =(
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
a : Dict =False
a : Union[str, Any] =False
a : Tuple =False
a : Optional[int] =False
a : Union[str, Any] =False
def _a ( self ):
UpperCamelCase_: str = FocalNetModelTester(self )
UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase )
def _a ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self ):
return
def _a ( self ):
UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def _a ( self ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def _a ( self ):
pass
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase_: List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: List[Any] = model_class(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_: Any = [*signature.parameters.keys()]
UpperCamelCase_: List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
UpperCamelCase_: Union[str, Any] = outputs.hidden_states
UpperCamelCase_: Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
# FocalNet has a different seq_length
UpperCamelCase_: Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCamelCase_: Dict = outputs.reshaped_hidden_states
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape
UpperCamelCase_: List[str] = (
reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: int = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: int = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: str = 3
UpperCamelCase_: Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCamelCase_: int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Dict = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
@slow
def _a ( self ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase )
for model_class in self.all_model_classes:
UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def _a ( self ):
UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = self.default_image_processor
UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: List[str] = model(**_lowerCamelCase )
# verify the logits
UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 )
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else ()
a : List[str] =FocalNetConfig
a : List[str] =False
def _a ( self ):
UpperCamelCase_: Any = FocalNetModelTester(self )
| 57 | 0 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def __a ( A__ : list[list[float]] ):
SCREAMING_SNAKE_CASE = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
SCREAMING_SNAKE_CASE = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creates a copy of the matrix with swapped positions of the elements
SCREAMING_SNAKE_CASE = [[0.0, 0.0], [0.0, 0.0]]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[1][1], matrix[0][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(A__ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
SCREAMING_SNAKE_CASE = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("This matrix has no inverse." )
# Creating cofactor matrix
SCREAMING_SNAKE_CASE = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
SCREAMING_SNAKE_CASE = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
SCREAMING_SNAKE_CASE = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
SCREAMING_SNAKE_CASE = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
SCREAMING_SNAKE_CASE = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
SCREAMING_SNAKE_CASE = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
SCREAMING_SNAKE_CASE = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
SCREAMING_SNAKE_CASE = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
SCREAMING_SNAKE_CASE = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
SCREAMING_SNAKE_CASE = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
SCREAMING_SNAKE_CASE = array(A__ )
for i in range(3 ):
for j in range(3 ):
SCREAMING_SNAKE_CASE = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
SCREAMING_SNAKE_CASE = array(A__ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(A__ )
# Calculate the inverse of the matrix
return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
| 16 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : Tuple = {
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[Any] = ['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .tokenization_wavaveca import WavaVecaCTCTokenizer
class lowerCamelCase_ ( _lowercase ):
_lowercase : Union[str, Any] = '''Wav2Vec2FeatureExtractor'''
_lowercase : Any = '''AutoTokenizer'''
def __init__( self : List[str] , __A : List[Any] , __A : Optional[Any] ):
super().__init__(__A , __A )
__A : Optional[Any] = self.feature_extractor
__A : str = False
@classmethod
def lowerCAmelCase_ ( cls : Dict , __A : List[str] , **__A : Optional[Any] ):
try:
return super().from_pretrained(__A , **__A )
except OSError:
warnings.warn(
F"""Loading a tokenizer inside {cls.__name__} from a config that does not"""
""" include a `tokenizer_class` attribute is deprecated and will be """
"""removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"""
""" attribute to either your `config.json` or `tokenizer_config.json` """
"""file to suppress this warning: """ , __A , )
__A : Any = WavaVecaFeatureExtractor.from_pretrained(__A , **__A )
__A : List[str] = WavaVecaCTCTokenizer.from_pretrained(__A , **__A )
return cls(feature_extractor=__A , tokenizer=__A )
def __call__( self : Optional[int] , *__A : Optional[Any] , **__A : List[str] ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__A , **__A )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
__A : Any = kwargs.pop("""raw_speech""" )
else:
__A : List[str] = kwargs.pop("""audio""" , __A )
__A : int = kwargs.pop("""sampling_rate""" , __A )
__A : Tuple = kwargs.pop("""text""" , __A )
if len(__A ) > 0:
__A : Union[str, Any] = args[0]
__A : Optional[Any] = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
__A : Tuple = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A )
if text is not None:
__A : Any = self.tokenizer(__A , **__A )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__A : List[str] = encodings["""input_ids"""]
return inputs
def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__A , **__A )
__A : Any = kwargs.pop("""input_features""" , __A )
__A : Tuple = kwargs.pop("""labels""" , __A )
if len(__A ) > 0:
__A : Any = args[0]
__A : Union[str, Any] = args[1:]
if input_features is not None:
__A : str = self.feature_extractor.pad(__A , *__A , **__A )
if labels is not None:
__A : Union[str, Any] = self.tokenizer.pad(__A , **__A )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
__A : Optional[Any] = labels["""input_ids"""]
return input_features
def lowerCAmelCase_ ( self : List[Any] , *__A : List[Any] , **__A : List[str] ):
return self.tokenizer.batch_decode(*__A , **__A )
def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Optional[int] ):
return self.tokenizer.decode(*__A , **__A )
@contextmanager
def lowerCAmelCase_ ( self : str ):
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
__A : Dict = True
__A : List[str] = self.tokenizer
yield
__A : Tuple = self.feature_extractor
__A : int = False
| 17 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ):
return False
return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any:
UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: List[str] = model
UpperCamelCase_: Dict = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Dict = model.module
if not keep_fpaa_wrapper:
UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' )
UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ )
if original_forward is not None:
while hasattr(UpperCAmelCase__ , '__wrapped__' ):
UpperCamelCase_: Any = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase_: Optional[int] = forward
if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ):
convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: Union[str, Any] = model
UpperCamelCase_: Tuple = compiled_model
return model
def snake_case () -> List[str]:
PartialState().wait_for_everyone()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict:
if PartialState().distributed_type == DistributedType.TPU:
xm.save(UpperCAmelCase__ , UpperCAmelCase__ )
elif PartialState().local_process_index == 0:
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
@contextmanager
def snake_case (**UpperCAmelCase__ ) -> Any:
for key, value in kwargs.items():
UpperCamelCase_: int = str(UpperCAmelCase__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def snake_case (UpperCAmelCase__ ) -> str:
if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ):
UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ )
if hasattr(UpperCAmelCase__ , '__qualname__' ):
return obj.__qualname__
if hasattr(UpperCAmelCase__ , '__name__' ):
return obj.__name__
return str(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
for key, value in source.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} )
merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ )
else:
UpperCamelCase_: str = value
return destination
def snake_case (UpperCAmelCase__ = None ) -> bool:
if port is None:
UpperCamelCase_: List[str] = 2_9_5_0_0
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 57 | 0 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class lowerCAmelCase_ ( unittest.TestCase ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=True , _lowerCAmelCase=1 / 255 , _lowerCAmelCase=True , ) -> int:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_lowerCAmelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = do_rescale
_lowerCAmelCase = rescale_factor
_lowerCAmelCase = do_pad
def _snake_case ( self ) -> Dict:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]:
if not batched:
_lowerCAmelCase = image_inputs[0]
if isinstance(_lowerCAmelCase , Image.Image ):
_lowerCAmelCase , _lowerCAmelCase = image.size
else:
_lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2]
if w < h:
_lowerCAmelCase = int(self.size["shortest_edge"] * h / w )
_lowerCAmelCase = self.size["shortest_edge"]
elif w > h:
_lowerCAmelCase = self.size["shortest_edge"]
_lowerCAmelCase = int(self.size["shortest_edge"] * w / h )
else:
_lowerCAmelCase = self.size["shortest_edge"]
_lowerCAmelCase = self.size["shortest_edge"]
else:
_lowerCAmelCase = []
for image in image_inputs:
_lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0]
_lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ):
__lowerCamelCase : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def _snake_case ( self ) -> List[str]:
_lowerCAmelCase = ConditionalDetrImageProcessingTester(self )
@property
def _snake_case ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self ) -> Optional[Any]:
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "image_std" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(_lowerCAmelCase , "size" ) )
def _snake_case ( self ) -> Dict:
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} )
self.assertEqual(image_processor.do_pad , _lowerCAmelCase )
_lowerCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , _lowerCAmelCase )
def _snake_case ( self ) -> Tuple:
pass
def _snake_case ( self ) -> List[str]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase )
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[Any]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _snake_case ( self ) -> Optional[Any]:
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values
_lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _snake_case ( self ) -> str:
# prepare image and target
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"image_id": 39769, "annotations": target}
# encode them
_lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
_lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors="pt" )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _lowerCAmelCase ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _lowerCAmelCase , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _lowerCAmelCase ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _lowerCAmelCase ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _lowerCAmelCase ) )
# verify orig_size
_lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _lowerCAmelCase ) )
# verify size
_lowerCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _lowerCAmelCase ) )
@slow
def _snake_case ( self ) -> List[Any]:
# prepare image, target and masks_path
_lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
_lowerCAmelCase = json.loads(f.read() )
_lowerCAmelCase = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
_lowerCAmelCase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
_lowerCAmelCase = ConditionalDetrImageProcessor(format="coco_panoptic" )
_lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors="pt" )
# verify pixel values
_lowerCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _lowerCAmelCase , atol=1E-4 ) )
# verify area
_lowerCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _lowerCAmelCase ) )
# verify boxes
_lowerCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , _lowerCAmelCase )
_lowerCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _lowerCAmelCase , atol=1E-3 ) )
# verify image_id
_lowerCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _lowerCAmelCase ) )
# verify is_crowd
_lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _lowerCAmelCase ) )
# verify class_labels
_lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _lowerCAmelCase ) )
# verify masks
_lowerCAmelCase = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _lowerCAmelCase )
# verify orig_size
_lowerCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _lowerCAmelCase ) )
# verify size
_lowerCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _lowerCAmelCase ) )
| 18 |
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
A_ : Optional[Any] = data_utils.TransfoXLTokenizer
A_ : Union[str, Any] = data_utils.TransfoXLCorpus
A_ : Any = data_utils
A_ : Optional[Any] = data_utils
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(UpperCAmelCase__ , 'rb' ) as fp:
UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ )
UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ )
UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
UpperCamelCase_: List[str] = TransfoXLConfig()
else:
UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ )
UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' )
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ : int = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
A_ : Tuple = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 57 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
lowercase__ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase__ = (
{
'feature-extraction': TFMobileBertModel,
'fill-mask': TFMobileBertForMaskedLM,
'question-answering': TFMobileBertForQuestionAnswering,
'text-classification': TFMobileBertForSequenceClassification,
'token-classification': TFMobileBertForTokenClassification,
'zero-shot': TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase__ = False
lowercase__ = False
def UpperCAmelCase ( self , __a , __a , __a=False) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a)
if return_labels:
if model_class in get_values(__a):
_UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa)
return inputs_dict
class _UpperCAmelCase( lowerCamelCase ):
def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_input_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_labels
_UpperCamelCase = num_choices
_UpperCamelCase = scope
_UpperCamelCase = embedding_size
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_UpperCamelCase = None
if self.use_input_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length])
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
_UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices)
_UpperCamelCase = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any:
'''simple docstring'''
_UpperCamelCase = TFMobileBertModel(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
_UpperCamelCase = [input_ids, input_mask]
_UpperCamelCase = model(__a)
_UpperCamelCase = model(__a)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any:
'''simple docstring'''
_UpperCamelCase = TFMobileBertForMaskedLM(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict:
'''simple docstring'''
_UpperCamelCase = TFMobileBertForNextSentencePrediction(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Tuple:
'''simple docstring'''
_UpperCamelCase = TFMobileBertForPreTraining(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.num_labels
_UpperCamelCase = TFMobileBertForSequenceClassification(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.num_choices
_UpperCamelCase = TFMobileBertForMultipleChoice(config=__a)
_UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1))
_UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1))
_UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1))
_UpperCamelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.num_labels
_UpperCamelCase = TFMobileBertForTokenClassification(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any:
'''simple docstring'''
_UpperCamelCase = TFMobileBertForQuestionAnswering(config=__a)
_UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_UpperCamelCase = model(__a)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = TFMobileBertModelTest.TFMobileBertModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__a)
def UpperCAmelCase ( self) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a)
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a)
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a)
def UpperCAmelCase ( self) -> Any:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__a)
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__a)
def UpperCAmelCase ( self) -> str:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a)
def UpperCAmelCase ( self) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__a)
@slow
def UpperCAmelCase ( self) -> List[str]:
'''simple docstring'''
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_UpperCamelCase = TFMobileBertModel.from_pretrained(__a)
self.assertIsNotNone(__a)
@require_tf
class _UpperCAmelCase( unittest.TestCase ):
@slow
def UpperCAmelCase ( self) -> int:
'''simple docstring'''
_UpperCamelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''')
_UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]])
_UpperCamelCase = model(__a)[0]
_UpperCamelCase = [1, 6, 3_05_22]
self.assertEqual(output.shape , __a)
_UpperCamelCase = tf.constant(
[
[
[-4.591_9547, -9.24_8295, -9.64_5256],
[-6.730_6175, -6.44_0284, -6.605_2837],
[-7.274_3506, -6.784_7915, -6.02_4673],
]
])
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4)
| 19 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : List[str] = logging.get_logger(__name__)
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
UpperCamelCase_: Tuple = b.T
UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 )
UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 )
UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :]
return d
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: List[str] = x.reshape(-1 , 3 )
UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ )
return np.argmin(UpperCAmelCase__ , axis=1 )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Any =['''pixel_values''']
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ):
super().__init__(**_lowerCamelCase )
UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6}
UpperCamelCase_: str = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None
UpperCamelCase_: Optional[int] = do_resize
UpperCamelCase_: List[Any] = size
UpperCamelCase_: Optional[int] = resample
UpperCamelCase_: str = do_normalize
UpperCamelCase_: str = do_color_quantize
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ):
UpperCamelCase_: Any = get_size_dict(_lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
_lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ):
UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase )
UpperCamelCase_: Optional[Any] = image - 1
return image
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ):
UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_: Tuple = size if size is not None else self.size
UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample
UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters
UpperCamelCase_: Dict = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase )
if not valid_images(_lowerCamelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images]
if do_resize:
UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images]
if do_normalize:
UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images]
if do_color_quantize:
UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
UpperCamelCase_: Dict = images.shape[0]
UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
UpperCamelCase_: List[Any] = list(_lowerCamelCase )
else:
UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images]
UpperCamelCase_: str = {'input_ids': images}
return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
| 57 | 0 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_lowerCAmelCase: Any = object()
# For specifying empty leaf dict `{}`
_lowerCAmelCase: Dict = object()
def _lowercase( __a : Tuple , __a : Optional[Any] ):
a__ =tuple((re.compile(x + '$' ) for x in qs) )
for i in range(len(__a ) - len(__a ) + 1 ):
a__ =[x.match(__a ) for x, y in zip(__a , ks[i:] )]
if matches and all(__a ):
return True
return False
def _lowercase( __a : Any ):
def replace(__a : List[str] , __a : Tuple ):
for rule, replacement in rules:
if _match(__a , __a ):
return replacement
return val
return replace
def _lowercase( ):
return [
# embeddings
(("transformer", "wpe", "embedding"), P('mp' , __a )),
(("transformer", "wte", "embedding"), P('mp' , __a )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__a , 'mp' )),
(("attention", "out_proj", "kernel"), P('mp' , __a )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(__a , 'mp' )),
(("mlp", "c_fc", "bias"), P('mp' )),
(("mlp", "c_proj", "kernel"), P('mp' , __a )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowercase( __a : int ):
a__ =_get_partition_rules()
a__ =_replacement_rules(__a )
a__ ={k: _unmatched for k in flatten_dict(__a )}
a__ ={k: replace(__a , __a ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(__a ) )
| 20 |
import numpy
# List of input, output pairs
A_ : Any = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150))
A_ : Any = [2, 4, 1, 5]
A_ : List[Any] = len(train_data)
A_ : List[Any] = 0.009
def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]:
return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output(
UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[Any] = 0
for i in range(len(UpperCAmelCase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]:
UpperCamelCase_: Any = 0
for i in range(UpperCAmelCase__ ):
if index == -1:
summation_value += _error(UpperCAmelCase__ )
else:
summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index]
return summation_value
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m
return cost_derivative_value
def snake_case () -> Union[str, Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCamelCase_: str = 0.00_0002
UpperCamelCase_: Any = 0
UpperCamelCase_: int = 0
while True:
j += 1
UpperCamelCase_: int = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase__ ) ):
UpperCamelCase_: Any = get_cost_derivative(i - 1 )
UpperCamelCase_: Optional[int] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ):
break
UpperCamelCase_: Optional[int] = temp_parameter_vector
print(('Number of iterations:', j) )
def snake_case () -> int:
for i in range(len(UpperCAmelCase__ ) ):
print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 57 | 0 |
import cmath
import math
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : List[str] =math.radians(lowerCamelCase )
__magic_name__ : Union[str, Any] =math.radians(lowerCamelCase )
# Convert voltage and current to rectangular form
__magic_name__ : int =cmath.rect(lowerCamelCase , lowerCamelCase )
__magic_name__ : List[str] =cmath.rect(lowerCamelCase , lowerCamelCase )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 57 | 0 |
'''simple docstring'''
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
_snake_case : Tuple = 637_8137.0
_snake_case : Optional[int] = 635_6752.31_4245
_snake_case : int = 6378137
def snake_case_ (UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ):
'''simple docstring'''
_a = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_a = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) )
_a = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_a = haversine_distance(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_a = (b_lata + b_lata) / 2
_a = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_a = (sin(UpperCamelCase ) ** 2) * (cos(UpperCamelCase ) ** 2)
_a = cos(sigma / 2 ) ** 2
_a = (sigma - sin(UpperCamelCase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_a = (cos(UpperCamelCase ) ** 2) * (sin(UpperCamelCase ) ** 2)
_a = sin(sigma / 2 ) ** 2
_a = (sigma + sin(UpperCamelCase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 22 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _lowerCAmelCase:
"""simple docstring"""
a : int =PegasusConfig
a : List[str] ={}
a : Optional[int] ='''gelu'''
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ):
UpperCamelCase_: List[Any] = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = seq_length
UpperCamelCase_: List[str] = is_training
UpperCamelCase_: Any = use_labels
UpperCamelCase_: Optional[Any] = vocab_size
UpperCamelCase_: Tuple = hidden_size
UpperCamelCase_: List[Any] = num_hidden_layers
UpperCamelCase_: Any = num_attention_heads
UpperCamelCase_: Optional[Any] = intermediate_size
UpperCamelCase_: Optional[int] = hidden_dropout_prob
UpperCamelCase_: int = attention_probs_dropout_prob
UpperCamelCase_: Union[str, Any] = max_position_embeddings
UpperCamelCase_: Dict = eos_token_id
UpperCamelCase_: Union[str, Any] = pad_token_id
UpperCamelCase_: List[Any] = bos_token_id
def _a ( self ):
UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return config, inputs_dict
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder()
UpperCamelCase_: Optional[int] = inputs_dict['input_ids']
UpperCamelCase_: Optional[int] = input_ids[:1, :]
UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_: Optional[int] = inputs_dict['head_mask']
UpperCamelCase_: Optional[int] = 1
# first forward pass
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str:
if attention_mask is None:
UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_: int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else ()
a : Tuple =(
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
a : List[str] =True
a : List[str] =False
a : Tuple =False
def _a ( self ):
UpperCamelCase_: Dict = TFPegasusModelTester(self )
UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase )
def _a ( self ):
self.config_tester.run_common_tests()
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
a : Dict =[
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
a : int =[
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
a : Union[str, Any] ='''google/pegasus-xsum'''
@cached_property
def _a ( self ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self ):
UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase )
assert self.expected_text == generated_words
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' )
UpperCamelCase_: Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , )
UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )
return generated_words
@slow
def _a ( self ):
self._assert_generated_batch_equal_expected()
| 57 | 0 |
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
snake_case__ : Dict = logging.get_logger(__name__)
enable_full_determinism()
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = UNetaDModel
A_ = """sample"""
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = 4
UpperCamelCase_ = 3
UpperCamelCase_ = (32, 32)
UpperCamelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor([10] ).to(_UpperCAmelCase )
return {"sample": noise, "timestep": time_step}
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return (3, 32, 32)
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return (3, 32, 32)
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ = {
'block_out_channels': (32, 64),
'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'),
'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'),
'attention_head_dim': 3,
'out_channels': 3,
'in_channels': 3,
'layers_per_block': 2,
'sample_size': 32,
}
UpperCamelCase_ = self.dummy_input
return init_dict, inputs_dict
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = UNetaDModel
A_ = """sample"""
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
UpperCamelCase_ = 4
UpperCamelCase_ = 4
UpperCamelCase_ = (32, 32)
UpperCamelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor([10] ).to(_UpperCAmelCase )
return {"sample": noise, "timestep": time_step}
@property
def _UpperCAmelCase ( self ) -> Any:
return (4, 32, 32)
@property
def _UpperCAmelCase ( self ) -> str:
return (4, 32, 32)
def _UpperCAmelCase ( self ) -> Any:
UpperCamelCase_ = {
'sample_size': 32,
'in_channels': 4,
'out_channels': 4,
'layers_per_block': 2,
'block_out_channels': (32, 64),
'attention_head_dim': 32,
'down_block_types': ('DownBlock2D', 'DownBlock2D'),
'up_block_types': ('UpBlock2D', 'UpBlock2D'),
}
UpperCamelCase_ = self.dummy_input
return init_dict, inputs_dict
def _UpperCAmelCase ( self ) -> str:
UpperCamelCase_ , UpperCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(_UpperCAmelCase )
UpperCamelCase_ = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' )
def _UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase_ , UpperCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase )
model.to(_UpperCAmelCase )
UpperCamelCase_ = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' )
def _UpperCAmelCase ( self ) -> Tuple:
# by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
UpperCamelCase_ , UpperCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase )
model_accelerate.to(_UpperCAmelCase )
model_accelerate.eval()
UpperCamelCase_ = torch.randn(
1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , )
UpperCamelCase_ = noise.to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor([10] * noise.shape[0] ).to(_UpperCAmelCase )
UpperCamelCase_ = model_accelerate(_UpperCAmelCase , _UpperCAmelCase )['sample']
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
UpperCamelCase_ , UpperCamelCase_ = UNetaDModel.from_pretrained(
'fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase , low_cpu_mem_usage=_UpperCAmelCase )
model_normal_load.to(_UpperCAmelCase )
model_normal_load.eval()
UpperCamelCase_ = model_normal_load(_UpperCAmelCase , _UpperCAmelCase )['sample']
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 )
def _UpperCAmelCase ( self ) -> List[str]:
UpperCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' )
model.eval()
model.to(_UpperCAmelCase )
UpperCamelCase_ = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
UpperCamelCase_ = noise.to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor([10] * noise.shape[0] ).to(_UpperCAmelCase )
with torch.no_grad():
UpperCamelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ).sample
UpperCamelCase_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
UpperCamelCase_ = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] )
# fmt: on
self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) )
class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
A_ = UNetaDModel
A_ = """sample"""
@property
def _UpperCAmelCase ( self , _UpperCAmelCase=(32, 32) ) -> str:
UpperCamelCase_ = 4
UpperCamelCase_ = 3
UpperCamelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_UpperCAmelCase )
return {"sample": noise, "timestep": time_step}
@property
def _UpperCAmelCase ( self ) -> Dict:
return (3, 32, 32)
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return (3, 32, 32)
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ = {
'block_out_channels': [32, 64, 64, 64],
'in_channels': 3,
'layers_per_block': 1,
'out_channels': 3,
'time_embedding_type': 'fourier',
'norm_eps': 1e-6,
'mid_block_scale_factor': math.sqrt(2.0 ),
'norm_num_groups': None,
'down_block_types': [
'SkipDownBlock2D',
'AttnSkipDownBlock2D',
'SkipDownBlock2D',
'SkipDownBlock2D',
],
'up_block_types': [
'SkipUpBlock2D',
'SkipUpBlock2D',
'AttnSkipUpBlock2D',
'SkipUpBlock2D',
],
}
UpperCamelCase_ = self.dummy_input
return init_dict, inputs_dict
@slow
def _UpperCAmelCase ( self ) -> int:
UpperCamelCase_ , UpperCamelCase_ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(_UpperCAmelCase )
UpperCamelCase_ = self.dummy_input
UpperCamelCase_ = floats_tensor((4, 3) + (256, 256) ).to(_UpperCAmelCase )
UpperCamelCase_ = noise
UpperCamelCase_ = model(**_UpperCAmelCase )
assert image is not None, "Make sure output is not None"
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
UpperCamelCase_ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' )
model.to(_UpperCAmelCase )
UpperCamelCase_ = 4
UpperCamelCase_ = 3
UpperCamelCase_ = (256, 256)
UpperCamelCase_ = torch.ones((batch_size, num_channels) + sizes ).to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor(batch_size * [1e-4] ).to(_UpperCAmelCase )
with torch.no_grad():
UpperCamelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ).sample
UpperCamelCase_ = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
UpperCamelCase_ = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] )
# fmt: on
self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-2 ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
UpperCamelCase_ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' )
model.to(_UpperCAmelCase )
UpperCamelCase_ = 4
UpperCamelCase_ = 3
UpperCamelCase_ = (32, 32)
UpperCamelCase_ = torch.ones((batch_size, num_channels) + sizes ).to(_UpperCAmelCase )
UpperCamelCase_ = torch.tensor(batch_size * [1e-4] ).to(_UpperCAmelCase )
with torch.no_grad():
UpperCamelCase_ = model(_UpperCAmelCase , _UpperCAmelCase ).sample
UpperCamelCase_ = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
UpperCamelCase_ = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] )
# fmt: on
self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-2 ) )
def _UpperCAmelCase ( self ) -> Dict:
# not required for this model
pass
| 23 |
import unittest
import numpy as np
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ )
if shape_a[0] != shape_b[0]:
UpperCamelCase_: Any = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCAmelCase__ )
if shape_b[1] != shape_c[1]:
UpperCamelCase_: int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCAmelCase__ )
UpperCamelCase_: Dict = pseudo_inv
if a_inv is None:
try:
UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] )
UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase )
self.assertAlmostEqual(_lowerCamelCase , det_a * det_s )
def _a ( self ):
UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 57 | 0 |
'''simple docstring'''
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__)
if __name__ == "__main__":
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(
description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'''
)
parser.add_argument(
'''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.'''
)
parser.add_argument(
'''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.'''
)
parser.add_argument('''--vocab_size''', default=3_0_5_2_2, type=int)
UpperCAmelCase_ : Union[str, Any] = parser.parse_args()
logger.info(F"""Loading data from {args.data_file}""")
with open(args.data_file, '''rb''') as fp:
UpperCAmelCase_ : Optional[int] = pickle.load(fp)
logger.info('''Counting occurrences for MLM.''')
UpperCAmelCase_ : Union[str, Any] = Counter()
for tk_ids in data:
counter.update(tk_ids)
UpperCAmelCase_ : Dict = [0] * args.vocab_size
for k, v in counter.items():
UpperCAmelCase_ : str = v
logger.info(F"""Dump to {args.token_counts_dump}""")
with open(args.token_counts_dump, '''wb''') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 24 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
# Load configuration defined in the metadata file
with open(UpperCAmelCase__ ) as metadata_file:
UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ )
UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ )
# add an entry for [MASK2]
UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ )
UpperCamelCase_: str = 'MLukeTokenizer'
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
# Initialize the embeddings of the special tokens
UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase_: Union[str, Any] = state_dict[bias_name]
UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.'''
UpperCamelCase_: str = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias']
UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase_: Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase_: Union[str, Any] = state_dict[key]
else:
UpperCamelCase_: Dict = state_dict[key]
UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(UpperCAmelCase__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' )
UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase_: Optional[int] = (0, 9)
UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: str = model(**UpperCAmelCase__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
UpperCamelCase_: int = 'Tokyo is the capital of <mask>.'
UpperCamelCase_: Dict = (2_4, 3_0)
UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: Dict = model(**UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist()
UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase_: Optional[Any] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) )
model.save_pretrained(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> int:
UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )]
UpperCamelCase_: Tuple = {}
for entry in data:
UpperCamelCase_: Optional[int] = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase_: Union[str, Any] = entity_id
break
UpperCamelCase_: Dict = F'''{language}:{entity_name}'''
UpperCamelCase_: Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
A_ : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 57 | 0 |
from collections.abc import Callable
import numpy as np
def lowerCamelCase__ ( _a , _a , _a , _a , _a):
SCREAMING_SNAKE_CASE : List[Any] = int(np.ceil((x_end - xa) / step_size))
SCREAMING_SNAKE_CASE : Tuple = np.zeros((n + 1,))
SCREAMING_SNAKE_CASE : List[Any] = ya
SCREAMING_SNAKE_CASE : str = xa
for k in range(_a):
SCREAMING_SNAKE_CASE : Optional[int] = y[k] + step_size * ode_func(_a , y[k])
SCREAMING_SNAKE_CASE : Union[str, Any] = y[k] + (
(step_size / 2) * (ode_func(_a , y[k]) + ode_func(x + step_size , _a))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[Any] = logging.get_logger(__name__)
A_ : Optional[Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Dict ='''distilbert'''
a : List[str] ={
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ):
UpperCamelCase_: Tuple = vocab_size
UpperCamelCase_: str = max_position_embeddings
UpperCamelCase_: Optional[int] = sinusoidal_pos_embds
UpperCamelCase_: Union[str, Any] = n_layers
UpperCamelCase_: Optional[int] = n_heads
UpperCamelCase_: int = dim
UpperCamelCase_: Tuple = hidden_dim
UpperCamelCase_: Any = dropout
UpperCamelCase_: Optional[Any] = attention_dropout
UpperCamelCase_: List[str] = activation
UpperCamelCase_: Optional[Any] = initializer_range
UpperCamelCase_: Optional[Any] = qa_dropout
UpperCamelCase_: List[str] = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
@property
def _a ( self ):
if self.task == "multiple-choice":
UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 57 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
__UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _A ( __lowercase ):
def __init__( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ )
@torch.no_grad()
def __call__( self : Any , __magic_name__ : int = 1 , __magic_name__ : int = 1_00 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : Optional[float] = None , __magic_name__ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]:
"""simple docstring"""
if audio_length_in_s is None:
__snake_case : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
__snake_case : Union[str, Any] = audio_length_in_s * self.unet.config.sample_rate
__snake_case : List[str] = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
__snake_case : List[str] = int(__magic_name__ )
if sample_size % down_scale_factor != 0:
__snake_case : Tuple = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
__snake_case : List[str] = int(__magic_name__ )
__snake_case : Optional[int] = next(iter(self.unet.parameters() ) ).dtype
__snake_case : Optional[Any] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
__snake_case : List[Any] = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ )
# set step values
self.scheduler.set_timesteps(__magic_name__ , device=audio.device )
__snake_case : Union[str, Any] = self.scheduler.timesteps.to(__magic_name__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
__snake_case : Tuple = self.unet(__magic_name__ , __magic_name__ ).sample
# 2. compute previous image: x_t -> t_t-1
__snake_case : Optional[int] = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
__snake_case : int = audio.clamp(-1 , 1 ).float().cpu().numpy()
__snake_case : str = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=__magic_name__ )
| 26 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : int = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCamelCase( __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = BioGptTokenizer
__magic_name__ = False
def lowerCAmelCase__ ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_A = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
_A = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) )
_A = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(snake_case_ ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(snake_case_ ) )
def lowerCAmelCase__ ( self , snake_case_ ):
_A = 'lower newer'
_A = 'lower newer'
return input_text, output_text
def lowerCAmelCase__ ( self ):
_A = BioGptTokenizer(self.vocab_file , self.merges_file )
_A = 'lower'
_A = ['low', 'er</w>']
_A = tokenizer.tokenize(snake_case_ )
self.assertListEqual(snake_case_ , snake_case_ )
_A = tokens + ['<unk>']
_A = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
@slow
def lowerCAmelCase__ ( self ):
_A = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
_A = tokenizer.encode('sequence builders' , add_special_tokens=snake_case_ )
_A = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case_ )
_A = tokenizer.build_inputs_with_special_tokens(snake_case_ )
_A = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 27 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : List[str] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Union[str, Any] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
'''simple docstring'''
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self, A="", A="train" ):
'''simple docstring'''
assert os.path.isdir(A )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : str = os.listdir(A )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
SCREAMING_SNAKE_CASE : Tuple = os.path.join(A, A )
if not os.path.isfile(A ):
continue
self.documents.append(A )
def __len__( self ):
'''simple docstring'''
return len(self.documents )
def __getitem__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = self.documents[idx]
SCREAMING_SNAKE_CASE : List[str] = document_path.split('/' )[-1]
with open(A, encoding='utf-8' ) as source:
SCREAMING_SNAKE_CASE : Union[str, Any] = source.read()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = process_story(A )
return document_name, story_lines, summary_lines
def lowercase__( __UpperCamelCase: Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = list(filter(lambda __UpperCamelCase : len(__UpperCamelCase ) != 0 ,[line.strip() for line in raw_story.split('\n' )] ) )
# for some unknown reason some lines miss a period, add it
SCREAMING_SNAKE_CASE : List[str] = [_add_missing_period(__UpperCamelCase ) for line in nonempty_lines]
# gather article lines
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : int = deque(__UpperCamelCase )
while True:
try:
SCREAMING_SNAKE_CASE : Optional[Any] = lines.popleft()
if element.startswith('@highlight' ):
break
story_lines.append(__UpperCamelCase )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
SCREAMING_SNAKE_CASE : int = list(filter(lambda __UpperCamelCase : not t.startswith('@highlight' ) ,__UpperCamelCase ) )
return story_lines, summary_lines
def lowercase__( __UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')']
if line.startswith('@highlight' ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[Any] ):
"""simple docstring"""
if len(__UpperCamelCase ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(__UpperCamelCase )) )
return sequence
def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = torch.ones_like(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = sequence == pad_token_id
SCREAMING_SNAKE_CASE : List[Any] = 0
return mask
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = [tokenizer.encode(__UpperCamelCase ) for line in story_lines]
SCREAMING_SNAKE_CASE : Optional[int] = [token for sentence in story_lines_token_ids for token in sentence]
SCREAMING_SNAKE_CASE : str = [tokenizer.encode(__UpperCamelCase ) for line in summary_lines]
SCREAMING_SNAKE_CASE : Dict = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for sequence in batch:
SCREAMING_SNAKE_CASE : Dict = -1
SCREAMING_SNAKE_CASE : List[Any] = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(__UpperCamelCase )
return torch.tensor(__UpperCamelCase )
| 28 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[List[PIL.Image.Image], np.ndarray]
a : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 57 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
A_ = (3, 9, -11, 0, 7, 5, 1, -1)
A_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class __lowerCamelCase :
a__: int
a__: Node | None
class __lowerCamelCase :
def __init__( self , UpperCAmelCase ):
lowerCamelCase_ = None
for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ):
lowerCamelCase_ = Node(UpperCAmelCase , self.head )
def __iter__( self ):
lowerCamelCase_ = self.head
while node:
yield node.data
lowerCamelCase_ = node.next_node
def __len__( self ):
return sum(1 for _ in self )
def __str__( self ):
return " -> ".join([str(UpperCAmelCase ) for node in self] )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
return SortedLinkedList(list(lowerCAmelCase__ ) + list(lowerCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 29 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
A_ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case (UpperCAmelCase__ ) -> str:
UpperCamelCase_: Tuple = {}
with open(UpperCAmelCase__ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[Any] = line.strip()
if line:
UpperCamelCase_: List[Any] = line.split()
UpperCamelCase_: Optional[Any] = line_number
UpperCamelCase_: Any = words[0]
UpperCamelCase_: List[Any] = value
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
for attribute in key.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: Dict = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Optional[Any] = hf_pointer
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Tuple = shape_pointer.shape
# let's reduce dimension
UpperCamelCase_: int = value[0]
else:
UpperCamelCase_: Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase_: Optional[int] = value
elif weight_type == "weight_g":
UpperCamelCase_: Any = value
elif weight_type == "weight_v":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "bias":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = value
else:
UpperCamelCase_: int = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: List[Any] = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: List[Any] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Any = '.'.join([key, hf_param_name] )
else:
UpperCamelCase_: Union[str, Any] = key
UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0]
A_ : str = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any:
UpperCamelCase_: Optional[int] = False
for key, mapped_key in MAPPING.items():
UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase_: Optional[Any] = True
if "*" in mapped_key:
UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2]
UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ )
if "weight_g" in name:
UpperCamelCase_: Union[str, Any] = 'weight_g'
elif "weight_v" in name:
UpperCamelCase_: Dict = 'weight_v'
elif "bias" in name:
UpperCamelCase_: int = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_: str = 'weight'
else:
UpperCamelCase_: Union[str, Any] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return is_used
return is_used
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
UpperCamelCase_: List[Any] = []
UpperCamelCase_: Dict = fairseq_model.state_dict()
UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_: Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase_: List[Any] = True
else:
UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not is_used:
unused_weights.append(UpperCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1]
UpperCamelCase_: int = name.split('.' )
UpperCamelCase_: int = int(items[0] )
UpperCamelCase_: Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase_: int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase_: List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(UpperCAmelCase__ )
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict:
if config_path is not None:
UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ )
else:
UpperCamelCase_: List[str] = WavaVecaConfig()
if is_seq_class:
UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ )
UpperCamelCase_: Tuple = idalabel
UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
feature_extractor.save_pretrained(UpperCAmelCase__ )
elif is_finetuned:
if dict_path:
UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase_: Dict = target_dict.pad_index
UpperCamelCase_: Tuple = target_dict.bos_index
UpperCamelCase_: Optional[Any] = target_dict.eos_index
UpperCamelCase_: Union[str, Any] = len(target_dict.symbols )
UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) )
return
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
UpperCamelCase_: str = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase_: List[str] = 0
UpperCamelCase_: List[Any] = 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer(
UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , )
UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase_: Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ )
processor.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ )
else:
UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ )
if is_finetuned or is_seq_class:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ )
UpperCamelCase_: str = model[0].eval()
recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
A_ : int = parser.parse_args()
A_ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 57 | 0 |
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __a:
"""simple docstring"""
def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=0.6 ,_SCREAMING_SNAKE_CASE=None ,) -> Any:
UpperCAmelCase_ : str = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Optional[int] = image_size
UpperCAmelCase_ : Tuple = patch_size
UpperCAmelCase_ : Dict = num_channels
UpperCAmelCase_ : List[Any] = is_training
UpperCAmelCase_ : str = use_labels
UpperCAmelCase_ : Optional[int] = hidden_size
UpperCAmelCase_ : Optional[int] = num_hidden_layers
UpperCAmelCase_ : Optional[Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Dict = attention_probs_dropout_prob
UpperCAmelCase_ : Dict = type_sequence_label_size
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Dict = mask_ratio
UpperCAmelCase_ : Optional[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
UpperCAmelCase_ : Union[str, Any] = (image_size // patch_size) ** 2
UpperCAmelCase_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def a__ ( self ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Optional[Any] = None
if self.use_labels:
UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : int = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ViTMAEConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,)
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[str]:
UpperCAmelCase_ : Any = ViTMAEModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any:
UpperCAmelCase_ : str = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCAmelCase_ : Dict = model(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[Any] = (self.image_size // self.patch_size) ** 2
UpperCAmelCase_ : Dict = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
UpperCAmelCase_ : str = 1
UpperCAmelCase_ : Optional[Any] = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : Dict = model(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) )
def a__ ( self ) -> Optional[int]:
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = config_and_inputs
UpperCAmelCase_ : List[str] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __a( _a , _a , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = False
def a__ ( self ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = ViTMAEModelTester(self )
UpperCAmelCase_ : List[str] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 )
def a__ ( self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def a__ ( self ) -> Dict:
pass
def a__ ( self ) -> str:
UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Tuple = model_class(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
UpperCAmelCase_ : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE ,nn.Linear ) )
def a__ ( self ) -> List[str]:
UpperCAmelCase_, UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Any = model_class(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Tuple = [*signature.parameters.keys()]
UpperCAmelCase_ : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE )
def a__ ( self ) -> Optional[int]:
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def a__ ( self ) -> Tuple:
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple:
# make masks reproducible
np.random.seed(2 )
UpperCAmelCase_ : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
UpperCAmelCase_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
UpperCAmelCase_ : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
UpperCAmelCase_ : Union[str, Any] = pt_noise
super().check_pt_tf_models(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
def a__ ( self ) -> Tuple:
UpperCAmelCase_, UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : List[str] = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) )
UpperCAmelCase_ : List[str] = outputs[0].cpu().numpy()
UpperCAmelCase_ : str = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Any = model_class.from_pretrained(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
UpperCAmelCase_ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) )
# Make sure we don't have nans
UpperCAmelCase_ : Tuple = after_outputs[0].cpu().numpy()
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_SCREAMING_SNAKE_CASE ,1e-5 )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def a__ ( self ) -> Union[str, Any]:
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def a__ ( self ) -> str:
pass
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def a__ ( self ) -> Dict:
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def a__ ( self ) -> Union[str, Any]:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def a__ ( self ) -> str:
pass
@slow
def a__ ( self ) -> Dict:
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( ):
'''simple docstring'''
UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __a( unittest.TestCase ):
"""simple docstring"""
@cached_property
def a__ ( self ) -> Any:
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def a__ ( self ) -> List[str]:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
UpperCAmelCase_ : List[str] = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : int = self.default_image_processor
UpperCAmelCase_ : str = prepare_img()
UpperCAmelCase_ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
UpperCAmelCase_ : Any = ViTMAEConfig()
UpperCAmelCase_ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
UpperCAmelCase_ : Optional[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : int = model(**_SCREAMING_SNAKE_CASE ,noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) )
# verify the logits
UpperCAmelCase_ : Tuple = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape ,_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(_SCREAMING_SNAKE_CASE ) ,atol=1e-4 ) )
| 30 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils )
UpperCamelCase_: Dict = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
UpperCamelCase_: Tuple = test_metrics
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _a ( self ):
self.test_metrics.main()
@require_multi_gpu
def _a ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
| 57 | 0 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( ) -> Any:
SCREAMING_SNAKE_CASE_ = 10
SCREAMING_SNAKE_CASE_ = datasets.Features(
{
'tokens': datasets.Sequence(datasets.Value('string' ) ),
'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ),
'answers': datasets.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
'id': datasets.Value('int64' ),
} )
SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(
{
'tokens': [['foo'] * 5] * n,
'labels': [[1] * 5] * n,
'answers': [{'answer_start': [97], 'text': ['1976']}] * 10,
'id': list(range(__UpperCAmelCase ) ),
} , features=__UpperCAmelCase , )
return dataset
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ) -> Tuple:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' )
dataset.map(cache_file_name=__UpperCAmelCase )
return filename
# FILE_CONTENT + files
lowerCamelCase__ : Optional[Any] = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> str:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt'
SCREAMING_SNAKE_CASE_ = FILE_CONTENT
with open(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase )
return filename
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
import bza
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2'
SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' )
with bza.open(__UpperCAmelCase , 'wb' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]:
import gzip
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' )
SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' )
with gzip.open(__UpperCAmelCase , 'wb' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4'
SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' )
with lza.frame.open(__UpperCAmelCase , 'wb' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> List[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z'
with pyazr.SevenZipFile(__UpperCAmelCase , 'w' ) as archive:
archive.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
import tarfile
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar'
with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f:
f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
import lzma
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz'
SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' )
with lzma.open(__UpperCAmelCase , 'wb' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> Union[str, Any]:
import zipfile
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> str:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst'
SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' )
with zstd.open(__UpperCAmelCase , 'wb' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Any:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.xml'
SCREAMING_SNAKE_CASE_ = textwrap.dedent(
'\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' )
with open(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase )
return filename
lowerCamelCase__ : Dict = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
lowerCamelCase__ : Optional[Any] = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
lowerCamelCase__ : List[str] = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
lowerCamelCase__ : str = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
lowerCamelCase__ : Union[str, Any] = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( ) -> Any:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[str]:
SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' )
dataset.map(cache_file_name=__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' )
with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con:
SCREAMING_SNAKE_CASE_ = con.cursor()
cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' )
for item in DATA:
cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Tuple:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' )
with open(__UpperCAmelCase , 'w' , newline='' ) as f:
SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' )
with open(__UpperCAmelCase , 'w' , newline='' ) as f:
SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> List[str]:
import bza
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2'
with open(__UpperCAmelCase , 'rb' ) as f:
SCREAMING_SNAKE_CASE_ = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(__UpperCAmelCase , 'wb' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) )
f.write(__UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) -> Any:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) )
f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' )
SCREAMING_SNAKE_CASE_ = pa.schema(
{
'col_1': pa.string(),
'col_2': pa.intaa(),
'col_3': pa.floataa(),
} )
with open(__UpperCAmelCase , 'wb' ) as f:
SCREAMING_SNAKE_CASE_ = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCAmelCase ) )] for k in DATA[0]} , schema=__UpperCAmelCase )
writer.write_table(__UpperCAmelCase )
writer.close()
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
SCREAMING_SNAKE_CASE_ = {'data': DATA}
with open(__UpperCAmelCase , 'w' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Tuple:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
SCREAMING_SNAKE_CASE_ = {'data': DATA_DICT_OF_LISTS}
with open(__UpperCAmelCase , 'w' ) as f:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' )
with open(__UpperCAmelCase , 'w' ) as f:
for item in DATA:
f.write(json.dumps(__UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> int:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' )
with open(__UpperCAmelCase , 'w' ) as f:
for item in DATA:
f.write(json.dumps(__UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Dict:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' )
with open(__UpperCAmelCase , 'w' ) as f:
for item in DATA_312:
f.write(json.dumps(__UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> int:
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' )
with open(__UpperCAmelCase , 'w' ) as f:
for item in DATA_STR:
f.write(json.dumps(__UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Any:
import gzip
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' )
with open(__UpperCAmelCase , 'rb' ) as orig_file:
with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file:
zipped_file.writelines(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Any:
import gzip
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' )
with open(__UpperCAmelCase , 'rb' ) as orig_file:
with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file:
zipped_file.writelines(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Any:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> int:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) )
f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar'
with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f:
f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar'
with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f:
f.add(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Dict:
SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3']
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' )
with open(__UpperCAmelCase , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3']
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' )
with open(__UpperCAmelCase , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Any:
SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3']
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc'
with open(__UpperCAmelCase , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Dict:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Tuple:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) )
f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Tuple:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) )
f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Dict:
SCREAMING_SNAKE_CASE_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] )
SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' )
with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(__UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( ) -> str:
return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' )
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( ) -> int:
return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' )
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] ) -> List[Any]:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip'
with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f:
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) )
f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ).replace('.jpg' , '2.jpg' ) )
return path
@pytest.fixture(scope='session' )
def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Dict:
SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data_dir' )
(data_dir / "subdir").mkdir()
with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden file
with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
return data_dir
| 31 |
import math
class _lowerCAmelCase:
"""simple docstring"""
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: int = 0.0
UpperCamelCase_: Tuple = 0.0
for i in range(len(_lowerCamelCase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
for i in range(len(_lowerCamelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def snake_case () -> None:
# Training Examples ( m, n )
UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCamelCase_: Dict = SelfOrganizingMap()
UpperCamelCase_: List[Any] = 3
UpperCamelCase_: List[str] = 0.5
for _ in range(UpperCAmelCase__ ):
for j in range(len(UpperCAmelCase__ ) ):
# training sample
UpperCamelCase_: int = training_samples[j]
# Compute the winning vector
UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# Update the winning vector
UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# classify test sample
UpperCamelCase_: Dict = [0, 0, 0, 1]
UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 57 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"],
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["BertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BertForMaskedLM",
"BertForMultipleChoice",
"BertForNextSentencePrediction",
"BertForPreTraining",
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
"load_tf_weights_in_bert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFBertEmbeddings",
"TFBertForMaskedLM",
"TFBertForMultipleChoice",
"TFBertForNextSentencePrediction",
"TFBertForPreTraining",
"TFBertForQuestionAnswering",
"TFBertForSequenceClassification",
"TFBertForTokenClassification",
"TFBertLMHeadModel",
"TFBertMainLayer",
"TFBertModel",
"TFBertPreTrainedModel",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["TFBertTokenizer"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"FlaxBertForCausalLM",
"FlaxBertForMaskedLM",
"FlaxBertForMultipleChoice",
"FlaxBertForNextSentencePrediction",
"FlaxBertForPreTraining",
"FlaxBertForQuestionAnswering",
"FlaxBertForSequenceClassification",
"FlaxBertForTokenClassification",
"FlaxBertModel",
"FlaxBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 32 |
from collections import namedtuple
A_ : Tuple = namedtuple('from_to', 'from_ to')
A_ : int = {
'cubicmeter': from_to(1, 1),
'litre': from_to(0.001, 1000),
'kilolitre': from_to(1, 1),
'gallon': from_to(0.00454, 264.172),
'cubicyard': from_to(0.76455, 1.30795),
'cubicfoot': from_to(0.028, 35.3147),
'cup': from_to(0.000236588, 4226.75),
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 | 0 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
lowerCamelCase__ : str = {
"""distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"""roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"""bert""": (BertConfig, BertForMaskedLM, BertTokenizer),
"""gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
if args.student_type == "roberta":
snake_case__ = False
elif args.student_type == "gpt2":
snake_case__ = False
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
if args.student_type == "roberta":
snake_case__ = False
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
snake_case__ = argparse.ArgumentParser(description='''Training''' )
parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' )
parser.add_argument(
'''--dump_path''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The output directory (log, checkpoints, parameters, etc.)''' )
parser.add_argument(
'''--data_file''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , )
parser.add_argument(
'''--student_type''' , type=__lowerCAmelCase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''The student type (DistilBERT, RoBERTa).''' , )
parser.add_argument('''--student_config''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''Path to the student configuration.''' )
parser.add_argument(
'''--student_pretrained_weights''' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='''Load student initialization checkpoint.''' )
parser.add_argument(
'''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__lowerCAmelCase , help='''Teacher type (BERT, RoBERTa).''' )
parser.add_argument('''--teacher_name''' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='''The teacher model.''' )
parser.add_argument('''--temperature''' , default=2.0 , type=__lowerCAmelCase , help='''Temperature for the softmax temperature.''' )
parser.add_argument(
'''--alpha_ce''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the distillation loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_mlm''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , )
parser.add_argument('''--alpha_clm''' , default=0.5 , type=__lowerCAmelCase , help='''Linear weight for the CLM loss. Must be >=0.''' )
parser.add_argument('''--alpha_mse''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the MSE loss. Must be >=0.''' )
parser.add_argument(
'''--alpha_cos''' , default=0.0 , type=__lowerCAmelCase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' )
parser.add_argument(
'''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' )
parser.add_argument(
'''--mlm_mask_prop''' , default=0.15 , type=__lowerCAmelCase , help='''Proportion of tokens for which we need to make a prediction.''' , )
parser.add_argument('''--word_mask''' , default=0.8 , type=__lowerCAmelCase , help='''Proportion of tokens to mask out.''' )
parser.add_argument('''--word_keep''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to keep.''' )
parser.add_argument('''--word_rand''' , default=0.1 , type=__lowerCAmelCase , help='''Proportion of tokens to randomly replace.''' )
parser.add_argument(
'''--mlm_smoothing''' , default=0.7 , type=__lowerCAmelCase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , )
parser.add_argument('''--token_counts''' , type=__lowerCAmelCase , help='''The token counts in the data_file for MLM.''' )
parser.add_argument(
'''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , )
parser.add_argument(
'''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , )
parser.add_argument(
'''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , )
parser.add_argument('''--n_epoch''' , type=__lowerCAmelCase , default=3 , help='''Number of pass on the whole dataset.''' )
parser.add_argument('''--batch_size''' , type=__lowerCAmelCase , default=5 , help='''Batch size (for each process).''' )
parser.add_argument(
'''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , )
parser.add_argument(
'''--gradient_accumulation_steps''' , type=__lowerCAmelCase , default=50 , help='''Gradient accumulation for larger training batches.''' , )
parser.add_argument('''--warmup_prop''' , default=0.05 , type=__lowerCAmelCase , help='''Linear warmup proportion.''' )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__lowerCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--learning_rate''' , default=5e-4 , type=__lowerCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument('''--adam_epsilon''' , default=1e-6 , type=__lowerCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__lowerCAmelCase , help='''Max gradient norm.''' )
parser.add_argument('''--initializer_range''' , default=0.02 , type=__lowerCAmelCase , help='''Random initialization range.''' )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=__lowerCAmelCase , default='''O1''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_gpu''' , type=__lowerCAmelCase , default=1 , help='''Number of GPUs in the node.''' )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase , default=-1 , help='''Distributed training - Local rank''' )
parser.add_argument('''--seed''' , type=__lowerCAmelCase , default=56 , help='''Random seed''' )
parser.add_argument('''--log_interval''' , type=__lowerCAmelCase , default=500 , help='''Tensorboard logging interval.''' )
parser.add_argument('''--checkpoint_interval''' , type=__lowerCAmelCase , default=4000 , help='''Checkpoint interval.''' )
snake_case__ = parser.parse_args()
sanity_checks(__lowerCAmelCase )
# ARGS #
init_gpu_params(__lowerCAmelCase )
set_seed(__lowerCAmelCase )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"""
''' itUse `--force` if you want to overwrite it''' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" )
# SAVE PARAMS #
logger.info(F"""Param: {args}""" )
with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f:
json.dump(vars(__lowerCAmelCase ) , __lowerCAmelCase , indent=4 )
git_log(args.dump_path )
snake_case__ , snake_case__ , snake_case__ = MODEL_CLASSES[args.student_type]
snake_case__ , snake_case__ , snake_case__ = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
snake_case__ = teacher_tokenizer_class.from_pretrained(args.teacher_name )
snake_case__ = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
snake_case__ = tokenizer.all_special_tokens.index(__lowerCAmelCase )
snake_case__ = tokenizer.all_special_ids[idx]
logger.info(F"""Special tokens {special_tok_ids}""" )
snake_case__ = special_tok_ids
snake_case__ = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F"""Loading data from {args.data_file}""" )
with open(args.data_file , '''rb''' ) as fp:
snake_case__ = pickle.load(__lowerCAmelCase )
if args.mlm:
logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" )
with open(args.token_counts , '''rb''' ) as fp:
snake_case__ = pickle.load(__lowerCAmelCase )
snake_case__ = np.maximum(__lowerCAmelCase , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
snake_case__ = 0.0 # do not predict special tokens
snake_case__ = torch.from_numpy(__lowerCAmelCase )
else:
snake_case__ = None
snake_case__ = LmSeqsDataset(params=__lowerCAmelCase , data=__lowerCAmelCase )
logger.info('''Data loader created.''' )
# STUDENT #
logger.info(F"""Loading student config from {args.student_config}""" )
snake_case__ = student_config_class.from_pretrained(args.student_config )
snake_case__ = True
if args.student_pretrained_weights is not None:
logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" )
snake_case__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowerCAmelCase )
else:
snake_case__ = student_model_class(__lowerCAmelCase )
if args.n_gpu > 0:
student.to(F"""cuda:{args.local_rank}""" )
logger.info('''Student loaded.''' )
# TEACHER #
snake_case__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowerCAmelCase )
if args.n_gpu > 0:
teacher.to(F"""cuda:{args.local_rank}""" )
logger.info(F"""Teacher loaded from {args.teacher_name}.""" )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__lowerCAmelCase , __lowerCAmelCase )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__lowerCAmelCase , __lowerCAmelCase )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
snake_case__ = Distiller(
params=__lowerCAmelCase , dataset=__lowerCAmelCase , token_probs=__lowerCAmelCase , student=__lowerCAmelCase , teacher=__lowerCAmelCase )
distiller.train()
logger.info('''Let\'s go get some drinks.''' )
if __name__ == "__main__":
main()
| 33 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
A_ : int = logging.get_logger(__name__)
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ):
warnings.warn(
'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use CLIPImageProcessor instead.' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 57 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class snake_case_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
A_ = IFPipeline
A_ = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCAmelCase__ ( self) -> Optional[int]:
return self._get_dummy_components()
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_=0) -> Optional[int]:
if str(lowerCamelCase_).startswith('''mps'''):
UpperCamelCase = torch.manual_seed(lowerCamelCase_)
else:
UpperCamelCase = torch.Generator(device=lowerCamelCase_).manual_seed(lowerCamelCase_)
UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self) -> Optional[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''')
def UpperCAmelCase__ ( self) -> Tuple:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1)
def UpperCAmelCase__ ( self) -> Optional[int]:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def UpperCAmelCase__ ( self) -> List[Any]:
self._test_save_load_local()
def UpperCAmelCase__ ( self) -> Any:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase__ ( self) -> List[Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase__ ( self) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self) -> int:
# if
UpperCamelCase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa)
UpperCamelCase = IFSuperResolutionPipeline.from_pretrained(
'''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_)
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('''cuda''')
UpperCamelCase , UpperCamelCase = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''')
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
UpperCamelCase = None
UpperCamelCase = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
UpperCamelCase = IFImgaImgPipeline(**pipe_a.components)
UpperCamelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_imgaimg(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
UpperCamelCase = IFInpaintingPipeline(**pipe_a.components)
UpperCamelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components)
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0)
UpperCamelCase = pipe_a(
prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , )
UpperCamelCase = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_3 * 1_0**9
UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''')
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_)
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0)
UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = pipe_a(
prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , )
UpperCamelCase = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''')
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_)
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0)
UpperCamelCase = pipe_a(
prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , )
UpperCamelCase = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''')
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_)
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0)
UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = pipe_a(
prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , )
UpperCamelCase = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''')
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_)
def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int:
# pipeline 1
_start_torch_memory_measurement()
UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1)).to(lowerCamelCase_)
UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0)
UpperCamelCase = pipe_a(
prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , num_inference_steps=2 , generator=lowerCamelCase_ , output_type='''np''' , )
UpperCamelCase = output.images[0]
assert image.shape == (6_4, 6_4, 3)
UpperCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 1_0 * 1_0**9
UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''')
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_)
# pipeline 2
_start_torch_memory_measurement()
UpperCamelCase = torch.Generator(device='''cpu''').manual_seed(0)
UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0)).to(lowerCamelCase_)
UpperCamelCase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1)).to(lowerCamelCase_)
UpperCamelCase = pipe_a(
prompt_embeds=lowerCamelCase_ , negative_prompt_embeds=lowerCamelCase_ , image=lowerCamelCase_ , mask_image=lowerCamelCase_ , original_image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''np''' , )
UpperCamelCase = output.images[0]
assert image.shape == (2_5_6, 2_5_6, 3)
UpperCamelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 1_0**9
UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''')
assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_)
def __snake_case ( ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 34 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
A_ : Optional[int] = 256
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[str, Any] =['''melgan''']
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
super().__init__()
# From MELGAN
UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training.
UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples
UpperCamelCase_: Tuple = 1_2_8
self.register_modules(
notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , )
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range
if clip:
UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value )
# Scale to [0, 1].
UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Dict = input_range
UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs
# Scale to [0, 1].
UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = input_tokens > 0
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder(
encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder(
encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = noise_time
if not torch.is_tensor(_lowerCamelCase ):
UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0:
UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
UpperCamelCase_: Any = self.decoder(
encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase )
return logits
@torch.no_grad()
def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(_lowerCamelCase )}.''' )
UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa )
UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
for i, encoder_input_tokens in enumerate(_lowerCamelCase ):
if i == 0:
UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
UpperCamelCase_: Any = ones
UpperCamelCase_: str = self.scale_features(
_lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
UpperCamelCase_: List[str] = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_lowerCamelCase )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCamelCase_: int = self.decode(
encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample
UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] )
UpperCamelCase_: Any = mel[:1]
UpperCamelCase_: List[str] = mel.cpu().float().numpy()
UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_lowerCamelCase , _lowerCamelCase )
logger.info('Generated segment' , _lowerCamelCase )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
UpperCamelCase_: int = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_lowerCamelCase )
| 57 | 0 |
def a ( A__ , A__ , A__ , A__ , A__ , ) -> float:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('''All input parameters must be positive''' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('''Relative densities cannot be greater than one''' )
else:
SCREAMING_SNAKE_CASE__ : Any = 1 - (matter_density + radiation_density + dark_energy)
SCREAMING_SNAKE_CASE__ : Optional[int] = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
SCREAMING_SNAKE_CASE__ : Tuple = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
a_ :int = 0.3
print(
hubble_parameter(
hubble_constant=6_8.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 35 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
A_ : Optional[Any] = ['names', 'prefix']
A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
A_ : List[Any] = ['encoding_errors', 'on_bad_lines']
A_ : Optional[Any] = ['date_format']
@dataclass
class _lowerCAmelCase( datasets.BuilderConfig ):
"""simple docstring"""
a : str =","
a : Optional[str] =None
a : Optional[Union[int, List[int], str]] ="infer"
a : Optional[List[str]] =None
a : Optional[List[str]] =None
a : Optional[Union[int, str, List[int], List[str]]] =None
a : Optional[Union[List[int], List[str]]] =None
a : Optional[str] =None
a : bool =True
a : Optional[Literal["c", "python", "pyarrow"]] =None
a : Dict[Union[int, str], Callable[[Any], Any]] =None
a : Optional[list] =None
a : Optional[list] =None
a : bool =False
a : Optional[Union[int, List[int]]] =None
a : Optional[int] =None
a : Optional[Union[str, List[str]]] =None
a : bool =True
a : bool =True
a : bool =False
a : bool =True
a : Optional[str] =None
a : str ="."
a : Optional[str] =None
a : str ='"'
a : int =0
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : bool =True
a : bool =True
a : int =0
a : bool =True
a : bool =False
a : Optional[str] =None
a : int =10000
a : Optional[datasets.Features] =None
a : Optional[str] ="strict"
a : Literal["error", "warn", "skip"] ="error"
a : Optional[str] =None
def _a ( self ):
if self.delimiter is not None:
UpperCamelCase_: Optional[Any] = self.delimiter
if self.column_names is not None:
UpperCamelCase_: int = self.column_names
@property
def _a ( self ):
UpperCamelCase_: Any = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase( datasets.ArrowBasedBuilder ):
"""simple docstring"""
a : Dict =CsvConfig
def _a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _lowerCamelCase ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_: List[Any] = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = [files]
UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_: Tuple = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = [files]
UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _a ( self , _lowerCamelCase ):
if self.config.features is not None:
UpperCamelCase_: List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase )
return pa_table
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCamelCase_: Dict = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise
| 57 | 0 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__lowercase : List[str] = 16
__lowercase : List[str] = 32
def lowercase ( __A : Accelerator , __A : int = 16 , __A : str = "bert-base-cased" ) -> Any:
'''simple docstring'''
snake_case : Optional[Any] = AutoTokenizer.from_pretrained(__A )
snake_case : Optional[Any] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__A : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
snake_case : Optional[int] = datasets.map(
__A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__A )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case : Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__A : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__A , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(__A , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
snake_case : Dict = DataLoader(
tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
snake_case : Optional[int] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A )
return train_dataloader, eval_dataloader
def lowercase ( __A : Union[str, Any] , __A : Optional[Any] ) -> str:
'''simple docstring'''
snake_case : List[str] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case : str = config["""lr"""]
snake_case : int = int(config["""num_epochs"""] )
snake_case : List[Any] = int(config["""seed"""] )
snake_case : Any = int(config["""batch_size"""] )
snake_case : Any = args.model_name_or_path
set_seed(__A )
snake_case , snake_case : str = get_dataloaders(__A , __A , __A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(__A , return_dict=__A )
# Instantiate optimizer
snake_case : Any = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
snake_case : str = optimizer_cls(params=model.parameters() , lr=__A )
if accelerator.state.deepspeed_plugin is not None:
snake_case : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
snake_case : Optional[int] = 1
snake_case : int = (len(__A ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
snake_case : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=__A , num_warmup_steps=0 , num_training_steps=__A , )
else:
snake_case : Union[str, Any] = DummyScheduler(__A , total_num_steps=__A , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case , snake_case , snake_case , snake_case , snake_case : Optional[Any] = accelerator.prepare(
__A , __A , __A , __A , __A )
# We need to keep track of how many total steps we have iterated over
snake_case : Dict = 0
# We also need to keep track of the stating epoch so files are named properly
snake_case : int = 0
# Now we train the model
snake_case : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" )
snake_case : List[str] = 0
snake_case : Dict = {}
for epoch in range(__A , __A ):
model.train()
for step, batch in enumerate(__A ):
snake_case : int = model(**__A )
snake_case : Optional[Any] = outputs.loss
snake_case : List[str] = loss / gradient_accumulation_steps
accelerator.backward(__A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
snake_case : Tuple = 0
for step, batch in enumerate(__A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case : int = model(**__A )
snake_case : List[Any] = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
snake_case , snake_case : Union[str, Any] = accelerator.gather(
(predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(__A ) - 1:
snake_case : List[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen]
snake_case : Any = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=__A , references=__A , )
snake_case : List[str] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __A )
snake_case : Any = eval_metric["""accuracy"""]
if best_performance < eval_metric["accuracy"]:
snake_case : Union[str, Any] = eval_metric["""accuracy"""]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"""
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f:
json.dump(__A , __A )
def lowercase ( ) -> List[Any]:
'''simple docstring'''
snake_case : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=__A , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__A , )
parser.add_argument(
"""--output_dir""" , type=__A , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--performance_lower_bound""" , type=__A , default=__A , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , )
parser.add_argument(
"""--num_epochs""" , type=__A , default=3 , help="""Number of train epochs.""" , )
snake_case : List[str] = parser.parse_args()
snake_case : str = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(__A , __A )
if __name__ == "__main__":
main()
| 36 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : str = logging.get_logger(__name__)
A_ : Union[str, Any] = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Tuple ='''open-llama'''
def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
UpperCamelCase_: int = vocab_size
UpperCamelCase_: List[Any] = max_position_embeddings
UpperCamelCase_: Dict = hidden_size
UpperCamelCase_: Dict = intermediate_size
UpperCamelCase_: Union[str, Any] = num_hidden_layers
UpperCamelCase_: Dict = num_attention_heads
UpperCamelCase_: Union[str, Any] = hidden_act
UpperCamelCase_: Union[str, Any] = initializer_range
UpperCamelCase_: List[Any] = rms_norm_eps
UpperCamelCase_: Union[str, Any] = use_cache
UpperCamelCase_: Dict = kwargs.pop(
'use_memorry_efficient_attention' , _lowerCamelCase )
UpperCamelCase_: Union[str, Any] = hidden_dropout_prob
UpperCamelCase_: Any = attention_dropout_prob
UpperCamelCase_: int = use_stable_embedding
UpperCamelCase_: Tuple = shared_input_output_embedding
UpperCamelCase_: str = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , )
def _a ( self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
f'''got {self.rope_scaling}''' )
UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase )
UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 57 | 0 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def UpperCamelCase_ ( __a ) -> Tuple:
a__ : Optional[Any] = 384
if "tiny" in model_name:
a__ : Optional[int] = [3, 3, 9, 3]
a__ : Optional[int] = [96, 192, 384, 768]
if "small" in model_name:
a__ : Optional[Any] = [3, 3, 27, 3]
a__ : str = [96, 192, 384, 768]
if "base" in model_name:
a__ : Union[str, Any] = [3, 3, 27, 3]
a__ : Any = [128, 256, 512, 1_024]
a__ : Tuple = 512
if "large" in model_name:
a__ : List[str] = [3, 3, 27, 3]
a__ : List[str] = [192, 384, 768, 1_536]
a__ : int = 768
if "xlarge" in model_name:
a__ : Any = [3, 3, 27, 3]
a__ : int = [256, 512, 1_024, 2_048]
a__ : Optional[int] = 1_024
# set label information
a__ : List[Any] = 150
a__ : Optional[Any] = "huggingface/label-files"
a__ : Dict = "ade20k-id2label.json"
a__ : List[Any] = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
a__ : Optional[int] = {int(__a ): v for k, v in idalabel.items()}
a__ : Dict = {v: k for k, v in idalabel.items()}
a__ : str = ConvNextConfig(
depths=__a , hidden_sizes=__a , out_features=["stage1", "stage2", "stage3", "stage4"] )
a__ : List[str] = UperNetConfig(
backbone_config=__a , auxiliary_in_channels=__a , num_labels=__a , idalabel=__a , labelaid=__a , )
return config
def UpperCamelCase_ ( __a ) -> Union[str, Any]:
a__ : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def UpperCamelCase_ ( __a , __a , __a ) -> List[str]:
a__ : str = dct.pop(__a )
a__ : List[Any] = val
def UpperCamelCase_ ( __a , __a , __a ) -> str:
a__ : Union[str, Any] = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
a__ : Tuple = model_name_to_url[model_name]
a__ : List[Any] = torch.hub.load_state_dict_from_url(__a , map_location="cpu" )["state_dict"]
a__ : List[Any] = get_upernet_config(__a )
a__ : Dict = UperNetForSemanticSegmentation(__a )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
a__ : Tuple = state_dict.pop(__a )
if "bn" in key:
a__ : List[Any] = key.replace("bn" , "batch_norm" )
a__ : Dict = val
# rename keys
a__ : str = create_rename_keys(__a )
for src, dest in rename_keys:
rename_key(__a , __a , __a )
model.load_state_dict(__a )
# verify on image
a__ : Optional[Any] = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
a__ : int = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" )
a__ : Union[str, Any] = SegformerImageProcessor()
a__ : Dict = processor(__a , return_tensors="pt" ).pixel_values
with torch.no_grad():
a__ : Optional[int] = model(__a )
if model_name == "upernet-convnext-tiny":
a__ : Tuple = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
a__ : str = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
a__ : List[str] = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
a__ : Dict = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
a__ : Optional[Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__a )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(__a )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
UpperCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-convnext-tiny""",
type=str,
choices=[f"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]],
help="""Name of the ConvNext UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
UpperCamelCase : Optional[int] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 37 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ):
UpperCamelCase_: Tuple = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = image_size
UpperCamelCase_: Tuple = patch_size
UpperCamelCase_: Tuple = num_channels
UpperCamelCase_: Dict = embed_dim
UpperCamelCase_: List[Any] = hidden_sizes
UpperCamelCase_: List[str] = depths
UpperCamelCase_: List[str] = num_heads
UpperCamelCase_: Optional[int] = window_size
UpperCamelCase_: Tuple = mlp_ratio
UpperCamelCase_: Dict = qkv_bias
UpperCamelCase_: str = hidden_dropout_prob
UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob
UpperCamelCase_: int = drop_path_rate
UpperCamelCase_: Dict = hidden_act
UpperCamelCase_: List[str] = use_absolute_embeddings
UpperCamelCase_: Dict = patch_norm
UpperCamelCase_: Optional[Any] = layer_norm_eps
UpperCamelCase_: List[str] = initializer_range
UpperCamelCase_: List[Any] = is_training
UpperCamelCase_: Optional[int] = scope
UpperCamelCase_: str = use_labels
UpperCamelCase_: List[str] = type_sequence_label_size
UpperCamelCase_: Union[str, Any] = encoder_stride
UpperCamelCase_: Dict = out_features
UpperCamelCase_: str = out_indices
def _a ( self ):
UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_: List[Any] = None
if self.use_labels:
UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase_: Optional[Any] = self.get_config()
return config, pixel_values, labels
def _a ( self ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: int = model(_lowerCamelCase )
UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
UpperCamelCase_: int = None
UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCamelCase_: List[Any] = 1
UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = self.type_sequence_label_size
UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase_: Union[str, Any] = 1
UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self ):
UpperCamelCase_: Dict = self.prepare_config_and_inputs()
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs
UpperCamelCase_: int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[int] =(
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
a : Any =(
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
a : Dict =False
a : Union[str, Any] =False
a : Tuple =False
a : Optional[int] =False
a : Union[str, Any] =False
def _a ( self ):
UpperCamelCase_: str = FocalNetModelTester(self )
UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase )
def _a ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self ):
return
def _a ( self ):
UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def _a ( self ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def _a ( self ):
pass
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase_: List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: List[Any] = model_class(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_: Any = [*signature.parameters.keys()]
UpperCamelCase_: List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
UpperCamelCase_: Union[str, Any] = outputs.hidden_states
UpperCamelCase_: Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
# FocalNet has a different seq_length
UpperCamelCase_: Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCamelCase_: Dict = outputs.reshaped_hidden_states
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape
UpperCamelCase_: List[str] = (
reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: int = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: int = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: str = 3
UpperCamelCase_: Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCamelCase_: int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Dict = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
@slow
def _a ( self ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase )
for model_class in self.all_model_classes:
UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def _a ( self ):
UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = self.default_image_processor
UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: List[str] = model(**_lowerCamelCase )
# verify the logits
UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 )
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else ()
a : List[str] =FocalNetConfig
a : List[str] =False
def _a ( self ):
UpperCamelCase_: Any = FocalNetModelTester(self )
| 57 | 0 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
A_ : Optional[int] = [
"word_embeddings_layernorm.weight",
"word_embeddings_layernorm.bias",
"input_layernorm.weight",
"input_layernorm.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"self_attention.dense.bias",
"mlp.dense_4h_to_h.bias",
"ln_f.weight",
"ln_f.bias",
]
A_ : Optional[int] = [
"mlp.dense_4h_to_h.weight",
"self_attention.dense.weight",
]
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
snake_case__ : Optional[Any] = {
"""word_embeddings.weight""": """word_embeddings.weight""",
"""word_embeddings.norm.weight""": """word_embeddings_layernorm.weight""",
"""word_embeddings.norm.bias""": """word_embeddings_layernorm.bias""",
"""weight""": """ln_f.weight""",
"""bias""": """ln_f.bias""",
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
snake_case__ : int = int(re.match(R""".*layer_(\d*).*""" , __magic_name__ )[1] )
layer_number -= 3
return f"h.{layer_number}." + key
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Tuple:
'''simple docstring'''
if dtype == torch.bool:
return 1 / 8
snake_case__ : List[Any] = re.search(R"""[^\d](\d+)$""" , str(__magic_name__ ) )
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}." )
snake_case__ : Optional[Any] = int(bit_search.groups()[0] )
return bit_size // 8
def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if bloom_config_file == "":
snake_case__ : Tuple = BloomConfig()
else:
snake_case__ : str = BloomConfig.from_json_file(__magic_name__ )
if shard_model:
snake_case__ : str = os.listdir(__magic_name__ )
snake_case__ : Union[str, Any] = sorted(filter(lambda __magic_name__ : s.startswith("""layer""" ) and "model_00" in s , __magic_name__ ) )
snake_case__ : List[Any] = {"""weight_map""": {}, """metadata""": {}}
snake_case__ : Any = 0
snake_case__ : Optional[int] = None
snake_case__ : Tuple = BloomConfig()
for j, file in enumerate(__magic_name__ ):
print("""Processing file: {}""".format(__magic_name__ ) )
snake_case__ : Any = None
for i in range(__magic_name__ ):
# load all TP files
snake_case__ : int = file.replace("""model_00""" , f"model_0{i}" )
snake_case__ : Union[str, Any] = torch.load(os.path.join(__magic_name__ , __magic_name__ ) , map_location="""cpu""" )
# Rename keys in the transformers names
snake_case__ : Tuple = list(temp.keys() )
for key in keys:
snake_case__ : str = temp.pop(__magic_name__ )
if tensors is None:
snake_case__ : List[Any] = temp
else:
for key in tensors.keys():
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
snake_case__ : str = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
snake_case__ : str = torch.cat([tensors[key], temp[key]] , dim=__magic_name__ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
snake_case__ : Tuple = tensors[key] / pretraining_tp
torch.save(
__magic_name__ , os.path.join(
__magic_name__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(__magic_name__ ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
snake_case__ : int = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
snake_case__ : Union[str, Any] = """pytorch_model_{}-of-{}.bin""".format(
str(j + 1 ).zfill(5 ) , str(len(__magic_name__ ) ).zfill(5 ) )
snake_case__ : Dict = BloomConfig()
snake_case__ : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME
snake_case__ : int = total_size
with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
with open(os.path.join(__magic_name__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f:
snake_case__ : Tuple = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + """\n"""
f.write(__magic_name__ )
else:
snake_case__ : Optional[Any] = BloomModel(__magic_name__ )
snake_case__ : Optional[Any] = os.listdir(__magic_name__ )
snake_case__ : Union[str, Any] = sorted(filter(lambda __magic_name__ : s.startswith("""layer""" ) and "model_00" in s , __magic_name__ ) )
snake_case__ : Tuple = None
for i, file in enumerate(__magic_name__ ):
snake_case__ : Dict = None
for i in range(__magic_name__ ):
# load all TP files
snake_case__ : List[str] = file.replace("""model_00""" , f"model_0{i}" )
snake_case__ : Optional[int] = torch.load(os.path.join(__magic_name__ , __magic_name__ ) , map_location="""cpu""" )
# Rename keys in the transformers names
snake_case__ : Optional[int] = list(temp.keys() )
for key in keys:
snake_case__ : int = temp.pop(__magic_name__ )
if tensors is None:
snake_case__ : str = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
snake_case__ : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
snake_case__ : Tuple = torch.cat([tensors[key], temp[key]] , dim=__magic_name__ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(__magic_name__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
snake_case__ : str = tensors[key] / pretraining_tp
snake_case__ : Any = model.load_state_dict(__magic_name__ , strict=__magic_name__ )
assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected"
if missing_keys is None:
snake_case__ : Optional[int] = set(other_keys.missing_keys )
else:
snake_case__ : Optional[int] = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, f"The keys {missing_keys} are missing"
# Save pytorch-model
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
snake_case__ : Tuple = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
snake_case__ : List[Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" )
if config.torch_dtype is not None:
snake_case__ : int = model.to(config.torch_dtype )
torch.save(model.state_dict() , __magic_name__ )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bloom_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the Megatron-LM checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--bloom_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--shard_model",
action="store_true",
help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
)
parser.add_argument(
"--pretraining_tp",
default=4,
type=int,
help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
)
A_ : Optional[int] = parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 38 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : Tuple = {
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[Any] = ['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = ["flax", "transformers"]
def __init__( self : Union[str, Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Dict ) ->int:
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : Any , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : str ) ->str:
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : Tuple , *_UpperCamelCase : Any , **_UpperCamelCase : Union[str, Any] ) ->Union[str, Any]:
requires_backends(cls , ['''flax''', '''transformers'''] )
class snake_case_ ( metaclass=__A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = ["flax", "transformers"]
def __init__( self : Tuple , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->Optional[Any]:
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : str , *_UpperCamelCase : Any , **_UpperCamelCase : Any ) ->str:
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : Optional[int] , *_UpperCamelCase : int , **_UpperCamelCase : Optional[int] ) ->int:
requires_backends(cls , ['''flax''', '''transformers'''] )
class snake_case_ ( metaclass=__A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = ["flax", "transformers"]
def __init__( self : Optional[Any] , *_UpperCamelCase : Dict , **_UpperCamelCase : Union[str, Any] ) ->str:
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : Dict , *_UpperCamelCase : str , **_UpperCamelCase : str ) ->int:
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : List[Any] , *_UpperCamelCase : Tuple , **_UpperCamelCase : int ) ->Tuple:
requires_backends(cls , ['''flax''', '''transformers'''] )
class snake_case_ ( metaclass=__A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = ["flax", "transformers"]
def __init__( self : Tuple , *_UpperCamelCase : str , **_UpperCamelCase : Any ) ->Union[str, Any]:
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : List[str] , *_UpperCamelCase : Dict , **_UpperCamelCase : List[Any] ) ->Any:
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def snake_case__( cls : str , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->str:
requires_backends(cls , ['''flax''', '''transformers'''] )
| 39 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ):
return False
return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any:
UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: List[str] = model
UpperCamelCase_: Dict = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Dict = model.module
if not keep_fpaa_wrapper:
UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' )
UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ )
if original_forward is not None:
while hasattr(UpperCAmelCase__ , '__wrapped__' ):
UpperCamelCase_: Any = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase_: Optional[int] = forward
if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ):
convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: Union[str, Any] = model
UpperCamelCase_: Tuple = compiled_model
return model
def snake_case () -> List[str]:
PartialState().wait_for_everyone()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict:
if PartialState().distributed_type == DistributedType.TPU:
xm.save(UpperCAmelCase__ , UpperCAmelCase__ )
elif PartialState().local_process_index == 0:
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
@contextmanager
def snake_case (**UpperCAmelCase__ ) -> Any:
for key, value in kwargs.items():
UpperCamelCase_: int = str(UpperCAmelCase__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def snake_case (UpperCAmelCase__ ) -> str:
if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ):
UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ )
if hasattr(UpperCAmelCase__ , '__qualname__' ):
return obj.__qualname__
if hasattr(UpperCAmelCase__ , '__name__' ):
return obj.__name__
return str(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
for key, value in source.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} )
merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ )
else:
UpperCamelCase_: str = value
return destination
def snake_case (UpperCAmelCase__ = None ) -> bool:
if port is None:
UpperCamelCase_: List[str] = 2_9_5_0_0
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 57 | 0 |
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def UpperCamelCase ( snake_case__ : int ) -> Optional[int]:
random.seed(snake_case__ )
np.random.seed(snake_case__ )
torch.manual_seed(snake_case__ )
torch.cuda.manual_seed_all(snake_case__ )
# ^^ safe to call this function even if cuda is not available
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 0.99_99, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = 0, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = 2 / 3, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> str:
if isinstance(SCREAMING_SNAKE_CASE_, torch.nn.Module ):
UpperCamelCase : int = (
'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. '
'Please pass the parameters of the module instead.'
)
deprecate(
'passing a `torch.nn.Module` to `ExponentialMovingAverage`', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Optional[Any] = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
UpperCamelCase : List[str] = True
if kwargs.get('max_value', SCREAMING_SNAKE_CASE_ ) is not None:
UpperCamelCase : str = 'The `max_value` argument is deprecated. Please use `decay` instead.'
deprecate('max_value', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs['max_value']
if kwargs.get('min_value', SCREAMING_SNAKE_CASE_ ) is not None:
UpperCamelCase : int = 'The `min_value` argument is deprecated. Please use `min_decay` instead.'
deprecate('min_value', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = kwargs['min_value']
UpperCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = [p.clone().detach() for p in parameters]
if kwargs.get('device', SCREAMING_SNAKE_CASE_ ) is not None:
UpperCamelCase : Any = 'The `device` argument is deprecated. Please use `to` instead.'
deprecate('device', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_ )
self.to(device=kwargs['device'] )
UpperCamelCase : Optional[int] = None
UpperCamelCase : List[str] = decay
UpperCamelCase : int = min_decay
UpperCamelCase : int = update_after_step
UpperCamelCase : str = use_ema_warmup
UpperCamelCase : Optional[Any] = inv_gamma
UpperCamelCase : Tuple = power
UpperCamelCase : Union[str, Any] = 0
UpperCamelCase : Tuple = None # set in `step()`
UpperCamelCase : Dict = model_cls
UpperCamelCase : Union[str, Any] = model_config
@classmethod
def snake_case_ ( cls, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> "EMAModel":
UpperCamelCase , UpperCamelCase : Union[str, Any] = model_cls.load_config(SCREAMING_SNAKE_CASE_, return_unused_kwargs=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model_cls.from_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = cls(model.parameters(), model_cls=SCREAMING_SNAKE_CASE_, model_config=model.config )
ema_model.load_state_dict(SCREAMING_SNAKE_CASE_ )
return ema_model
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]:
if self.model_cls is None:
raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' )
if self.model_config is None:
raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' )
UpperCamelCase : Union[str, Any] = self.model_cls.from_config(self.model_config )
UpperCamelCase : Optional[int] = self.state_dict()
state_dict.pop('shadow_params', SCREAMING_SNAKE_CASE_ )
model.register_to_config(**SCREAMING_SNAKE_CASE_ )
self.copy_to(model.parameters() )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> float:
UpperCamelCase : Optional[Any] = max(0, optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
UpperCamelCase : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
UpperCamelCase : List[str] = (1 + step) / (10 + step)
UpperCamelCase : Tuple = min(SCREAMING_SNAKE_CASE_, self.decay )
# make sure decay is not smaller than min_decay
UpperCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_, self.min_decay )
return cur_decay_value
@torch.no_grad()
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Tuple:
if isinstance(SCREAMING_SNAKE_CASE_, torch.nn.Module ):
UpperCamelCase : Optional[int] = (
'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. '
'Please pass the parameters of the module instead.'
)
deprecate(
'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`', '1.0.0', SCREAMING_SNAKE_CASE_, standard_warn=SCREAMING_SNAKE_CASE_, )
UpperCamelCase : Optional[Any] = parameters.parameters()
UpperCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
UpperCamelCase : Any = self.get_decay(self.optimization_step )
UpperCamelCase : Any = decay
UpperCamelCase : str = 1 - decay
UpperCamelCase : Union[str, Any] = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params, SCREAMING_SNAKE_CASE_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
UpperCamelCase : Dict = deepspeed.zero.GatheredParameters(SCREAMING_SNAKE_CASE_, modifier_rank=SCREAMING_SNAKE_CASE_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
UpperCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ )
for s_param, param in zip(self.shadow_params, SCREAMING_SNAKE_CASE_ ):
param.data.copy_(s_param.to(param.device ).data )
def snake_case_ ( self, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ) -> None:
UpperCamelCase : str = [
p.to(device=SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ ) if p.is_floating_point() else p.to(device=SCREAMING_SNAKE_CASE_ )
for p in self.shadow_params
]
def snake_case_ ( self ) -> dict:
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
UpperCamelCase : List[Any] = [param.detach().cpu().clone() for param in parameters]
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
if self.temp_stored_params is None:
raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' )
for c_param, param in zip(self.temp_stored_params, SCREAMING_SNAKE_CASE_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
UpperCamelCase : Optional[int] = None
def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None:
UpperCamelCase : List[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = state_dict.get('decay', self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError('Decay must be between 0 and 1' )
UpperCamelCase : int = state_dict.get('min_decay', self.min_decay )
if not isinstance(self.min_decay, SCREAMING_SNAKE_CASE_ ):
raise ValueError('Invalid min_decay' )
UpperCamelCase : Union[str, Any] = state_dict.get('optimization_step', self.optimization_step )
if not isinstance(self.optimization_step, SCREAMING_SNAKE_CASE_ ):
raise ValueError('Invalid optimization_step' )
UpperCamelCase : Dict = state_dict.get('update_after_step', self.update_after_step )
if not isinstance(self.update_after_step, SCREAMING_SNAKE_CASE_ ):
raise ValueError('Invalid update_after_step' )
UpperCamelCase : Any = state_dict.get('use_ema_warmup', self.use_ema_warmup )
if not isinstance(self.use_ema_warmup, SCREAMING_SNAKE_CASE_ ):
raise ValueError('Invalid use_ema_warmup' )
UpperCamelCase : Optional[Any] = state_dict.get('inv_gamma', self.inv_gamma )
if not isinstance(self.inv_gamma, (float, int) ):
raise ValueError('Invalid inv_gamma' )
UpperCamelCase : Tuple = state_dict.get('power', self.power )
if not isinstance(self.power, (float, int) ):
raise ValueError('Invalid power' )
UpperCamelCase : Tuple = state_dict.get('shadow_params', SCREAMING_SNAKE_CASE_ )
if shadow_params is not None:
UpperCamelCase : Optional[int] = shadow_params
if not isinstance(self.shadow_params, SCREAMING_SNAKE_CASE_ ):
raise ValueError('shadow_params must be a list' )
if not all(isinstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) for p in self.shadow_params ):
raise ValueError('shadow_params must all be Tensors' )
| 40 |
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
A_ : Optional[Any] = data_utils.TransfoXLTokenizer
A_ : Union[str, Any] = data_utils.TransfoXLCorpus
A_ : Any = data_utils
A_ : Optional[Any] = data_utils
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(UpperCAmelCase__ , 'rb' ) as fp:
UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ )
UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ )
UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
UpperCamelCase_: List[str] = TransfoXLConfig()
else:
UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ )
UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' )
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ : int = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
A_ : Tuple = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 57 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase__ = {
'''configuration_speecht5''': [
'''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''',
'''SpeechT5Config''',
'''SpeechT5HifiGanConfig''',
],
'''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''],
'''processing_speecht5''': ['''SpeechT5Processor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['''SpeechT5Tokenizer''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SpeechT5ForSpeechToText''',
'''SpeechT5ForSpeechToSpeech''',
'''SpeechT5ForTextToSpeech''',
'''SpeechT5Model''',
'''SpeechT5PreTrainedModel''',
'''SpeechT5HifiGan''',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 41 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : List[str] = logging.get_logger(__name__)
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
UpperCamelCase_: Tuple = b.T
UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 )
UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 )
UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :]
return d
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: List[str] = x.reshape(-1 , 3 )
UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ )
return np.argmin(UpperCAmelCase__ , axis=1 )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Any =['''pixel_values''']
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ):
super().__init__(**_lowerCamelCase )
UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6}
UpperCamelCase_: str = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None
UpperCamelCase_: Optional[int] = do_resize
UpperCamelCase_: List[Any] = size
UpperCamelCase_: Optional[int] = resample
UpperCamelCase_: str = do_normalize
UpperCamelCase_: str = do_color_quantize
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ):
UpperCamelCase_: Any = get_size_dict(_lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
_lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ):
UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase )
UpperCamelCase_: Optional[Any] = image - 1
return image
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ):
UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_: Tuple = size if size is not None else self.size
UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample
UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters
UpperCamelCase_: Dict = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase )
if not valid_images(_lowerCamelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images]
if do_resize:
UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images]
if do_normalize:
UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images]
if do_color_quantize:
UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
UpperCamelCase_: Dict = images.shape[0]
UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
UpperCamelCase_: List[Any] = list(_lowerCamelCase )
else:
UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images]
UpperCamelCase_: str = {'input_ids': images}
return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
| 57 | 0 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class UpperCAmelCase ( datasets.BuilderConfig ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = None
class UpperCAmelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = PandasConfig
def UpperCamelCase( self ) -> str:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
lowerCamelCase_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ):
lowerCamelCase_ = data_files
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCamelCase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
lowerCamelCase_ = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowerCamelCase_ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCamelCase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'files': files} ) )
return splits
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCamelCase_ = table_cast(SCREAMING_SNAKE_CASE_ , self.config.features.arrow_schema )
return pa_table
def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str:
'''simple docstring'''
for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ):
with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f:
lowerCamelCase_ = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE_ ) )
yield i, self._cast_table(SCREAMING_SNAKE_CASE_ )
| 42 |
import numpy
# List of input, output pairs
A_ : Any = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150))
A_ : Any = [2, 4, 1, 5]
A_ : List[Any] = len(train_data)
A_ : List[Any] = 0.009
def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]:
return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output(
UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[Any] = 0
for i in range(len(UpperCAmelCase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]:
UpperCamelCase_: Any = 0
for i in range(UpperCAmelCase__ ):
if index == -1:
summation_value += _error(UpperCAmelCase__ )
else:
summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index]
return summation_value
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m
return cost_derivative_value
def snake_case () -> Union[str, Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCamelCase_: str = 0.00_0002
UpperCamelCase_: Any = 0
UpperCamelCase_: int = 0
while True:
j += 1
UpperCamelCase_: int = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase__ ) ):
UpperCamelCase_: Any = get_cost_derivative(i - 1 )
UpperCamelCase_: Optional[int] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ):
break
UpperCamelCase_: Optional[int] = temp_parameter_vector
print(('Number of iterations:', j) )
def snake_case () -> int:
for i in range(len(UpperCAmelCase__ ) ):
print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 57 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json',
'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class _a ( UpperCamelCase__ ):
_lowercase : Optional[Any] = '''mobilenet_v1'''
def __init__( self: List[Any] , UpperCamelCase_: Any=3 , UpperCamelCase_: int=224 , UpperCamelCase_: Optional[int]=1.0 , UpperCamelCase_: int=8 , UpperCamelCase_: str="relu6" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[Any]=0.999 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Union[str, Any]=0.001 , **UpperCamelCase_: Optional[int] , ) -> List[Any]:
"""simple docstring"""
super().__init__(**UpperCamelCase_ )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
lowercase__ = num_channels
lowercase__ = image_size
lowercase__ = depth_multiplier
lowercase__ = min_depth
lowercase__ = hidden_act
lowercase__ = tf_padding
lowercase__ = classifier_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
class _a ( UpperCamelCase__ ):
_lowercase : List[str] = version.parse('''1.11''' )
@property
def lowerCamelCase_ ( self: List[str] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def lowerCamelCase_ ( self: Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def lowerCamelCase_ ( self: Any ) -> float:
"""simple docstring"""
return 1E-4
| 43 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 57 | 0 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def A_ ( _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : Tuple = tmp_path / "file.csv"
_lowerCamelCase : Optional[int] = textwrap.dedent(
"\\n header1,header2\n 1,2\n 10,20\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_lowerCamelCase : Any = tmp_path / "malformed_file.csv"
_lowerCamelCase : Any = textwrap.dedent(
"\\n header1,header2\n 1,2\n 10,20,\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : int = tmp_path / "csv_with_image.csv"
_lowerCamelCase : int = textwrap.dedent(
F'\\n image\n {image_file}\n ' )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_lowerCamelCase : Dict = tmp_path / "csv_with_label.csv"
_lowerCamelCase : int = textwrap.dedent(
"\\n label\n good\n bad\n good\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
@pytest.fixture
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv"
_lowerCamelCase : Any = textwrap.dedent(
"\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " )
with open(_lowerCAmelCase , "w" ) as f:
f.write(_lowerCAmelCase )
return str(_lowerCAmelCase )
def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ):
"""simple docstring"""
_lowerCamelCase : List[Any] = Csv()
_lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ):
for _ in generator:
pass
assert any(
record.levelname == "ERROR"
and "Failed to read file" in record.message
and os.path.basename(_lowerCAmelCase ) in record.message
for record in caplog.records )
@require_pil
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
with open(_lowerCAmelCase , encoding="utf-8" ) as f:
_lowerCamelCase : Any = f.read().splitlines()[1]
_lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) )
_lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] )
_lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("image" ).type == Image()()
_lowerCamelCase : int = pa_table.to_pydict()["image"]
assert generated_content == [{"path": image_file, "bytes": None}]
def A_ ( _lowerCAmelCase : List[Any] ):
"""simple docstring"""
with open(_lowerCAmelCase , encoding="utf-8" ) as f:
_lowerCamelCase : List[Any] = f.read().splitlines()[1:]
_lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) )
_lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] )
_lowerCamelCase : int = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )()
_lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"]
assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels]
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} )
_lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] )
_lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("int_list" ).type )
_lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"]
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 44 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _lowerCAmelCase:
"""simple docstring"""
a : int =PegasusConfig
a : List[str] ={}
a : Optional[int] ='''gelu'''
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ):
UpperCamelCase_: List[Any] = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = seq_length
UpperCamelCase_: List[str] = is_training
UpperCamelCase_: Any = use_labels
UpperCamelCase_: Optional[Any] = vocab_size
UpperCamelCase_: Tuple = hidden_size
UpperCamelCase_: List[Any] = num_hidden_layers
UpperCamelCase_: Any = num_attention_heads
UpperCamelCase_: Optional[Any] = intermediate_size
UpperCamelCase_: Optional[int] = hidden_dropout_prob
UpperCamelCase_: int = attention_probs_dropout_prob
UpperCamelCase_: Union[str, Any] = max_position_embeddings
UpperCamelCase_: Dict = eos_token_id
UpperCamelCase_: Union[str, Any] = pad_token_id
UpperCamelCase_: List[Any] = bos_token_id
def _a ( self ):
UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return config, inputs_dict
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder()
UpperCamelCase_: Optional[int] = inputs_dict['input_ids']
UpperCamelCase_: Optional[int] = input_ids[:1, :]
UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_: Optional[int] = inputs_dict['head_mask']
UpperCamelCase_: Optional[int] = 1
# first forward pass
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str:
if attention_mask is None:
UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_: int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else ()
a : Tuple =(
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
a : List[str] =True
a : List[str] =False
a : Tuple =False
def _a ( self ):
UpperCamelCase_: Dict = TFPegasusModelTester(self )
UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase )
def _a ( self ):
self.config_tester.run_common_tests()
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
a : Dict =[
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
a : int =[
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
a : Union[str, Any] ='''google/pegasus-xsum'''
@cached_property
def _a ( self ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self ):
UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase )
assert self.expected_text == generated_words
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' )
UpperCamelCase_: Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , )
UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )
return generated_words
@slow
def _a ( self ):
self._assert_generated_batch_equal_expected()
| 57 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
"configuration_xlm_roberta_xl": [
"XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XLMRobertaXLConfig",
"XLMRobertaXLOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
"XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMRobertaXLForCausalLM",
"XLMRobertaXLForMaskedLM",
"XLMRobertaXLForMultipleChoice",
"XLMRobertaXLForQuestionAnswering",
"XLMRobertaXLForSequenceClassification",
"XLMRobertaXLForTokenClassification",
"XLMRobertaXLModel",
"XLMRobertaXLPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 45 |
import unittest
import numpy as np
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ )
if shape_a[0] != shape_b[0]:
UpperCamelCase_: Any = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCAmelCase__ )
if shape_b[1] != shape_c[1]:
UpperCamelCase_: int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCAmelCase__ )
UpperCamelCase_: Dict = pseudo_inv
if a_inv is None:
try:
UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] )
UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase )
self.assertAlmostEqual(_lowerCamelCase , det_a * det_s )
def _a ( self ):
UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 57 | 0 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class A_ :
def __init__( self: str ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str]=13 ,__lowerCAmelCase: Optional[Any]=7 ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Any=99 ,__lowerCAmelCase: List[str]=32 ,__lowerCAmelCase: Tuple=5 ,__lowerCAmelCase: List[str]=4 ,__lowerCAmelCase: Dict=37 ,__lowerCAmelCase: Tuple="gelu" ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: List[Any]=16 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Tuple=3 ,__lowerCAmelCase: Tuple=4 ,__lowerCAmelCase: str=None ,):
'''simple docstring'''
_lowerCamelCase : Any = parent
_lowerCamelCase : Optional[Any] = batch_size
_lowerCamelCase : Optional[Any] = seq_length
_lowerCamelCase : Any = is_training
_lowerCamelCase : Union[str, Any] = use_input_mask
_lowerCamelCase : int = use_token_type_ids
_lowerCamelCase : Tuple = use_labels
_lowerCamelCase : Optional[Any] = vocab_size
_lowerCamelCase : Any = hidden_size
_lowerCamelCase : Optional[Any] = num_hidden_layers
_lowerCamelCase : Optional[Any] = num_attention_heads
_lowerCamelCase : Any = intermediate_size
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : str = hidden_dropout_prob
_lowerCamelCase : Dict = attention_probs_dropout_prob
_lowerCamelCase : Tuple = max_position_embeddings
_lowerCamelCase : Any = type_vocab_size
_lowerCamelCase : Any = type_sequence_label_size
_lowerCamelCase : Union[str, Any] = initializer_range
_lowerCamelCase : Dict = num_labels
_lowerCamelCase : Union[str, Any] = num_choices
_lowerCamelCase : str = scope
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
_lowerCamelCase : str = None
if self.use_input_mask:
_lowerCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCamelCase : str = None
if self.use_token_type_ids:
_lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
_lowerCamelCase : Any = None
_lowerCamelCase : Union[str, Any] = None
_lowerCamelCase : List[Any] = None
if self.use_labels:
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
_lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
_lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices )
_lowerCamelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase ( self: List[str] ):
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,)
def _lowercase ( self: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = LlamaModel(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : int = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase )
_lowerCamelCase : Dict = model(__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: int ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: str ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ,):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = True
_lowerCamelCase : List[Any] = LlamaModel(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Tuple = model(
__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,)
_lowerCamelCase : List[str] = model(
__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,)
_lowerCamelCase : Dict = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Any ,__lowerCAmelCase: List[str] ,):
'''simple docstring'''
_lowerCamelCase : Tuple = LlamaForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,labels=__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Union[str, Any] ,):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = True
_lowerCamelCase : Dict = True
_lowerCamelCase : int = LlamaForCausalLM(config=__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
# first forward pass
_lowerCamelCase : Any = model(
__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,use_cache=__lowerCAmelCase ,)
_lowerCamelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) ,config.vocab_size )
_lowerCamelCase : int = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
_lowerCamelCase : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 )
_lowerCamelCase : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 )
_lowerCamelCase : Tuple = model(
__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,output_hidden_states=__lowerCAmelCase ,)["hidden_states"][0]
_lowerCamelCase : List[str] = model(
__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,past_key_values=__lowerCAmelCase ,output_hidden_states=__lowerCAmelCase ,)["hidden_states"][0]
# select random slice
_lowerCamelCase : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
_lowerCamelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach()
_lowerCamelCase : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-3 ) )
def _lowercase ( self: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs()
(
(
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
), (
_lowerCamelCase
),
) : Dict = config_and_inputs
_lowerCamelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A_ ( _a , _a , _a , unittest.TestCase ):
lowerCAmelCase__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
lowerCAmelCase__ = (LlamaForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ = (
{
'feature-extraction': LlamaModel,
'text-classification': LlamaForSequenceClassification,
'text-generation': LlamaForCausalLM,
'zero-shot': LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase : List[str] = LlamaModelTester(self )
_lowerCamelCase : Optional[Any] = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 )
def _lowercase ( self: Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: List[str] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCamelCase : Any = type
self.model_tester.create_and_check_model(*__lowerCAmelCase )
def _lowercase ( self: List[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : List[Any] = 3
_lowerCamelCase : Optional[Any] = input_dict["input_ids"]
_lowerCamelCase : List[str] = input_ids.ne(1 ).to(__lowerCAmelCase )
_lowerCamelCase : Any = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
_lowerCamelCase : int = LlamaForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : Any = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,labels=__lowerCAmelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase ( self: str ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : List[str] = 3
_lowerCamelCase : Optional[Any] = "single_label_classification"
_lowerCamelCase : Union[str, Any] = input_dict["input_ids"]
_lowerCamelCase : List[Any] = input_ids.ne(1 ).to(__lowerCAmelCase )
_lowerCamelCase : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
_lowerCamelCase : Tuple = LlamaForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : List[str] = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,labels=__lowerCAmelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Any = 3
_lowerCamelCase : List[str] = "multi_label_classification"
_lowerCamelCase : Union[str, Any] = input_dict["input_ids"]
_lowerCamelCase : int = input_ids.ne(1 ).to(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float )
_lowerCamelCase : Any = LlamaForSequenceClassification(__lowerCAmelCase )
model.to(__lowerCAmelCase )
model.eval()
_lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,labels=__lowerCAmelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("LLaMA buffers include complex numbers, which breaks this test" )
def _lowercase ( self: Any ):
'''simple docstring'''
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[Any] ):
'''simple docstring'''
_lowerCamelCase, _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : str = ids_tensor([1, 10] ,config.vocab_size )
_lowerCamelCase : Dict = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
_lowerCamelCase : int = LlamaModel(__lowerCAmelCase )
original_model.to(__lowerCAmelCase )
original_model.eval()
_lowerCamelCase : List[str] = original_model(__lowerCAmelCase ).last_hidden_state
_lowerCamelCase : Any = original_model(__lowerCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
_lowerCamelCase : List[Any] = {"type": scaling_type, "factor": 10.0}
_lowerCamelCase : str = LlamaModel(__lowerCAmelCase )
scaled_model.to(__lowerCAmelCase )
scaled_model.eval()
_lowerCamelCase : Any = scaled_model(__lowerCAmelCase ).last_hidden_state
_lowerCamelCase : List[str] = scaled_model(__lowerCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__lowerCAmelCase ,__lowerCAmelCase ,atol=1e-5 ) )
@require_torch
class A_ ( unittest.TestCase ):
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Tuple = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
_lowerCamelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" ,device_map="auto" )
_lowerCamelCase : List[str] = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
_lowerCamelCase : Any = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] )
torch.testing.assert_close(out.mean(-1 ) ,__lowerCAmelCase ,atol=1e-2 ,rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_lowerCamelCase : Dict = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] ,__lowerCAmelCase ,atol=1e-5 ,rtol=1e-5 )
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowercase ( self: int ):
'''simple docstring'''
_lowerCamelCase : List[str] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
_lowerCamelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" ,device_map="auto" )
_lowerCamelCase : Dict = model(torch.tensor(__lowerCAmelCase ) )
# Expected mean on dim = -1
_lowerCamelCase : List[str] = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] )
torch.testing.assert_close(out.mean(-1 ) ,__lowerCAmelCase ,atol=1e-2 ,rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_lowerCamelCase : Union[str, Any] = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] ,__lowerCAmelCase ,atol=1e-5 ,rtol=1e-5 )
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowercase ( self: Optional[int] ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
_lowerCamelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ,device_map="auto" )
_lowerCamelCase : List[Any] = model(torch.tensor(__lowerCAmelCase ) )
# Expected mean on dim = -1
_lowerCamelCase : Union[str, Any] = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] )
torch.testing.assert_close(out.mean(-1 ) ,__lowerCAmelCase ,atol=1e-2 ,rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_lowerCamelCase : Any = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) ,__lowerCAmelCase ,atol=1e-2 ,rtol=1e-2 )
@unittest.skip(
"Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" )
@slow
def _lowercase ( self: Tuple ):
'''simple docstring'''
_lowerCamelCase : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
_lowerCamelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" ,device_map="auto" )
_lowerCamelCase : Dict = model(torch.tensor(__lowerCAmelCase ) )
_lowerCamelCase : Any = torch.tensor(
[[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] ,dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) ,__lowerCAmelCase ,atol=1e-2 ,rtol=1e-2 )
# fmt: off
_lowerCamelCase : str = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] ,__lowerCAmelCase ,atol=1e-5 ,rtol=1e-5 )
@unittest.skip("Model is curently gated" )
@slow
def _lowercase ( self: Dict ):
'''simple docstring'''
_lowerCamelCase : Optional[int] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"
_lowerCamelCase : Tuple = "Simply put, the theory of relativity states that "
_lowerCamelCase : Tuple = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" )
_lowerCamelCase : List[str] = tokenizer.encode(__lowerCAmelCase ,return_tensors="pt" )
_lowerCamelCase : Optional[Any] = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-13b-chat-hf" ,device_map="sequential" ,use_safetensors=__lowerCAmelCase )
# greedy generation outputs
_lowerCamelCase : Optional[Any] = model.generate(__lowerCAmelCase ,max_new_tokens=64 ,top_p=__lowerCAmelCase ,temperature=1 ,do_sample=__lowerCAmelCase )
_lowerCamelCase : Union[str, Any] = tokenizer.decode(generated_ids[0] ,skip_special_tokens=__lowerCAmelCase )
self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase )
| 46 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
# Load configuration defined in the metadata file
with open(UpperCAmelCase__ ) as metadata_file:
UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ )
UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ )
# add an entry for [MASK2]
UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ )
UpperCamelCase_: str = 'MLukeTokenizer'
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
# Initialize the embeddings of the special tokens
UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase_: Union[str, Any] = state_dict[bias_name]
UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.'''
UpperCamelCase_: str = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias']
UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase_: Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase_: Union[str, Any] = state_dict[key]
else:
UpperCamelCase_: Dict = state_dict[key]
UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(UpperCAmelCase__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' )
UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase_: Optional[int] = (0, 9)
UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: str = model(**UpperCAmelCase__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
UpperCamelCase_: int = 'Tokyo is the capital of <mask>.'
UpperCamelCase_: Dict = (2_4, 3_0)
UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: Dict = model(**UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist()
UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase_: Optional[Any] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) )
model.save_pretrained(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> int:
UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )]
UpperCamelCase_: Tuple = {}
for entry in data:
UpperCamelCase_: Optional[int] = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase_: Union[str, Any] = entity_id
break
UpperCamelCase_: Dict = F'''{language}:{entity_name}'''
UpperCamelCase_: Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
A_ : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 57 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase( __lowerCamelCase ):
__SCREAMING_SNAKE_CASE : int = (DDIMParallelScheduler,)
__SCREAMING_SNAKE_CASE : Union[str, Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : List[Any] = {
'num_train_timesteps': 1_0_0_0,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
__a : Tuple = self.scheduler_classes[0]
__a : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ )
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : List[str] = 1_0, 0.0
__a : Dict = self.dummy_model()
__a : str = self.dummy_sample_deter
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
for t in scheduler.timesteps:
__a : str = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : List[str] = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
return sample
def __lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
for timesteps in [1_0_0, 5_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config(steps_offset=1 )
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=SCREAMING_SNAKE_CASE__ , prediction_type=SCREAMING_SNAKE_CASE__ , sample_max_value=SCREAMING_SNAKE_CASE__ , )
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
for t in [1, 1_0, 4_9]:
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , num_inference_steps=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : Union[str, Any] = self.get_scheduler_config()
__a : Any = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.02 ) ) < 1e-5
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : List[str] = self.scheduler_classes[0]
__a : List[str] = self.get_scheduler_config()
__a : Optional[Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
__a , __a : Any = 1_0, 0.0
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = self.dummy_model()
__a : int = self.dummy_sample_deter
__a : List[Any] = self.dummy_sample_deter + 0.1
__a : List[str] = self.dummy_sample_deter - 0.1
__a : Optional[Any] = samplea.shape[0]
__a : Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 )
__a : Union[str, Any] = torch.arange(SCREAMING_SNAKE_CASE__ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE__ )
__a : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
__a : int = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE__ )
__a : Dict = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : List[str] = self.full_loop()
__a : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
__a : Optional[int] = self.full_loop(prediction_type='v_prediction' )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
__a : Union[str, Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Dict = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 )
__a : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
__a : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 47 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[Any] = logging.get_logger(__name__)
A_ : Optional[Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Dict ='''distilbert'''
a : List[str] ={
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ):
UpperCamelCase_: Tuple = vocab_size
UpperCamelCase_: str = max_position_embeddings
UpperCamelCase_: Optional[int] = sinusoidal_pos_embds
UpperCamelCase_: Union[str, Any] = n_layers
UpperCamelCase_: Optional[int] = n_heads
UpperCamelCase_: int = dim
UpperCamelCase_: Tuple = hidden_dim
UpperCamelCase_: Any = dropout
UpperCamelCase_: Optional[Any] = attention_dropout
UpperCamelCase_: List[str] = activation
UpperCamelCase_: Optional[Any] = initializer_range
UpperCamelCase_: Optional[Any] = qa_dropout
UpperCamelCase_: List[str] = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
@property
def _a ( self ):
if self.task == "multiple-choice":
UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 57 | 0 |
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ )
else:
lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
UpperCAmelCase__ : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 48 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : int = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
a__ : List[str] = CycleDiffusionPipeline
a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"negative_prompt",
"height",
"width",
"negative_prompt_embeds",
}
a__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"}
a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} )
a__ : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
a__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
def a ( self : Optional[int] ):
torch.manual_seed(0 )
__UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__UpperCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , )
torch.manual_seed(0 )
__UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
__UpperCAmelCase = CLIPTextModel(_lowercase )
__UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def a ( self : Any , _lowercase : List[Any] , _lowercase : Optional[Any]=0 ):
__UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase )
__UpperCAmelCase = image / 2 + 0.5
if str(_lowercase ).startswith('''mps''' ):
__UpperCAmelCase = torch.manual_seed(_lowercase )
else:
__UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase )
__UpperCAmelCase = {
'''prompt''': '''An astronaut riding an elephant''',
'''source_prompt''': '''An astronaut riding a horse''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''eta''': 0.1,
'''strength''': 0.8,
'''guidance_scale''': 3,
'''source_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def a ( self : Optional[int] ):
__UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCAmelCase = self.get_dummy_components()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def a ( self : Optional[int] ):
__UpperCAmelCase = self.get_dummy_components()
for name, module in components.items():
if hasattr(_lowercase , '''half''' ):
__UpperCAmelCase = module.half()
__UpperCAmelCase = CycleDiffusionPipeline(**_lowercase )
__UpperCAmelCase = pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
__UpperCAmelCase = self.get_dummy_inputs(_lowercase )
__UpperCAmelCase = pipe(**_lowercase )
__UpperCAmelCase = output.images
__UpperCAmelCase = images[0, -3:, -3:, -1]
assert images.shape == (1, 32, 32, 3)
__UpperCAmelCase = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def a ( self : Tuple ):
return super().test_save_load_local()
@unittest.skip('''non-deterministic pipeline''' )
def a ( self : List[str] ):
return super().test_inference_batch_single_identical()
@skip_mps
def a ( self : int ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def a ( self : str ):
return super().test_save_load_optional_components()
@skip_mps
def a ( self : int ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def a ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self : int ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(
_lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision='''fp16''' )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5E-1
def a ( self : Optional[Any] ):
__UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/cycle-diffusion/black_colored_car.png''' )
__UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' )
__UpperCAmelCase = init_image.resize((5_12, 5_12) )
__UpperCAmelCase = '''CompVis/stable-diffusion-v1-4'''
__UpperCAmelCase = DDIMScheduler.from_pretrained(_lowercase , subfolder='''scheduler''' )
__UpperCAmelCase = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase )
pipe.to(_lowercase )
pipe.set_progress_bar_config(disable=_lowercase )
pipe.enable_attention_slicing()
__UpperCAmelCase = '''A black colored car'''
__UpperCAmelCase = '''A blue colored car'''
__UpperCAmelCase = torch.manual_seed(0 )
__UpperCAmelCase = pipe(
prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type='''np''' , )
__UpperCAmelCase = output.images
assert np.abs(image - expected_image ).max() < 2E-2
| 49 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : List[str] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Union[str, Any] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase : Any = {
'configuration_altclip': [
'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AltCLIPConfig',
'AltCLIPTextConfig',
'AltCLIPVisionConfig',
],
'processing_altclip': ['AltCLIPProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[str] = [
'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'AltCLIPPreTrainedModel',
'AltCLIPModel',
'AltCLIPTextModel',
'AltCLIPVisionModel',
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 50 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[List[PIL.Image.Image], np.ndarray]
a : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 57 | 0 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ : Any = datasets.utils.logging.get_logger(__name__)
a__ : str = ['names', 'prefix']
a__ : Any = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
a__ : Dict = ['encoding_errors', 'on_bad_lines']
a__ : Optional[Any] = ['date_format']
@dataclass
class lowerCAmelCase__ ( datasets.BuilderConfig ):
'''simple docstring'''
_lowerCamelCase =","
_lowerCamelCase =None
_lowerCamelCase ="infer"
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =False
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =True
_lowerCamelCase =None
_lowerCamelCase ="."
_lowerCamelCase =None
_lowerCamelCase ='"'
_lowerCamelCase =0
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =None
_lowerCamelCase =True
_lowerCamelCase =True
_lowerCamelCase =0
_lowerCamelCase =True
_lowerCamelCase =False
_lowerCamelCase =None
_lowerCamelCase =1_00_00
_lowerCamelCase =None
_lowerCamelCase ="strict"
_lowerCamelCase ="error"
_lowerCamelCase =None
def __snake_case ( self : Any ):
if self.delimiter is not None:
UpperCAmelCase = self.delimiter
if self.column_names is not None:
UpperCAmelCase = self.column_names
@property
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
_lowerCamelCase =CsvConfig
def __snake_case ( self : Optional[int] ):
return datasets.DatasetInfo(features=self.config.features )
def __snake_case ( self : int , a__ : List[str] ):
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a__ , (str, list, tuple) ):
UpperCAmelCase = data_files
if isinstance(a__ , a__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(a__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
UpperCAmelCase = []
for split_name, files in data_files.items():
if isinstance(a__ , a__ ):
UpperCAmelCase = [files]
UpperCAmelCase = [dl_manager.iter_files(a__ ) for file in files]
splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={'''files''': files} ) )
return splits
def __snake_case ( self : Any , a__ : pa.Table ):
if self.config.features is not None:
UpperCAmelCase = self.config.features.arrow_schema
if all(not require_storage_cast(a__ ) for feature in self.config.features.values() ):
# cheaper cast
UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCAmelCase = table_cast(a__ , a__ )
return pa_table
def __snake_case ( self : Any , a__ : Tuple ):
UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCAmelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(a__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ):
UpperCAmelCase = pd.read_csv(a__ , iterator=a__ , dtype=a__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(a__ ):
UpperCAmelCase = pa.Table.from_pandas(a__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(a__ )
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(a__ )}: {e}" )
raise
| 51 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
A_ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case (UpperCAmelCase__ ) -> str:
UpperCamelCase_: Tuple = {}
with open(UpperCAmelCase__ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[Any] = line.strip()
if line:
UpperCamelCase_: List[Any] = line.split()
UpperCamelCase_: Optional[Any] = line_number
UpperCamelCase_: Any = words[0]
UpperCamelCase_: List[Any] = value
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
for attribute in key.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: Dict = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Optional[Any] = hf_pointer
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Tuple = shape_pointer.shape
# let's reduce dimension
UpperCamelCase_: int = value[0]
else:
UpperCamelCase_: Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase_: Optional[int] = value
elif weight_type == "weight_g":
UpperCamelCase_: Any = value
elif weight_type == "weight_v":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "bias":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = value
else:
UpperCamelCase_: int = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: List[Any] = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: List[Any] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Any = '.'.join([key, hf_param_name] )
else:
UpperCamelCase_: Union[str, Any] = key
UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0]
A_ : str = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any:
UpperCamelCase_: Optional[int] = False
for key, mapped_key in MAPPING.items():
UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase_: Optional[Any] = True
if "*" in mapped_key:
UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2]
UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ )
if "weight_g" in name:
UpperCamelCase_: Union[str, Any] = 'weight_g'
elif "weight_v" in name:
UpperCamelCase_: Dict = 'weight_v'
elif "bias" in name:
UpperCamelCase_: int = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_: str = 'weight'
else:
UpperCamelCase_: Union[str, Any] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return is_used
return is_used
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
UpperCamelCase_: List[Any] = []
UpperCamelCase_: Dict = fairseq_model.state_dict()
UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_: Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase_: List[Any] = True
else:
UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not is_used:
unused_weights.append(UpperCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1]
UpperCamelCase_: int = name.split('.' )
UpperCamelCase_: int = int(items[0] )
UpperCamelCase_: Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase_: int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase_: List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(UpperCAmelCase__ )
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict:
if config_path is not None:
UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ )
else:
UpperCamelCase_: List[str] = WavaVecaConfig()
if is_seq_class:
UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ )
UpperCamelCase_: Tuple = idalabel
UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
feature_extractor.save_pretrained(UpperCAmelCase__ )
elif is_finetuned:
if dict_path:
UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase_: Dict = target_dict.pad_index
UpperCamelCase_: Tuple = target_dict.bos_index
UpperCamelCase_: Optional[Any] = target_dict.eos_index
UpperCamelCase_: Union[str, Any] = len(target_dict.symbols )
UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) )
return
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
UpperCamelCase_: str = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase_: List[str] = 0
UpperCamelCase_: List[Any] = 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer(
UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , )
UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase_: Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ )
processor.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ )
else:
UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ )
if is_finetuned or is_seq_class:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ )
UpperCamelCase_: str = model[0].eval()
recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
A_ : int = parser.parse_args()
A_ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 57 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 52 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils )
UpperCamelCase_: Dict = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
UpperCamelCase_: Tuple = test_metrics
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _a ( self ):
self.test_metrics.main()
@require_multi_gpu
def _a ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
| 57 | 0 |
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
_snake_case : List[Any] = input('Enter image url: ').strip()
print(F"""Downloading image from {url} ...""")
_snake_case : Union[str, Any] = BeautifulSoup(requests.get(url).content, 'html.parser')
# The image URL is in the content field of the first meta tag with property og:image
_snake_case : List[Any] = soup.find('meta', {'property': 'og:image'})['content']
_snake_case : str = requests.get(image_url).content
_snake_case : Any = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg"""
with open(file_name, 'wb') as fp:
fp.write(image_data)
print(F"""Done. Image saved to disk as {file_name}.""")
| 53 |
import math
class _lowerCAmelCase:
"""simple docstring"""
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: int = 0.0
UpperCamelCase_: Tuple = 0.0
for i in range(len(_lowerCamelCase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
for i in range(len(_lowerCamelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def snake_case () -> None:
# Training Examples ( m, n )
UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCamelCase_: Dict = SelfOrganizingMap()
UpperCamelCase_: List[Any] = 3
UpperCamelCase_: List[str] = 0.5
for _ in range(UpperCAmelCase__ ):
for j in range(len(UpperCAmelCase__ ) ):
# training sample
UpperCamelCase_: int = training_samples[j]
# Compute the winning vector
UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# Update the winning vector
UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# classify test sample
UpperCamelCase_: Dict = [0, 0, 0, 1]
UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 57 | 0 |
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class A ( __lowercase , unittest.TestCase ):
_snake_case =PriorTransformer
_snake_case ='''hidden_states'''
@property
def lowerCAmelCase__ ( self: str ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ =4
UpperCAmelCase_ =8
UpperCAmelCase_ =7
UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Tuple=0 ) -> Tuple:
'''simple docstring'''
torch.manual_seed(_lowerCAmelCase )
UpperCAmelCase_ =4
UpperCAmelCase_ =8
UpperCAmelCase_ =7
UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase )
UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase )
UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def lowerCAmelCase__ ( self: List[Any] ) -> str:
'''simple docstring'''
return (4, 8)
@property
def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]:
'''simple docstring'''
return (4, 8)
def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ ={
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
UpperCAmelCase_ =self.dummy_input
return init_dict, inputs_dict
def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy" , output_loading_info=_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(_lowerCAmelCase )
UpperCAmelCase_ =model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def lowerCAmelCase__ ( self: Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ =self.model_class(**_lowerCAmelCase )
UpperCAmelCase_ =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ =[*signature.parameters.keys()]
UpperCAmelCase_ =["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2] , _lowerCAmelCase )
def lowerCAmelCase__ ( self: List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ =PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
UpperCAmelCase_ =model.to(_lowerCAmelCase )
if hasattr(_lowerCAmelCase , "set_default_attn_processor" ):
model.set_default_attn_processor()
UpperCAmelCase_ =self.get_dummy_seed_input()
with torch.no_grad():
UpperCAmelCase_ =model(**_lowerCAmelCase )[0]
UpperCAmelCase_ =output[0, :5].flatten().cpu()
print(_lowerCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
UpperCAmelCase_ =torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] )
self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-2 ) )
@slow
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: str=1 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Any=77 , _lowerCAmelCase: Optional[int]=0 ) -> str:
'''simple docstring'''
torch.manual_seed(_lowerCAmelCase )
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =embedding_dim
UpperCAmelCase_ =num_embeddings
UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase )
UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase )
UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def lowerCAmelCase__ ( self: Optional[int] ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]],
[37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]],
# fmt: on
] )
def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ =PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" )
model.to(_lowerCAmelCase )
UpperCAmelCase_ =self.get_dummy_seed_input(seed=_lowerCAmelCase )
with torch.no_grad():
UpperCAmelCase_ =model(**_lowerCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
UpperCAmelCase_ =sample[0, :8].flatten().cpu()
print(_lowerCAmelCase )
UpperCAmelCase_ =torch.tensor(_lowerCAmelCase )
assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 )
| 54 |
from collections import namedtuple
A_ : Tuple = namedtuple('from_to', 'from_ to')
A_ : int = {
'cubicmeter': from_to(1, 1),
'litre': from_to(0.001, 1000),
'kilolitre': from_to(1, 1),
'gallon': from_to(0.00454, 264.172),
'cubicyard': from_to(0.76455, 1.30795),
'cubicfoot': from_to(0.028, 35.3147),
'cup': from_to(0.000236588, 4226.75),
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 | 0 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
@require_torch
def UpperCamelCase_ ( self : Optional[int] ):
__A = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" )
__A = BertTokenizer.from_pretrained("bert-base-uncased" )
__A = bertabert.config.encoder.vocab_size
__A = tokenizer.sep_token_id
__A = tokenizer.cls_token_id
__A = 1_28
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" )
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" )
__A = train_dataset.select(range(32 ) )
__A = val_dataset.select(range(16 ) )
__A = 4
def _map_to_encoder_decoder_inputs(A : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__A = tokenizer(batch["article"] ,padding="max_length" ,truncation=A ,max_length=5_12 )
__A = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=A ,max_length=1_28 )
__A = inputs.input_ids
__A = inputs.attention_mask
__A = outputs.input_ids
__A = outputs.input_ids.copy()
__A = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
__A = outputs.attention_mask
assert all(len(A ) == 5_12 for x in inputs.input_ids )
assert all(len(A ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(A : Union[str, Any] ):
__A = pred.label_ids
__A = pred.predictions
# all unnecessary tokens are removed
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A )
return {"accuracy": accuracy}
# map train dataset
__A = train_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
train_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
# same for validation dataset
__A = val_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
val_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
__A = self.get_auto_remove_tmp_dir()
__A = SeqaSeqTrainingArguments(
output_dir=A ,per_device_train_batch_size=A ,per_device_eval_batch_size=A ,predict_with_generate=A ,evaluation_strategy="steps" ,do_train=A ,do_eval=A ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,)
# instantiate trainer
__A = SeqaSeqTrainer(
model=A ,args=A ,compute_metrics=_compute_metrics ,train_dataset=A ,eval_dataset=A ,tokenizer=A ,)
# start training
trainer.train()
| 55 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
A_ : int = logging.get_logger(__name__)
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ):
warnings.warn(
'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use CLIPImageProcessor instead.' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 57 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def _a () -> Dict:
"""simple docstring"""
__snake_case = _ask_options(
'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
__snake_case = get_sagemaker_input()
else:
__snake_case = get_cluster_input()
return config
def _a (lowercase__ : Union[str, Any]=None ) -> int:
"""simple docstring"""
if subparsers is not None:
__snake_case = subparsers.add_parser('config' , description=lowercase__ )
else:
__snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ )
parser.add_argument(
'--config_file' , default=lowercase__ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , )
if subparsers is not None:
parser.set_defaults(func=lowercase__ )
return parser
def _a (lowercase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__snake_case = get_user_input()
if args.config_file is not None:
__snake_case = args.config_file
else:
if not os.path.isdir(lowercase__ ):
os.makedirs(lowercase__ )
__snake_case = default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase__ )
else:
config.to_yaml_file(lowercase__ )
print(f'accelerate configuration saved at {config_file}' )
def _a () -> int:
"""simple docstring"""
__snake_case = config_command_parser()
__snake_case = parser.parse_args()
config_command(lowercase__ )
if __name__ == "__main__":
main()
| 56 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
A_ : Optional[int] = 256
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[str, Any] =['''melgan''']
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
super().__init__()
# From MELGAN
UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training.
UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples
UpperCamelCase_: Tuple = 1_2_8
self.register_modules(
notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , )
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range
if clip:
UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value )
# Scale to [0, 1].
UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Dict = input_range
UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs
# Scale to [0, 1].
UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = input_tokens > 0
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder(
encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder(
encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = noise_time
if not torch.is_tensor(_lowerCamelCase ):
UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0:
UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
UpperCamelCase_: Any = self.decoder(
encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase )
return logits
@torch.no_grad()
def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(_lowerCamelCase )}.''' )
UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa )
UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
for i, encoder_input_tokens in enumerate(_lowerCamelCase ):
if i == 0:
UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
UpperCamelCase_: Any = ones
UpperCamelCase_: str = self.scale_features(
_lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
UpperCamelCase_: List[str] = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_lowerCamelCase )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCamelCase_: int = self.decode(
encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample
UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] )
UpperCamelCase_: Any = mel[:1]
UpperCamelCase_: List[str] = mel.cpu().float().numpy()
UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_lowerCamelCase , _lowerCamelCase )
logger.info('Generated segment' , _lowerCamelCase )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
UpperCamelCase_: int = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_lowerCamelCase )
| 57 | 0 |
"""simple docstring"""
from collections import defaultdict
from math import ceil, sqrt
def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0_0_0_0 , __UpperCamelCase : int = 1_0 ):
'''simple docstring'''
snake_case_ : defaultdict = defaultdict(__UpperCamelCase )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
snake_case_ : Optional[Any] = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
snake_case_ : List[Any] = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(__UpperCamelCase , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 58 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
A_ : Optional[Any] = ['names', 'prefix']
A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
A_ : List[Any] = ['encoding_errors', 'on_bad_lines']
A_ : Optional[Any] = ['date_format']
@dataclass
class _lowerCAmelCase( datasets.BuilderConfig ):
"""simple docstring"""
a : str =","
a : Optional[str] =None
a : Optional[Union[int, List[int], str]] ="infer"
a : Optional[List[str]] =None
a : Optional[List[str]] =None
a : Optional[Union[int, str, List[int], List[str]]] =None
a : Optional[Union[List[int], List[str]]] =None
a : Optional[str] =None
a : bool =True
a : Optional[Literal["c", "python", "pyarrow"]] =None
a : Dict[Union[int, str], Callable[[Any], Any]] =None
a : Optional[list] =None
a : Optional[list] =None
a : bool =False
a : Optional[Union[int, List[int]]] =None
a : Optional[int] =None
a : Optional[Union[str, List[str]]] =None
a : bool =True
a : bool =True
a : bool =False
a : bool =True
a : Optional[str] =None
a : str ="."
a : Optional[str] =None
a : str ='"'
a : int =0
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : bool =True
a : bool =True
a : int =0
a : bool =True
a : bool =False
a : Optional[str] =None
a : int =10000
a : Optional[datasets.Features] =None
a : Optional[str] ="strict"
a : Literal["error", "warn", "skip"] ="error"
a : Optional[str] =None
def _a ( self ):
if self.delimiter is not None:
UpperCamelCase_: Optional[Any] = self.delimiter
if self.column_names is not None:
UpperCamelCase_: int = self.column_names
@property
def _a ( self ):
UpperCamelCase_: Any = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase( datasets.ArrowBasedBuilder ):
"""simple docstring"""
a : Dict =CsvConfig
def _a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _lowerCamelCase ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_: List[Any] = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = [files]
UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_: Tuple = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = [files]
UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _a ( self , _lowerCamelCase ):
if self.config.features is not None:
UpperCamelCase_: List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase )
return pa_table
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCamelCase_: Dict = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise
| 57 | 0 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = 42
lowercase_ = jnp.floataa
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
super().setup()
lowerCamelCase__: int =nn.Dense(5 , dtype=self.dtype)
def __call__(self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: int =self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = FlaxBigBirdForNaturalQuestionsModule
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Tuple:
"""simple docstring"""
def cross_entropy(__a , __a , __a=None ):
lowerCamelCase__: Tuple =logits.shape[-1]
lowerCamelCase__: Tuple =(labels[..., None] == jnp.arange(__a )[None]).astype("f4" )
lowerCamelCase__: str =jax.nn.log_softmax(__a , axis=-1 )
lowerCamelCase__: Optional[Any] =-jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
lowerCamelCase__: Optional[Any] =reduction(__a )
return loss
lowerCamelCase__: str =partial(__a , reduction=jnp.mean )
lowerCamelCase__: str =cross_entropy(__a , __a )
lowerCamelCase__: Optional[int] =cross_entropy(__a , __a )
lowerCamelCase__: Optional[Any] =cross_entropy(__a , __a )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = "google/bigbird-roberta-base"
lowercase_ = 3000
lowercase_ = 1_0500
lowercase_ = 128
lowercase_ = 3
lowercase_ = 1
lowercase_ = 5
# tx_args
lowercase_ = 3E-5
lowercase_ = 0.0
lowercase_ = 2_0000
lowercase_ = 0.0095
lowercase_ = "bigbird-roberta-natural-questions"
lowercase_ = "training-expt"
lowercase_ = "data/nq-training.jsonl"
lowercase_ = "data/nq-validation.jsonl"
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]:
'''simple docstring'''
os.makedirs(self.base_dir , exist_ok=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =os.path.join(self.base_dir , self.save_dir)
lowerCamelCase__: List[str] =self.batch_size_per_device * jax.device_count()
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = 42
lowercase_ = 4096 # no dynamic padding on TPUs
def __call__(self : List[Any] , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.collate_fn(UpperCAmelCase_)
lowerCamelCase__: List[Any] =jax.tree_util.tree_map(UpperCAmelCase_ , UpperCAmelCase_)
return batch
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.fetch_inputs(features["input_ids"])
lowerCamelCase__: Union[str, Any] ={
"input_ids": jnp.array(UpperCAmelCase_ , dtype=jnp.intaa),
"attention_mask": jnp.array(UpperCAmelCase_ , dtype=jnp.intaa),
"start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa),
"end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa),
"pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa),
}
return batch
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : list) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self._fetch_inputs(UpperCAmelCase_) for ids in input_ids]
return zip(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : list) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[1 for _ in range(len(UpperCAmelCase_))]
while len(UpperCAmelCase_) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def lowerCAmelCase_ ( __a , __a , __a=None ) -> str:
"""simple docstring"""
if seed is not None:
lowerCamelCase__: Any =dataset.shuffle(seed=__a )
for i in range(len(__a ) // batch_size ):
lowerCamelCase__: Any =dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__a )
@partial(jax.pmap , axis_name="batch" )
def lowerCAmelCase_ ( __a , __a , **__a ) -> List[str]:
"""simple docstring"""
def loss_fn(__a ):
lowerCamelCase__: Optional[int] =model_inputs.pop("start_labels" )
lowerCamelCase__: int =model_inputs.pop("end_labels" )
lowerCamelCase__: List[str] =model_inputs.pop("pooled_labels" )
lowerCamelCase__: Optional[int] =state.apply_fn(**__a , params=__a , dropout_rng=__a , train=__a )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[Any] =outputs
return state.loss_fn(
__a , __a , __a , __a , __a , __a , )
lowerCamelCase__ , lowerCamelCase__: int =jax.random.split(__a )
lowerCamelCase__: Optional[Any] =jax.value_and_grad(__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =grad_fn(state.params )
lowerCamelCase__: Optional[Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" )
lowerCamelCase__: List[str] =jax.lax.pmean(__a , "batch" )
lowerCamelCase__: List[str] =state.apply_gradients(grads=__a )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="batch" )
def lowerCAmelCase_ ( __a , **__a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =model_inputs.pop("start_labels" )
lowerCamelCase__: List[str] =model_inputs.pop("end_labels" )
lowerCamelCase__: int =model_inputs.pop("pooled_labels" )
lowerCamelCase__: Optional[Any] =state.apply_fn(**__a , params=state.params , train=__a )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =outputs
lowerCamelCase__: Optional[int] =state.loss_fn(__a , __a , __a , __a , __a , __a )
lowerCamelCase__: Optional[Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" )
return metrics
class _SCREAMING_SNAKE_CASE ( train_state.TrainState ):
'''simple docstring'''
lowercase_ = struct.field(pytree_node=__SCREAMING_SNAKE_CASE )
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = 42
lowercase_ = 42
lowercase_ = 42
lowercase_ = 42
lowercase_ = 42
lowercase_ = 42
lowercase_ = None
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=None) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model.params
lowerCamelCase__: Tuple =TrainState.create(
apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , loss_fn=UpperCAmelCase_ , )
if ckpt_dir is not None:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =restore_checkpoint(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple ={
"lr": args.lr,
"init_lr": args.init_lr,
"warmup_steps": args.warmup_steps,
"num_train_steps": num_train_steps,
"weight_decay": args.weight_decay,
}
lowerCamelCase__ , lowerCamelCase__: List[Any] =build_tx(**UpperCAmelCase_)
lowerCamelCase__: str =train_state.TrainState(
step=UpperCAmelCase_ , apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , opt_state=UpperCAmelCase_ , )
lowerCamelCase__: Tuple =args
lowerCamelCase__: Tuple =data_collator
lowerCamelCase__: str =lr
lowerCamelCase__: Dict =params
lowerCamelCase__: List[str] =jax_utils.replicate(UpperCAmelCase_)
return state
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.args
lowerCamelCase__: Any =len(UpperCAmelCase_) // args.batch_size
lowerCamelCase__: List[str] =jax.random.PRNGKey(0)
lowerCamelCase__: Optional[Any] =jax.random.split(UpperCAmelCase_ , jax.device_count())
for epoch in range(args.max_epochs):
lowerCamelCase__: Union[str, Any] =jnp.array(0 , dtype=jnp.floataa)
lowerCamelCase__: str =get_batched_dataset(UpperCAmelCase_ , args.batch_size , seed=UpperCAmelCase_)
lowerCamelCase__: Dict =0
for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc=F"""Running EPOCH-{epoch}"""):
lowerCamelCase__: List[str] =self.data_collator(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.train_step_fn(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_)
running_loss += jax_utils.unreplicate(metrics["loss"])
i += 1
if i % args.logging_steps == 0:
lowerCamelCase__: Optional[int] =jax_utils.unreplicate(state.step)
lowerCamelCase__: List[Any] =running_loss.item() / i
lowerCamelCase__: Tuple =self.scheduler_fn(state_step - 1)
lowerCamelCase__: Union[str, Any] =self.evaluate(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Dict ={
"step": state_step.item(),
"eval_loss": eval_loss.item(),
"tr_loss": tr_loss,
"lr": lr.item(),
}
tqdm.write(str(UpperCAmelCase_))
self.logger.log(UpperCAmelCase_ , commit=UpperCAmelCase_)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str) ->Any:
'''simple docstring'''
lowerCamelCase__: List[Any] =get_batched_dataset(UpperCAmelCase_ , self.args.batch_size)
lowerCamelCase__: List[str] =len(UpperCAmelCase_) // self.args.batch_size
lowerCamelCase__: str =jnp.array(0 , dtype=jnp.floataa)
lowerCamelCase__: Optional[Any] =0
for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc="Evaluating ... "):
lowerCamelCase__: int =self.data_collator(UpperCAmelCase_)
lowerCamelCase__: str =self.val_step_fn(UpperCAmelCase_ , **UpperCAmelCase_)
running_loss += jax_utils.unreplicate(metrics["loss"])
i += 1
return running_loss / i
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]) ->int:
'''simple docstring'''
lowerCamelCase__: Any =jax_utils.unreplicate(UpperCAmelCase_)
print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... ")
self.model_save_fn(UpperCAmelCase_ , params=state.params)
with open(os.path.join(UpperCAmelCase_ , "opt_state.msgpack") , "wb") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(UpperCAmelCase_ , "args.joblib"))
joblib.dump(self.data_collator , os.path.join(UpperCAmelCase_ , "data_collator.joblib"))
with open(os.path.join(UpperCAmelCase_ , "training_state.json") , "w") as f:
json.dump({"step": state.step.item()} , UpperCAmelCase_)
print("DONE")
def lowerCAmelCase_ ( __a , __a ) -> str:
"""simple docstring"""
print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " )
with open(os.path.join(__a , "flax_model.msgpack" ) , "rb" ) as f:
lowerCamelCase__: Tuple =from_bytes(state.params , f.read() )
with open(os.path.join(__a , "opt_state.msgpack" ) , "rb" ) as f:
lowerCamelCase__: Optional[int] =from_bytes(state.opt_state , f.read() )
lowerCamelCase__: Any =joblib.load(os.path.join(__a , "args.joblib" ) )
lowerCamelCase__: Union[str, Any] =joblib.load(os.path.join(__a , "data_collator.joblib" ) )
with open(os.path.join(__a , "training_state.json" ) , "r" ) as f:
lowerCamelCase__: Optional[Any] =json.load(__a )
lowerCamelCase__: Any =training_state["step"]
print("DONE" )
return params, opt_state, step, args, data_collator
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__: int =num_train_steps - warmup_steps
lowerCamelCase__: str =optax.linear_schedule(init_value=__a , end_value=__a , transition_steps=__a )
lowerCamelCase__: Optional[Any] =optax.linear_schedule(init_value=__a , end_value=1e-7 , transition_steps=__a )
lowerCamelCase__: List[Any] =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> str:
"""simple docstring"""
def weight_decay_mask(__a ):
lowerCamelCase__: List[str] =traverse_util.flatten_dict(__a )
lowerCamelCase__: List[str] ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()}
return traverse_util.unflatten_dict(__a )
lowerCamelCase__: Optional[Any] =scheduler_fn(__a , __a , __a , __a )
lowerCamelCase__: Tuple =optax.adamw(learning_rate=__a , weight_decay=__a , mask=__a )
return tx, lr
| 59 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : str = logging.get_logger(__name__)
A_ : Union[str, Any] = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Tuple ='''open-llama'''
def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
UpperCamelCase_: int = vocab_size
UpperCamelCase_: List[Any] = max_position_embeddings
UpperCamelCase_: Dict = hidden_size
UpperCamelCase_: Dict = intermediate_size
UpperCamelCase_: Union[str, Any] = num_hidden_layers
UpperCamelCase_: Dict = num_attention_heads
UpperCamelCase_: Union[str, Any] = hidden_act
UpperCamelCase_: Union[str, Any] = initializer_range
UpperCamelCase_: List[Any] = rms_norm_eps
UpperCamelCase_: Union[str, Any] = use_cache
UpperCamelCase_: Dict = kwargs.pop(
'use_memorry_efficient_attention' , _lowerCamelCase )
UpperCamelCase_: Union[str, Any] = hidden_dropout_prob
UpperCamelCase_: Any = attention_dropout_prob
UpperCamelCase_: int = use_stable_embedding
UpperCamelCase_: Tuple = shared_input_output_embedding
UpperCamelCase_: str = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , )
def _a ( self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
f'''got {self.rope_scaling}''' )
UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase )
UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 57 | 0 |
from __future__ import annotations
from collections.abc import Callable
lowerCAmelCase_ = list[list[float | int]]
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Matrix:
"""simple docstring"""
snake_case_ : int = len(_UpperCamelCase )
snake_case_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_UpperCamelCase )]
snake_case_ : int
snake_case_ : int
snake_case_ : int
snake_case_ : int
snake_case_ : int
snake_case_ : float
for row in range(_UpperCamelCase ):
for col in range(_UpperCamelCase ):
snake_case_ : int = matrix[row][col]
snake_case_ : int = vector[row][0]
snake_case_ : str = 0
snake_case_ : List[str] = 0
while row < size and col < size:
# pivoting
snake_case_ : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_UpperCamelCase , _UpperCamelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
snake_case_ , snake_case_ : int = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , _UpperCamelCase ):
snake_case_ : Tuple = augmented[rowa][col] / augmented[row][col]
snake_case_ : str = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , _UpperCamelCase ):
for row in range(_UpperCamelCase ):
snake_case_ : Tuple = augmented[row][col] / augmented[col][col]
for cola in range(_UpperCamelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_UpperCamelCase )
]
def lowerCamelCase_ ( _UpperCamelCase ) -> Callable[[int], int]:
"""simple docstring"""
snake_case_ : int = len(_UpperCamelCase )
snake_case_ : Matrix = [[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )]
snake_case_ : Matrix = [[0] for _ in range(_UpperCamelCase )]
snake_case_ : Matrix
snake_case_ : int
snake_case_ : int
snake_case_ : int
for x_val, y_val in enumerate(_UpperCamelCase ):
for col in range(_UpperCamelCase ):
snake_case_ : str = (x_val + 1) ** (size - col - 1)
snake_case_ : Optional[int] = y_val
snake_case_ : Any = solve(_UpperCamelCase , _UpperCamelCase )
def interpolated_func(_UpperCamelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(_UpperCamelCase ) )
return interpolated_func
def lowerCamelCase_ ( _UpperCamelCase ) -> int:
"""simple docstring"""
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCamelCase_ ( _UpperCamelCase = question_function , _UpperCamelCase = 10 ) -> int:
"""simple docstring"""
snake_case_ : list[int] = [func(_UpperCamelCase ) for x_val in range(1 , order + 1 )]
snake_case_ : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
snake_case_ : int = 0
snake_case_ : Callable[[int], int]
snake_case_ : int
for poly in polynomials:
snake_case_ : List[Any] = 1
while func(_UpperCamelCase ) == poly(_UpperCamelCase ):
x_val += 1
ret += poly(_UpperCamelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 60 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ):
UpperCamelCase_: Tuple = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = image_size
UpperCamelCase_: Tuple = patch_size
UpperCamelCase_: Tuple = num_channels
UpperCamelCase_: Dict = embed_dim
UpperCamelCase_: List[Any] = hidden_sizes
UpperCamelCase_: List[str] = depths
UpperCamelCase_: List[str] = num_heads
UpperCamelCase_: Optional[int] = window_size
UpperCamelCase_: Tuple = mlp_ratio
UpperCamelCase_: Dict = qkv_bias
UpperCamelCase_: str = hidden_dropout_prob
UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob
UpperCamelCase_: int = drop_path_rate
UpperCamelCase_: Dict = hidden_act
UpperCamelCase_: List[str] = use_absolute_embeddings
UpperCamelCase_: Dict = patch_norm
UpperCamelCase_: Optional[Any] = layer_norm_eps
UpperCamelCase_: List[str] = initializer_range
UpperCamelCase_: List[Any] = is_training
UpperCamelCase_: Optional[int] = scope
UpperCamelCase_: str = use_labels
UpperCamelCase_: List[str] = type_sequence_label_size
UpperCamelCase_: Union[str, Any] = encoder_stride
UpperCamelCase_: Dict = out_features
UpperCamelCase_: str = out_indices
def _a ( self ):
UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_: List[Any] = None
if self.use_labels:
UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase_: Optional[Any] = self.get_config()
return config, pixel_values, labels
def _a ( self ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: int = model(_lowerCamelCase )
UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
UpperCamelCase_: int = None
UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCamelCase_: List[Any] = 1
UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = self.type_sequence_label_size
UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase_: Union[str, Any] = 1
UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self ):
UpperCamelCase_: Dict = self.prepare_config_and_inputs()
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs
UpperCamelCase_: int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[int] =(
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
a : Any =(
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
a : Dict =False
a : Union[str, Any] =False
a : Tuple =False
a : Optional[int] =False
a : Union[str, Any] =False
def _a ( self ):
UpperCamelCase_: str = FocalNetModelTester(self )
UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase )
def _a ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self ):
return
def _a ( self ):
UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def _a ( self ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def _a ( self ):
pass
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase_: List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: List[Any] = model_class(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_: Any = [*signature.parameters.keys()]
UpperCamelCase_: List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
UpperCamelCase_: Union[str, Any] = outputs.hidden_states
UpperCamelCase_: Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
# FocalNet has a different seq_length
UpperCamelCase_: Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCamelCase_: Dict = outputs.reshaped_hidden_states
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape
UpperCamelCase_: List[str] = (
reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: int = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: int = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: str = 3
UpperCamelCase_: Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCamelCase_: int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Dict = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
@slow
def _a ( self ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase )
for model_class in self.all_model_classes:
UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def _a ( self ):
UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = self.default_image_processor
UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: List[str] = model(**_lowerCamelCase )
# verify the logits
UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 )
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else ()
a : List[str] =FocalNetConfig
a : List[str] =False
def _a ( self ):
UpperCamelCase_: Any = FocalNetModelTester(self )
| 57 | 0 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __lowerCamelCase ( unittest.TestCase , UpperCamelCase__ ):
"""simple docstring"""
def a ( self : Tuple ) -> List[Any]:
lowerCAmelCase__ = load_tool("text-to-speech" )
self.tool.setup()
def a ( self : Dict ) -> Optional[int]:
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
lowerCAmelCase__ = self.tool("hey" )
lowerCAmelCase__ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
def a ( self : List[Any] ) -> Union[str, Any]:
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
lowerCAmelCase__ = self.tool("hey" )
lowerCAmelCase__ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
| 61 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : Tuple = {
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[Any] = ['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _A ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=UpperCAmelCase_ ).to(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("google/mt5-small" )
SCREAMING_SNAKE_CASE : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids
SCREAMING_SNAKE_CASE : Any = tokenizer("Hi I am" , return_tensors="pt" ).input_ids
SCREAMING_SNAKE_CASE : str = model(input_ids.to(UpperCAmelCase_ ) , labels=labels.to(UpperCAmelCase_ ) ).loss
SCREAMING_SNAKE_CASE : List[str] = -(labels.shape[-1] * loss.item())
SCREAMING_SNAKE_CASE : Any = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 62 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ):
return False
return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any:
UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: List[str] = model
UpperCamelCase_: Dict = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Dict = model.module
if not keep_fpaa_wrapper:
UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' )
UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ )
if original_forward is not None:
while hasattr(UpperCAmelCase__ , '__wrapped__' ):
UpperCamelCase_: Any = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase_: Optional[int] = forward
if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ):
convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: Union[str, Any] = model
UpperCamelCase_: Tuple = compiled_model
return model
def snake_case () -> List[str]:
PartialState().wait_for_everyone()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict:
if PartialState().distributed_type == DistributedType.TPU:
xm.save(UpperCAmelCase__ , UpperCAmelCase__ )
elif PartialState().local_process_index == 0:
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
@contextmanager
def snake_case (**UpperCAmelCase__ ) -> Any:
for key, value in kwargs.items():
UpperCamelCase_: int = str(UpperCAmelCase__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def snake_case (UpperCAmelCase__ ) -> str:
if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ):
UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ )
if hasattr(UpperCAmelCase__ , '__qualname__' ):
return obj.__qualname__
if hasattr(UpperCAmelCase__ , '__name__' ):
return obj.__name__
return str(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
for key, value in source.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} )
merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ )
else:
UpperCamelCase_: str = value
return destination
def snake_case (UpperCAmelCase__ = None ) -> bool:
if port is None:
UpperCamelCase_: List[str] = 2_9_5_0_0
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 57 | 0 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
a : Union[str, Any] = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class a :
"""simple docstring"""
def __init__( self : str , __lowercase : Any , __lowercase : Optional[int]=16 , __lowercase : Union[str, Any]=13 , __lowercase : int=7 , __lowercase : List[Any]=14 , __lowercase : List[Any]=10 , __lowercase : List[str]=19 , __lowercase : List[str]=5 , __lowercase : Optional[int]=4 , __lowercase : int=True , __lowercase : Dict=16 , __lowercase : Any=2 , __lowercase : Union[str, Any]=4 , __lowercase : Optional[Any]=4 , __lowercase : Union[str, Any]="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : Dict=0.1 , __lowercase : List[str]=[1, 2, 3, 4, 5] , __lowercase : Optional[Any]=25 , __lowercase : List[str]=5 , ) -> Dict:
__UpperCAmelCase : Any = d_model
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : List[Any] = batch_size
__UpperCAmelCase : List[str] = prediction_length
__UpperCAmelCase : Dict = context_length
__UpperCAmelCase : Any = cardinality
__UpperCAmelCase : Any = num_time_features
__UpperCAmelCase : Optional[Any] = lags_sequence
__UpperCAmelCase : Union[str, Any] = embedding_dimension
__UpperCAmelCase : List[str] = is_training
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : List[Any] = num_hidden_layers
__UpperCAmelCase : List[str] = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : List[str] = hidden_act
__UpperCAmelCase : Any = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Any = context_length
__UpperCAmelCase : int = prediction_length + label_length
__UpperCAmelCase : List[str] = label_length
__UpperCAmelCase : Union[str, Any] = moving_average
__UpperCAmelCase : Optional[int] = autocorrelation_factor
def UpperCAmelCase ( self : Tuple ) -> List[Any]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def UpperCAmelCase ( self : Optional[int] , __lowercase : str ) -> Optional[Any]:
__UpperCAmelCase : Tuple = config.context_length + max(config.lags_sequence )
__UpperCAmelCase : str = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__UpperCAmelCase : str = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, _past_length] )
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__UpperCAmelCase : Any = floats_tensor([self.batch_size, config.prediction_length] )
__UpperCAmelCase : Union[str, Any] = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def UpperCAmelCase ( self : Dict ) -> List[Any]:
__UpperCAmelCase : Any = self.get_config()
__UpperCAmelCase : int = self.prepare_autoformer_inputs_dict(__lowercase )
return config, inputs_dict
def UpperCAmelCase ( self : Any ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] ) -> int:
__UpperCAmelCase : int = AutoformerModel(config=__lowercase ).to(__lowercase ).eval()
__UpperCAmelCase : int = model(**__lowercase )
__UpperCAmelCase : Optional[Any] = outputs.encoder_last_hidden_state
__UpperCAmelCase : Tuple = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : int = model.get_encoder()
encoder.save_pretrained(__lowercase )
__UpperCAmelCase : List[str] = AutoformerEncoder.from_pretrained(__lowercase ).to(__lowercase )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = model.create_network_inputs(**__lowercase )
__UpperCAmelCase , __UpperCAmelCase : Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__UpperCAmelCase : Tuple = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__UpperCAmelCase : str = encoder(inputs_embeds=__lowercase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__UpperCAmelCase : int = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__UpperCAmelCase : int = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__UpperCAmelCase : int = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__UpperCAmelCase : Dict = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__UpperCAmelCase : Optional[Any] = model.get_decoder()
decoder.save_pretrained(__lowercase )
__UpperCAmelCase : List[Any] = AutoformerDecoder.from_pretrained(__lowercase ).to(__lowercase )
__UpperCAmelCase : Optional[int] = decoder(
trend=__lowercase , inputs_embeds=__lowercase , encoder_hidden_states=__lowercase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class a ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
a : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
a : Any = (AutoformerForPrediction,) if is_torch_available() else ()
a : Dict = {'feature-extraction': AutoformerModel} if is_torch_available() else {}
a : Optional[int] = False
a : List[str] = False
a : str = False
a : Optional[int] = False
a : Union[str, Any] = False
a : Tuple = False
def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
__UpperCAmelCase : Tuple = AutoformerModelTester(self )
__UpperCAmelCase : Dict = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCAmelCase ( self : Any ) -> Tuple:
self.config_tester.run_common_tests()
def UpperCAmelCase ( self : Dict ) -> str:
__UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__UpperCAmelCase : Any = model_class(__lowercase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowercase )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model_class.from_pretrained(__lowercase , output_loading_info=__lowercase )
self.assertEqual(info["""missing_keys"""] , [] )
def UpperCAmelCase ( self : Optional[Any] ) -> int:
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__lowercase )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def UpperCAmelCase ( self : Any ) -> List[Any]:
pass
def UpperCAmelCase ( self : Any ) -> Optional[Any]:
__UpperCAmelCase : Any = inspect.signature(getattr(__lowercase , """forward""" ) )
# The main input is the name of the argument after `self`
__UpperCAmelCase : Optional[int] = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , __lowercase )
def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Tuple = model_class(__lowercase )
__UpperCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Tuple = [*signature.parameters.keys()]
__UpperCAmelCase : Tuple = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(__lowercase )] , __lowercase )
def UpperCAmelCase ( self : int ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = True
__UpperCAmelCase : List[str] = getattr(self.model_tester , """seq_length""" , __lowercase )
__UpperCAmelCase : Optional[int] = getattr(self.model_tester , """decoder_seq_length""" , __lowercase )
__UpperCAmelCase : Dict = getattr(self.model_tester , """encoder_seq_length""" , __lowercase )
__UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , """d_model""" , __lowercase )
__UpperCAmelCase : List[Any] = getattr(self.model_tester , """num_attention_heads""" , __lowercase )
__UpperCAmelCase : List[Any] = d_model // num_attention_heads
for model_class in self.all_model_classes:
__UpperCAmelCase : Dict = True
__UpperCAmelCase : str = False
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Union[str, Any] = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : int = True
__UpperCAmelCase : int = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__UpperCAmelCase : Optional[int] = outputs.encoder_attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__UpperCAmelCase : List[str] = len(__lowercase )
__UpperCAmelCase : Union[str, Any] = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(__lowercase , __lowercase )
# decoder attentions
__UpperCAmelCase : List[Any] = outputs.decoder_attentions
self.assertIsInstance(__lowercase , (list, tuple) )
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__UpperCAmelCase : Tuple = outputs.cross_attentions
self.assertIsInstance(__lowercase , (list, tuple) )
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : int = True
__UpperCAmelCase : List[str] = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : int = model(**self._prepare_for_class(__lowercase , __lowercase ) )
self.assertEqual(out_len + 2 , len(__lowercase ) )
__UpperCAmelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
super().test_retain_grad_hidden_states_attentions()
def lowerCamelCase__ ( __lowerCamelCase : Tuple="train-batch.pt" ):
__UpperCAmelCase : str = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=__lowerCamelCase , repo_type="""dataset""" )
__UpperCAmelCase : Optional[Any] = torch.load(__lowerCamelCase , map_location=__lowerCamelCase )
return batch
@require_torch
@slow
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self : List[Any] ) -> List[Any]:
__UpperCAmelCase : Dict = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase )
__UpperCAmelCase : Dict = prepare_batch()
with torch.no_grad():
__UpperCAmelCase : int = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__UpperCAmelCase : Dict = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , __lowercase )
__UpperCAmelCase : Optional[int] = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=__lowercase )
self.assertTrue(torch.allclose(output[0, :3, :3] , __lowercase , atol=__lowercase ) )
def UpperCAmelCase ( self : str ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase )
__UpperCAmelCase : List[str] = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__UpperCAmelCase : Any = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__UpperCAmelCase : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , __lowercase )
__UpperCAmelCase : Dict = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=__lowercase )
self.assertTrue(torch.allclose(output[0, :3, :3] , __lowercase , atol=__lowercase ) )
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowercase )
__UpperCAmelCase : Optional[int] = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__UpperCAmelCase : int = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__UpperCAmelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , __lowercase )
__UpperCAmelCase : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=__lowercase )
__UpperCAmelCase : List[str] = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __lowercase , rtol=1e-1 ) )
| 63 |
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
A_ : Optional[Any] = data_utils.TransfoXLTokenizer
A_ : Union[str, Any] = data_utils.TransfoXLCorpus
A_ : Any = data_utils
A_ : Optional[Any] = data_utils
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(UpperCAmelCase__ , 'rb' ) as fp:
UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ )
UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ )
UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
UpperCamelCase_: List[str] = TransfoXLConfig()
else:
UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ )
UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' )
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ : int = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
A_ : Tuple = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 57 | 0 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowercase_ : Any = logging.get_logger(__name__)
lowercase_ : List[str] = {'vocab_file': 'spiece.model'}
lowercase_ : Dict = {
'vocab_file': {
'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model',
'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model',
}
}
lowercase_ : Tuple = {
'AI-Sweden/gpt-sw3-126m': 2_0_4_8,
'AI-Sweden/gpt-sw3-350m': 2_0_4_8,
'AI-Sweden/gpt-sw3-1.6b': 2_0_4_8,
'AI-Sweden/gpt-sw3-6.7b': 2_0_4_8,
'AI-Sweden/gpt-sw3-20b': 2_0_4_8,
}
class _lowerCamelCase ( UpperCamelCase_ ):
__a = VOCAB_FILES_NAMES
__a = PRETRAINED_VOCAB_FILES_MAP
__a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a = ["input_ids", "attention_mask"]
def __init__( self , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = None , **lowerCAmelCase , ) -> None:
SCREAMING_SNAKE_CASE__: Optional[Any]= {} if sp_model_kwargs is None else sp_model_kwargs
SCREAMING_SNAKE_CASE__: Union[str, Any]= kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
SCREAMING_SNAKE_CASE__: Dict= '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
SCREAMING_SNAKE_CASE__: List[Any]= '''<|endoftext|>''' if eos_token is None else eos_token
SCREAMING_SNAKE_CASE__: List[Any]= '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
SCREAMING_SNAKE_CASE__: List[str]= unk_token if pad_token is None else pad_token
SCREAMING_SNAKE_CASE__: Dict= eos_token if bos_token is None else bos_token
else:
SCREAMING_SNAKE_CASE__: Optional[Any]= '''<pad>''' if pad_token is None else pad_token
SCREAMING_SNAKE_CASE__: List[Any]= '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=lowerCAmelCase , remove_space=lowerCAmelCase , keep_accents=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , )
SCREAMING_SNAKE_CASE__: Union[str, Any]= do_lower_case
SCREAMING_SNAKE_CASE__: int= remove_space
SCREAMING_SNAKE_CASE__: List[str]= keep_accents
SCREAMING_SNAKE_CASE__: int= vocab_file
SCREAMING_SNAKE_CASE__: int= spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase )
# Used for whitespace normalization in input texts
# fmt : off
SCREAMING_SNAKE_CASE__: Optional[int]= {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
SCREAMING_SNAKE_CASE__: str= re.compile(
f'[{"".join(map(lowerCAmelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' )
def __getstate__( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__: Any= self.__dict__.copy()
SCREAMING_SNAKE_CASE__: Dict= None
return state
def __setstate__( self , lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__: List[Any]= d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE__: Union[str, Any]= {}
SCREAMING_SNAKE_CASE__: Tuple= spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self ) -> int:
return len(self.sp_model )
def UpperCamelCase_ ( self , lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__: Any= self.non_printing_characters_re.sub('''''' , lowerCAmelCase )
# Normalize whitespaces
SCREAMING_SNAKE_CASE__: Any= ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
SCREAMING_SNAKE_CASE__: Optional[Any]= unicodedata.normalize('''NFC''' , lowerCAmelCase )
return text
def UpperCamelCase_ ( self , lowerCAmelCase , **lowerCAmelCase ) -> List[str]:
SCREAMING_SNAKE_CASE__: Union[str, Any]= self.preprocess_text(lowerCAmelCase )
return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase )
def UpperCamelCase_ ( self , lowerCAmelCase ) -> int:
return self.sp_model.PieceToId(lowerCAmelCase )
def UpperCamelCase_ ( self , lowerCAmelCase ) -> str:
return self.sp_model.IdToPiece(lowerCAmelCase )
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase ) -> str:
return out_string
def UpperCamelCase_ ( self , lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__: Union[str, Any]= []
SCREAMING_SNAKE_CASE__: Optional[int]= ''''''
SCREAMING_SNAKE_CASE__: Any= False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase ) + token
SCREAMING_SNAKE_CASE__: Union[str, Any]= True
SCREAMING_SNAKE_CASE__: Tuple= []
else:
current_sub_tokens.append(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= False
out_string += self.sp_model.decode(lowerCAmelCase )
return out_string
def UpperCamelCase_ ( self ) -> Dict[str, int]:
SCREAMING_SNAKE_CASE__: List[Any]= {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
SCREAMING_SNAKE_CASE__: Optional[int]= os.path.join(
lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE__: Optional[Any]= self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase )
return (out_vocab_file,)
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
if isinstance(lowerCAmelCase , lowerCAmelCase ):
SCREAMING_SNAKE_CASE__: List[Any]= self.preprocess_text(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Optional[int]= self.sp_model.encode(lowerCAmelCase )
else:
SCREAMING_SNAKE_CASE__: Dict= [self.preprocess_text(lowerCAmelCase ) for t in text]
SCREAMING_SNAKE_CASE__: Optional[Any]= self.sp_model.encode(lowerCAmelCase )
if return_tensors is True or return_tensors == "pt":
SCREAMING_SNAKE_CASE__: Dict= torch.tensor(lowerCAmelCase )
return token_ids
def UpperCamelCase_ ( self , lowerCAmelCase ) -> str:
return self.sp_model.decode(lowerCAmelCase )
def UpperCamelCase_ ( self , lowerCAmelCase ) -> List[int]:
SCREAMING_SNAKE_CASE__: Tuple= [f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()]
SCREAMING_SNAKE_CASE__: int= (
f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(lowerCAmelCase ) + f'{self.bos_token}Bot:'
)
return self.encode(text=lowerCAmelCase )
| 64 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : List[str] = logging.get_logger(__name__)
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
UpperCamelCase_: Tuple = b.T
UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 )
UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 )
UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :]
return d
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: List[str] = x.reshape(-1 , 3 )
UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ )
return np.argmin(UpperCAmelCase__ , axis=1 )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Any =['''pixel_values''']
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ):
super().__init__(**_lowerCamelCase )
UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6}
UpperCamelCase_: str = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None
UpperCamelCase_: Optional[int] = do_resize
UpperCamelCase_: List[Any] = size
UpperCamelCase_: Optional[int] = resample
UpperCamelCase_: str = do_normalize
UpperCamelCase_: str = do_color_quantize
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ):
UpperCamelCase_: Any = get_size_dict(_lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
_lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ):
UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase )
UpperCamelCase_: Optional[Any] = image - 1
return image
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ):
UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_: Tuple = size if size is not None else self.size
UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample
UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters
UpperCamelCase_: Dict = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase )
if not valid_images(_lowerCamelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images]
if do_resize:
UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images]
if do_normalize:
UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images]
if do_color_quantize:
UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
UpperCamelCase_: Dict = images.shape[0]
UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
UpperCamelCase_: List[Any] = list(_lowerCamelCase )
else:
UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images]
UpperCamelCase_: str = {'input_ids': images}
return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
| 57 | 0 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
if "cls_token" in name:
UpperCAmelCase__ : Any = name.replace("""cls_token""" , """vit.embeddings.cls_token""" )
if "mask_token" in name:
UpperCAmelCase__ : Optional[Any] = name.replace("""mask_token""" , """decoder.mask_token""" )
if "decoder_pos_embed" in name:
UpperCAmelCase__ : int = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
UpperCAmelCase__ : List[str] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
UpperCAmelCase__ : List[str] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
UpperCAmelCase__ : List[str] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" )
if "decoder_blocks" in name:
UpperCAmelCase__ : Tuple = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
UpperCAmelCase__ : Union[str, Any] = name.replace("""blocks""" , """vit.encoder.layer""" )
if "attn.proj" in name:
UpperCAmelCase__ : Dict = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
UpperCAmelCase__ : List[Any] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
UpperCAmelCase__ : List[Any] = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
UpperCAmelCase__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
UpperCAmelCase__ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
UpperCAmelCase__ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
UpperCAmelCase__ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
UpperCAmelCase__ : List[str] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
UpperCAmelCase__ : List[Any] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name:
UpperCAmelCase__ : Any = name.replace("""norm.weight""" , """vit.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name:
UpperCAmelCase__ : List[str] = name.replace("""norm.bias""" , """vit.layernorm.bias""" )
return name
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
UpperCAmelCase__ : Tuple = orig_state_dict.pop(__UpperCamelCase )
if "qkv" in key:
UpperCAmelCase__ : Optional[int] = key.split(""".""" )
UpperCAmelCase__ : Union[str, Any] = int(key_split[1] )
if "decoder_blocks" in key:
UpperCAmelCase__ : Optional[int] = config.decoder_hidden_size
UpperCAmelCase__ : Optional[int] = """decoder.decoder_layers."""
if "weight" in key:
UpperCAmelCase__ : Union[str, Any] = val[:dim, :]
UpperCAmelCase__ : Any = val[dim : dim * 2, :]
UpperCAmelCase__ : Optional[Any] = val[-dim:, :]
elif "bias" in key:
UpperCAmelCase__ : Optional[int] = val[:dim]
UpperCAmelCase__ : Any = val[dim : dim * 2]
UpperCAmelCase__ : List[Any] = val[-dim:]
else:
UpperCAmelCase__ : Union[str, Any] = config.hidden_size
UpperCAmelCase__ : List[str] = """vit.encoder.layer."""
if "weight" in key:
UpperCAmelCase__ : int = val[:dim, :]
UpperCAmelCase__ : Dict = val[dim : dim * 2, :]
UpperCAmelCase__ : Any = val[-dim:, :]
elif "bias" in key:
UpperCAmelCase__ : str = val[:dim]
UpperCAmelCase__ : Tuple = val[dim : dim * 2]
UpperCAmelCase__ : Dict = val[-dim:]
else:
UpperCAmelCase__ : Tuple = val
return orig_state_dict
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = ViTMAEConfig()
if "large" in checkpoint_url:
UpperCAmelCase__ : int = 1024
UpperCAmelCase__ : List[str] = 4096
UpperCAmelCase__ : List[Any] = 24
UpperCAmelCase__ : Any = 16
elif "huge" in checkpoint_url:
UpperCAmelCase__ : List[str] = 14
UpperCAmelCase__ : int = 1280
UpperCAmelCase__ : int = 5120
UpperCAmelCase__ : int = 32
UpperCAmelCase__ : List[Any] = 16
UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase )
UpperCAmelCase__ : Any = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="""cpu""" )["""model"""]
UpperCAmelCase__ : Dict = ViTMAEImageProcessor(size=config.image_size )
UpperCAmelCase__ : Optional[Any] = convert_state_dict(__UpperCamelCase , __UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
UpperCAmelCase__ : List[Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"""
UpperCAmelCase__ : int = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw )
UpperCAmelCase__ : Tuple = ViTMAEImageProcessor(size=config.image_size )
UpperCAmelCase__ : List[Any] = image_processor(images=__UpperCamelCase , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
UpperCAmelCase__ : Any = model(**__UpperCamelCase )
UpperCAmelCase__ : int = outputs.logits
if "large" in checkpoint_url:
UpperCAmelCase__ : Optional[int] = torch.tensor(
[[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] )
elif "huge" in checkpoint_url:
UpperCAmelCase__ : List[str] = torch.tensor(
[[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] )
else:
UpperCAmelCase__ : List[Any] = torch.tensor(
[[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(__UpperCamelCase )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__UpperCAmelCase = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 65 |
import numpy
# List of input, output pairs
A_ : Any = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150))
A_ : Any = [2, 4, 1, 5]
A_ : List[Any] = len(train_data)
A_ : List[Any] = 0.009
def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]:
return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output(
UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[Any] = 0
for i in range(len(UpperCAmelCase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]:
UpperCamelCase_: Any = 0
for i in range(UpperCAmelCase__ ):
if index == -1:
summation_value += _error(UpperCAmelCase__ )
else:
summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index]
return summation_value
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m
return cost_derivative_value
def snake_case () -> Union[str, Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCamelCase_: str = 0.00_0002
UpperCamelCase_: Any = 0
UpperCamelCase_: int = 0
while True:
j += 1
UpperCamelCase_: int = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase__ ) ):
UpperCamelCase_: Any = get_cost_derivative(i - 1 )
UpperCamelCase_: Optional[int] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ):
break
UpperCamelCase_: Optional[int] = temp_parameter_vector
print(('Number of iterations:', j) )
def snake_case () -> int:
for i in range(len(UpperCAmelCase__ ) ):
print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 57 | 0 |
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
UpperCamelCase = logging.get_logger(__name__)
def __magic_name__ ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> str:
return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE )
@dataclass
class lowerCAmelCase_ :
_UpperCamelCase : List[str] = list_field(
default=[] , metadata={
"help": (
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
" of all available models"
)
} , )
_UpperCamelCase : List[int] = list_field(
default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} )
_UpperCamelCase : List[int] = list_field(
default=[8, 32, 128, 512] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Use FP16 to accelerate inference."} )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Benchmark training of model"} )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Verbose memory tracing"} )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
} , )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Trace memory line by line"} )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Save result to a CSV file"} )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Save all print statements in a log file"} )
_UpperCamelCase : bool = field(default=__snake_case , metadata={"help": "Whether to print environment information"} )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={
"help": (
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
" for debugging / testing and on TPU."
)
} , )
_UpperCamelCase : str = field(
default=F"""inference_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv."} , )
_UpperCamelCase : str = field(
default=F"""inference_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv."} , )
_UpperCamelCase : str = field(
default=F"""train_time_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving time results to csv for training."} , )
_UpperCamelCase : str = field(
default=F"""train_memory_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving memory results to csv for training."} , )
_UpperCamelCase : str = field(
default=F"""env_info_{round(time() )}.csv""" , metadata={"help": "CSV filename used if saving environment information."} , )
_UpperCamelCase : str = field(
default=F"""log_{round(time() )}.csv""" , metadata={"help": "Log filename used if print statements are saved in log."} , )
_UpperCamelCase : int = field(default=3 , metadata={"help": "Times an experiment will be run."} )
_UpperCamelCase : bool = field(
default=__snake_case , metadata={
"help": (
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
" model weights."
)
} , )
def __a ( self ):
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
' are deprecated in general and it is advised to use external Benchmarking libraries '
' to benchmark Transformer models.' , _lowerCAmelCase , )
def __a ( self ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def __a ( self ):
if len(self.models ) <= 0:
raise ValueError(
'Please make sure you provide at least one model name / model identifier, *e.g.* `--models'
' bert-base-cased` or `args.models = [\'bert-base-cased\'].' )
return self.models
@property
def __a ( self ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('Multiprocessing is currently not possible on TPU.' )
return False
else:
return True
| 66 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 57 | 0 |
def SCREAMING_SNAKE_CASE__ ( snake_case__ :list ) -> bool:
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('Input series is not valid, valid series - [2, 4, 6]' )
if len(snake_case__ ) == 0:
raise ValueError('Input list must be a non empty list' )
if len(snake_case__ ) == 1:
return True
_lowercase = series[1] - series[0]
for index in range(len(snake_case__ ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def SCREAMING_SNAKE_CASE__ ( snake_case__ :list ) -> float:
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('Input series is not valid, valid series - [2, 4, 6]' )
if len(snake_case__ ) == 0:
raise ValueError('Input list must be a non empty list' )
_lowercase = 0
for val in series:
answer += val
return answer / len(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 67 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _lowerCAmelCase:
"""simple docstring"""
a : int =PegasusConfig
a : List[str] ={}
a : Optional[int] ='''gelu'''
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ):
UpperCamelCase_: List[Any] = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = seq_length
UpperCamelCase_: List[str] = is_training
UpperCamelCase_: Any = use_labels
UpperCamelCase_: Optional[Any] = vocab_size
UpperCamelCase_: Tuple = hidden_size
UpperCamelCase_: List[Any] = num_hidden_layers
UpperCamelCase_: Any = num_attention_heads
UpperCamelCase_: Optional[Any] = intermediate_size
UpperCamelCase_: Optional[int] = hidden_dropout_prob
UpperCamelCase_: int = attention_probs_dropout_prob
UpperCamelCase_: Union[str, Any] = max_position_embeddings
UpperCamelCase_: Dict = eos_token_id
UpperCamelCase_: Union[str, Any] = pad_token_id
UpperCamelCase_: List[Any] = bos_token_id
def _a ( self ):
UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return config, inputs_dict
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder()
UpperCamelCase_: Optional[int] = inputs_dict['input_ids']
UpperCamelCase_: Optional[int] = input_ids[:1, :]
UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_: Optional[int] = inputs_dict['head_mask']
UpperCamelCase_: Optional[int] = 1
# first forward pass
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str:
if attention_mask is None:
UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_: int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else ()
a : Tuple =(
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
a : List[str] =True
a : List[str] =False
a : Tuple =False
def _a ( self ):
UpperCamelCase_: Dict = TFPegasusModelTester(self )
UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase )
def _a ( self ):
self.config_tester.run_common_tests()
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
a : Dict =[
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
a : int =[
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
a : Union[str, Any] ='''google/pegasus-xsum'''
@cached_property
def _a ( self ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self ):
UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase )
assert self.expected_text == generated_words
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' )
UpperCamelCase_: Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , )
UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )
return generated_words
@slow
def _a ( self ):
self._assert_generated_batch_equal_expected()
| 57 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def lowercase__ ( A_: int , A_: int , A_: int , A_: int , A_: int , A_: int ) -> np.ndarray:
"""simple docstring"""
if (ksize % 2) == 0:
__UpperCAmelCase =ksize + 1
__UpperCAmelCase =np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(A_ ):
for x in range(A_ ):
# distance from center
__UpperCAmelCase =x - ksize // 2
__UpperCAmelCase =y - ksize // 2
# degree to radiant
__UpperCAmelCase =theta / 180 * np.pi
__UpperCAmelCase =np.cos(_theta )
__UpperCAmelCase =np.sin(_theta )
# get kernel x
__UpperCAmelCase =cos_theta * px + sin_theta * py
# get kernel y
__UpperCAmelCase =-sin_theta * px + cos_theta * py
# fill kernel
__UpperCAmelCase =np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__A = imread("../image_data/lena.jpg")
# turn image in gray scale value
__A = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__A = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 1_20, 1_50]:
__A = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__A = out / out.max() * 2_55
__A = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 68 |
import unittest
import numpy as np
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ )
if shape_a[0] != shape_b[0]:
UpperCamelCase_: Any = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCAmelCase__ )
if shape_b[1] != shape_c[1]:
UpperCamelCase_: int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCAmelCase__ )
UpperCamelCase_: Dict = pseudo_inv
if a_inv is None:
try:
UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] )
UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase )
self.assertAlmostEqual(_lowerCamelCase , det_a * det_s )
def _a ( self ):
UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 57 | 0 |
'''simple docstring'''
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ):
@register_to_config
def __init__( self : Dict , a_ : int = 128 , a_ : int = 256 , a_ : float = 2000.0 , a_ : int = 768 , a_ : int = 12 , a_ : int = 12 , a_ : int = 64 , a_ : int = 2_048 , a_ : float = 0.1 , ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Sequential(
nn.Linear(a_ , d_model * 4 , bias=a_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=a_ ) , nn.SiLU() , )
__snake_case = nn.Embedding(a_ , a_ )
__snake_case = False
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Dropout(p=a_ )
__snake_case = nn.ModuleList()
for lyr_num in range(a_ ):
# FiLM conditional T5 decoder
__snake_case = DecoderLayer(d_model=a_ , d_kv=a_ , num_heads=a_ , d_ff=a_ , dropout_rate=a_ )
self.decoders.append(a_ )
__snake_case = TaLayerNorm(a_ )
__snake_case = nn.Dropout(p=a_ )
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
def A ( self : Any , a_ : Tuple , a_ : Optional[Any] ):
"""simple docstring"""
__snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def A ( self : int , a_ : Any , a_ : Optional[int] , a_ : Any ):
"""simple docstring"""
__snake_case , __snake_case , __snake_case = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
__snake_case = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
__snake_case = self.conditioning_emb(a_ ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
__snake_case = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
__snake_case = torch.broadcast_to(
torch.arange(a_ , device=decoder_input_tokens.device ) , (batch, seq_length) , )
__snake_case = self.position_encoding(a_ )
__snake_case = self.continuous_inputs_projection(a_ )
inputs += position_encodings
__snake_case = self.dropout(a_ )
# decoder: No padding present.
__snake_case = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
__snake_case = [(x, self.encoder_decoder_mask(a_ , a_ )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
__snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
__snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
__snake_case = lyr(
a_ , conditioning_emb=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , )[0]
__snake_case = self.decoder_norm(a_ )
__snake_case = self.post_dropout(a_ )
__snake_case = self.spec_out(a_ )
return spec_out
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Dict , a_ : Optional[int] , a_ : Dict , a_ : List[str] , a_ : Any , a_ : Tuple , a_ : Optional[int]=1e-6 ):
"""simple docstring"""
super().__init__()
__snake_case = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=a_ , d_kv=a_ , num_heads=a_ , dropout_rate=a_ ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=a_ , d_kv=a_ , num_heads=a_ , dropout_rate=a_ , layer_norm_epsilon=a_ , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=a_ , d_ff=a_ , dropout_rate=a_ , layer_norm_epsilon=a_ ) )
def A ( self : Any , a_ : List[str] , a_ : Tuple=None , a_ : Any=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Dict=None , ):
"""simple docstring"""
__snake_case = self.layer[0](
a_ , conditioning_emb=a_ , attention_mask=a_ , )
if encoder_hidden_states is not None:
__snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to(
encoder_hidden_states.dtype )
__snake_case = self.layer[1](
a_ , key_value_states=a_ , attention_mask=a_ , )
# Apply Film Conditional Feed Forward layer
__snake_case = self.layer[-1](a_ , a_ )
return (hidden_states,)
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Union[str, Any] , a_ : Optional[Any] , a_ : Optional[Any] , a_ : List[Any] , a_ : Tuple ):
"""simple docstring"""
super().__init__()
__snake_case = TaLayerNorm(a_ )
__snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=a_ )
__snake_case = Attention(query_dim=a_ , heads=a_ , dim_head=a_ , out_bias=a_ , scale_qk=a_ )
__snake_case = nn.Dropout(a_ )
def A ( self : Optional[Any] , a_ : str , a_ : Union[str, Any]=None , a_ : Tuple=None , ):
"""simple docstring"""
__snake_case = self.layer_norm(a_ )
if conditioning_emb is not None:
__snake_case = self.FiLMLayer(a_ , a_ )
# Self-attention block
__snake_case = self.attention(a_ )
__snake_case = hidden_states + self.dropout(a_ )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Any , a_ : List[str] , a_ : List[str] , a_ : List[str] , a_ : Optional[Any] , a_ : int ):
"""simple docstring"""
super().__init__()
__snake_case = Attention(query_dim=a_ , heads=a_ , dim_head=a_ , out_bias=a_ , scale_qk=a_ )
__snake_case = TaLayerNorm(a_ , eps=a_ )
__snake_case = nn.Dropout(a_ )
def A ( self : int , a_ : Any , a_ : Dict=None , a_ : Optional[Any]=None , ):
"""simple docstring"""
__snake_case = self.layer_norm(a_ )
__snake_case = self.attention(
a_ , encoder_hidden_states=a_ , attention_mask=attention_mask.squeeze(1 ) , )
__snake_case = hidden_states + self.dropout(a_ )
return layer_output
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Union[str, Any] , a_ : Optional[int] , a_ : Tuple , a_ : Optional[int] , a_ : List[str] ):
"""simple docstring"""
super().__init__()
__snake_case = TaDenseGatedActDense(d_model=a_ , d_ff=a_ , dropout_rate=a_ )
__snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=a_ )
__snake_case = TaLayerNorm(a_ , eps=a_ )
__snake_case = nn.Dropout(a_ )
def A ( self : Optional[int] , a_ : Union[str, Any] , a_ : Union[str, Any]=None ):
"""simple docstring"""
__snake_case = self.layer_norm(a_ )
if conditioning_emb is not None:
__snake_case = self.film(a_ , a_ )
__snake_case = self.DenseReluDense(a_ )
__snake_case = hidden_states + self.dropout(a_ )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : Optional[int] , a_ : str , a_ : Any , a_ : Dict ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Linear(a_ , a_ , bias=a_ )
__snake_case = nn.Dropout(a_ )
__snake_case = NewGELUActivation()
def A ( self : Any , a_ : str ):
"""simple docstring"""
__snake_case = self.act(self.wi_a(a_ ) )
__snake_case = self.wi_a(a_ )
__snake_case = hidden_gelu * hidden_linear
__snake_case = self.dropout(a_ )
__snake_case = self.wo(a_ )
return hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : List[str] , a_ : Optional[Any] , a_ : Optional[Any]=1e-6 ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Parameter(torch.ones(a_ ) )
__snake_case = eps
def A ( self : List[str] , a_ : Any ):
"""simple docstring"""
__snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=a_ )
__snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
__snake_case = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def A ( self : List[str] , a_ : torch.Tensor ):
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(a_ , 3.0 )) ))
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
def __init__( self : int , a_ : Union[str, Any] , a_ : List[str] ):
"""simple docstring"""
super().__init__()
__snake_case = nn.Linear(a_ , out_features * 2 , bias=a_ )
def A ( self : Optional[int] , a_ : Union[str, Any] , a_ : Optional[int] ):
"""simple docstring"""
__snake_case = self.scale_bias(a_ )
__snake_case , __snake_case = torch.chunk(a_ , 2 , -1 )
__snake_case = x * (1 + scale) + shift
return x
| 69 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
# Load configuration defined in the metadata file
with open(UpperCAmelCase__ ) as metadata_file:
UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ )
UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ )
# add an entry for [MASK2]
UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ )
UpperCamelCase_: str = 'MLukeTokenizer'
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
# Initialize the embeddings of the special tokens
UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase_: Union[str, Any] = state_dict[bias_name]
UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.'''
UpperCamelCase_: str = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias']
UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase_: Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase_: Union[str, Any] = state_dict[key]
else:
UpperCamelCase_: Dict = state_dict[key]
UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(UpperCAmelCase__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' )
UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase_: Optional[int] = (0, 9)
UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: str = model(**UpperCAmelCase__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
UpperCamelCase_: int = 'Tokyo is the capital of <mask>.'
UpperCamelCase_: Dict = (2_4, 3_0)
UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: Dict = model(**UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist()
UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase_: Optional[Any] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) )
model.save_pretrained(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> int:
UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )]
UpperCamelCase_: Tuple = {}
for entry in data:
UpperCamelCase_: Optional[int] = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase_: Union[str, Any] = entity_id
break
UpperCamelCase_: Dict = F'''{language}:{entity_name}'''
UpperCamelCase_: Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
A_ : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 57 | 0 |
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _SCREAMING_SNAKE_CASE ( lowercase : int ):
'''simple docstring'''
lowerCamelCase_ = VideoMAEConfig()
set_architecture_configs(lowercase , lowercase )
if "finetuned" not in model_name:
lowerCamelCase_ = False
if "finetuned" in model_name:
lowerCamelCase_ = 'huggingface/label-files'
if "kinetics" in model_name:
lowerCamelCase_ = 4_00
lowerCamelCase_ = 'kinetics400-id2label.json'
elif "ssv2" in model_name:
lowerCamelCase_ = 1_74
lowerCamelCase_ = 'something-something-v2-id2label.json'
else:
raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' )
lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) )
lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()}
lowerCamelCase_ = idalabel
lowerCamelCase_ = {v: k for k, v in idalabel.items()}
return config
def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Optional[Any] ):
'''simple docstring'''
if "small" in model_name:
lowerCamelCase_ = 3_84
lowerCamelCase_ = 15_36
lowerCamelCase_ = 12
lowerCamelCase_ = 16
lowerCamelCase_ = 12
lowerCamelCase_ = 3
lowerCamelCase_ = 1_92
lowerCamelCase_ = 7_68
elif "large" in model_name:
lowerCamelCase_ = 10_24
lowerCamelCase_ = 40_96
lowerCamelCase_ = 24
lowerCamelCase_ = 16
lowerCamelCase_ = 12
lowerCamelCase_ = 8
lowerCamelCase_ = 5_12
lowerCamelCase_ = 20_48
elif "huge" in model_name:
lowerCamelCase_ = 12_80
lowerCamelCase_ = 51_20
lowerCamelCase_ = 32
lowerCamelCase_ = 16
lowerCamelCase_ = 12
lowerCamelCase_ = 8
lowerCamelCase_ = 6_40
lowerCamelCase_ = 25_60
elif "base" not in model_name:
raise ValueError('Model name should include either "small", "base", "large", or "huge"' )
def _SCREAMING_SNAKE_CASE ( lowercase : int ):
'''simple docstring'''
if "encoder." in name:
lowerCamelCase_ = name.replace('encoder.' , '' )
if "cls_token" in name:
lowerCamelCase_ = name.replace('cls_token' , 'videomae.embeddings.cls_token' )
if "decoder_pos_embed" in name:
lowerCamelCase_ = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' )
if "pos_embed" in name and "decoder" not in name:
lowerCamelCase_ = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' )
if "patch_embed.proj" in name:
lowerCamelCase_ = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCamelCase_ = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' )
if "decoder.blocks" in name:
lowerCamelCase_ = name.replace('decoder.blocks' , 'decoder.decoder_layers' )
if "blocks" in name:
lowerCamelCase_ = name.replace('blocks' , 'videomae.encoder.layer' )
if "attn.proj" in name:
lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name and "bias" not in name:
lowerCamelCase_ = name.replace('attn' , 'attention.self' )
if "attn" in name:
lowerCamelCase_ = name.replace('attn' , 'attention.attention' )
if "norm1" in name:
lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' )
if "decoder_embed" in name:
lowerCamelCase_ = name.replace('decoder_embed' , 'decoder.decoder_embed' )
if "decoder_norm" in name:
lowerCamelCase_ = name.replace('decoder_norm' , 'decoder.decoder_norm' )
if "decoder_pred" in name:
lowerCamelCase_ = name.replace('decoder_pred' , 'decoder.decoder_pred' )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
lowerCamelCase_ = name.replace('norm.weight' , 'videomae.layernorm.weight' )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
lowerCamelCase_ = name.replace('norm.bias' , 'videomae.layernorm.bias' )
if "head" in name and "decoder" not in name:
lowerCamelCase_ = name.replace('head' , 'classifier' )
return name
def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : str ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCamelCase_ = orig_state_dict.pop(lowercase )
if key.startswith('encoder.' ):
lowerCamelCase_ = key.replace('encoder.' , '' )
if "qkv" in key:
lowerCamelCase_ = key.split('.' )
if key.startswith('decoder.blocks' ):
lowerCamelCase_ = config.decoder_hidden_size
lowerCamelCase_ = int(key_split[2] )
lowerCamelCase_ = 'decoder.decoder_layers.'
if "weight" in key:
lowerCamelCase_ = val[:dim, :]
lowerCamelCase_ = val[dim : dim * 2, :]
lowerCamelCase_ = val[-dim:, :]
else:
lowerCamelCase_ = config.hidden_size
lowerCamelCase_ = int(key_split[1] )
lowerCamelCase_ = 'videomae.encoder.layer.'
if "weight" in key:
lowerCamelCase_ = val[:dim, :]
lowerCamelCase_ = val[dim : dim * 2, :]
lowerCamelCase_ = val[-dim:, :]
else:
lowerCamelCase_ = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowerCamelCase_ = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
lowerCamelCase_ = np.load(lowercase )
return list(lowercase )
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : str ):
'''simple docstring'''
lowerCamelCase_ = get_videomae_config(lowercase )
if "finetuned" in model_name:
lowerCamelCase_ = VideoMAEForVideoClassification(lowercase )
else:
lowerCamelCase_ = VideoMAEForPreTraining(lowercase )
# download original checkpoint, hosted on Google Drive
lowerCamelCase_ = 'pytorch_model.bin'
gdown.cached_download(lowercase , lowercase , quiet=lowercase )
lowerCamelCase_ = torch.load(lowercase , map_location='cpu' )
if "model" in files:
lowerCamelCase_ = files['model']
else:
lowerCamelCase_ = files['module']
lowerCamelCase_ = convert_state_dict(lowercase , lowercase )
model.load_state_dict(lowercase )
model.eval()
# verify model on basic input
lowerCamelCase_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
lowerCamelCase_ = prepare_video()
lowerCamelCase_ = image_processor(lowercase , return_tensors='pt' )
if "finetuned" not in model_name:
lowerCamelCase_ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' )
lowerCamelCase_ = torch.load(lowercase )
lowerCamelCase_ = model(**lowercase )
lowerCamelCase_ = outputs.logits
lowerCamelCase_ = [
'videomae-small-finetuned-kinetics',
'videomae-small-finetuned-ssv2',
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
'videomae-base-short',
'videomae-base-short-finetuned-kinetics',
'videomae-base',
'videomae-base-finetuned-kinetics',
'videomae-large',
'videomae-large-finetuned-kinetics',
'videomae-huge-finetuned-kinetics',
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
'videomae-base-short-ssv2',
'videomae-base-short-finetuned-ssv2',
'videomae-base-ssv2',
'videomae-base-finetuned-ssv2',
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
lowerCamelCase_ = torch.Size([1, 4_00] )
lowerCamelCase_ = torch.tensor([-0.9291, -0.4061, -0.9307] )
elif model_name == "videomae-small-finetuned-ssv2":
lowerCamelCase_ = torch.Size([1, 1_74] )
lowerCamelCase_ = torch.tensor([0.2671, -0.4689, -0.8235] )
elif model_name == "videomae-base":
lowerCamelCase_ = torch.Size([1, 14_08, 15_36] )
lowerCamelCase_ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] )
elif model_name == "videomae-base-short":
lowerCamelCase_ = torch.Size([1, 14_08, 15_36] )
lowerCamelCase_ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] )
# we verified the loss both for normalized and unnormalized targets for this one
lowerCamelCase_ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] )
elif model_name == "videomae-large":
lowerCamelCase_ = torch.Size([1, 14_08, 15_36] )
lowerCamelCase_ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] )
elif model_name == "videomae-large-finetuned-kinetics":
lowerCamelCase_ = torch.Size([1, 4_00] )
lowerCamelCase_ = torch.tensor([0.0771, 0.0011, -0.3625] )
elif model_name == "videomae-huge-finetuned-kinetics":
lowerCamelCase_ = torch.Size([1, 4_00] )
lowerCamelCase_ = torch.tensor([0.2433, 0.1632, -0.4894] )
elif model_name == "videomae-base-short-finetuned-kinetics":
lowerCamelCase_ = torch.Size([1, 4_00] )
lowerCamelCase_ = torch.tensor([0.6588, 0.0990, -0.2493] )
elif model_name == "videomae-base-finetuned-kinetics":
lowerCamelCase_ = torch.Size([1, 4_00] )
lowerCamelCase_ = torch.tensor([0.3669, -0.0688, -0.2421] )
elif model_name == "videomae-base-short-ssv2":
lowerCamelCase_ = torch.Size([1, 14_08, 15_36] )
lowerCamelCase_ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
lowerCamelCase_ = torch.Size([1, 1_74] )
lowerCamelCase_ = torch.tensor([-0.0537, -0.1539, -0.3266] )
elif model_name == "videomae-base-ssv2":
lowerCamelCase_ = torch.Size([1, 14_08, 15_36] )
lowerCamelCase_ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] )
elif model_name == "videomae-base-finetuned-ssv2":
lowerCamelCase_ = torch.Size([1, 1_74] )
lowerCamelCase_ = torch.tensor([0.1961, -0.8337, -0.6389] )
else:
raise ValueError(f"""Model name not supported. Should be one of {model_names}""" )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 )
else:
print('Logits:' , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 )
print('Logits ok!' )
# verify loss, if applicable
if model_name == "videomae-base-short":
lowerCamelCase_ = outputs.loss
assert torch.allclose(lowercase , lowercase , atol=1e-4 )
print('Loss ok!' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
if push_to_hub:
print('Pushing to the hub...' )
model.push_to_hub(lowercase , organization='nielsr' )
if __name__ == "__main__":
lowerCamelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4",
type=str,
help=(
"URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"
" download link."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="/Users/nielsrogge/Documents/VideoMAE/Test",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.")
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCamelCase : List[str] = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 70 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[Any] = logging.get_logger(__name__)
A_ : Optional[Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Dict ='''distilbert'''
a : List[str] ={
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ):
UpperCamelCase_: Tuple = vocab_size
UpperCamelCase_: str = max_position_embeddings
UpperCamelCase_: Optional[int] = sinusoidal_pos_embds
UpperCamelCase_: Union[str, Any] = n_layers
UpperCamelCase_: Optional[int] = n_heads
UpperCamelCase_: int = dim
UpperCamelCase_: Tuple = hidden_dim
UpperCamelCase_: Any = dropout
UpperCamelCase_: Optional[Any] = attention_dropout
UpperCamelCase_: List[str] = activation
UpperCamelCase_: Optional[Any] = initializer_range
UpperCamelCase_: Optional[Any] = qa_dropout
UpperCamelCase_: List[str] = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
@property
def _a ( self ):
if self.task == "multiple-choice":
UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 57 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class _snake_case (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase):
__A : Any =AltDiffusionPipeline
__A : List[str] =TEXT_TO_IMAGE_PARAMS
__A : Optional[int] =TEXT_TO_IMAGE_BATCH_PARAMS
__A : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase__ ( self ):
torch.manual_seed(0 )
UpperCAmelCase_ : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,)
UpperCAmelCase_ : int = DDIMScheduler(
beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,)
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,)
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCAmelCase_ : str = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_02 ,)
UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_snake_case )
UpperCAmelCase_ : Optional[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" )
UpperCAmelCase_ : List[Any] = 77
UpperCAmelCase_ : Optional[Any] = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ):
if str(_snake_case ).startswith("mps" ):
UpperCAmelCase_ : int = torch.manual_seed(_snake_case )
else:
UpperCAmelCase_ : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
UpperCAmelCase_ : int = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCamelCase__ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : List[Any] = self.get_dummy_components()
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = RobertaSeriesConfig(
hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=50_02 ,)
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase_ : Any = RobertaSeriesModelWithTransformation(_snake_case )
UpperCAmelCase_ : int = text_encoder
UpperCAmelCase_ : int = AltDiffusionPipeline(**_snake_case )
UpperCAmelCase_ : Dict = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
UpperCAmelCase_ : Any = self.get_dummy_inputs(_snake_case )
UpperCAmelCase_ : Any = "A photo of an astronaut"
UpperCAmelCase_ : Tuple = alt_pipe(**_snake_case )
UpperCAmelCase_ : Union[str, Any] = output.images
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : int = np.array(
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : int = self.get_dummy_components()
UpperCAmelCase_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=_snake_case )
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = RobertaSeriesConfig(
hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=50_02 ,)
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase_ : Union[str, Any] = RobertaSeriesModelWithTransformation(_snake_case )
UpperCAmelCase_ : Tuple = text_encoder
UpperCAmelCase_ : List[str] = AltDiffusionPipeline(**_snake_case )
UpperCAmelCase_ : int = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
UpperCAmelCase_ : Dict = self.get_dummy_inputs(_snake_case )
UpperCAmelCase_ : List[Any] = alt_pipe(**_snake_case )
UpperCAmelCase_ : Optional[Any] = output.images
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Optional[int] = np.array(
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _snake_case (unittest.TestCase):
def UpperCamelCase__ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Optional[Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" ,safety_checker=_snake_case )
UpperCAmelCase_ : str = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
UpperCAmelCase_ : str = "A painting of a squirrel eating a burger"
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = alt_pipe([prompt] ,generator=_snake_case ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="np" )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase__ ( self ):
UpperCAmelCase_ : List[str] = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" ,subfolder="scheduler" )
UpperCAmelCase_ : Union[str, Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" ,scheduler=_snake_case ,safety_checker=_snake_case )
UpperCAmelCase_ : int = alt_pipe.to(_snake_case )
alt_pipe.set_progress_bar_config(disable=_snake_case )
UpperCAmelCase_ : List[Any] = "A painting of a squirrel eating a burger"
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Dict = alt_pipe([prompt] ,generator=_snake_case ,num_inference_steps=2 ,output_type="numpy" )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 71 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : int = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_UpperCAmelCase : Dict = logging.get_logger(__name__)
_UpperCAmelCase : List[Any] = {'''vocab_file''': '''spiece.model'''}
_UpperCAmelCase : List[Any] = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
_UpperCAmelCase : Any = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
_UpperCAmelCase : Any = 0
_UpperCAmelCase : List[Any] = 1
_UpperCAmelCase : str = 2
_UpperCAmelCase : Dict = 3
_UpperCAmelCase : Optional[int] = 4
class __magic_name__ ( __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = 'left'
def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=False , snake_case_="<s>" , snake_case_="</s>" , snake_case_="<unk>" , snake_case_="<sep>" , snake_case_="<pad>" , snake_case_="<cls>" , snake_case_="<mask>" , snake_case_=["<eop>", "<eod>"] , snake_case_ = None , **snake_case_ , ):
# Mask token behave like a normal word, i.e. include the space before it
lowercase =AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token
lowercase ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , )
lowercase =3
lowercase =do_lower_case
lowercase =remove_space
lowercase =keep_accents
lowercase =vocab_file
lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case_ )
@property
def _A( self ):
return len(self.sp_model )
def _A( self ):
lowercase ={self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
lowercase =self.__dict__.copy()
lowercase =None
return state
def __setstate__( self , snake_case_ ):
lowercase =d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowercase ={}
lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _A( self , snake_case_ ):
if self.remove_space:
lowercase =''' '''.join(inputs.strip().split() )
else:
lowercase =inputs
lowercase =outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
lowercase =unicodedata.normalize('''NFKD''' , snake_case_ )
lowercase =''''''.join([c for c in outputs if not unicodedata.combining(snake_case_ )] )
if self.do_lower_case:
lowercase =outputs.lower()
return outputs
def _A( self , snake_case_ ):
lowercase =self.preprocess_text(snake_case_ )
lowercase =self.sp_model.encode(snake_case_ , out_type=snake_case_ )
lowercase =[]
for piece in pieces:
if len(snake_case_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowercase =self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowercase =cur_pieces[1:]
else:
lowercase =cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case_ )
else:
new_pieces.append(snake_case_ )
return new_pieces
def _A( self , snake_case_ ):
return self.sp_model.PieceToId(snake_case_ )
def _A( self , snake_case_ ):
return self.sp_model.IdToPiece(snake_case_ )
def _A( self , snake_case_ ):
lowercase =''''''.join(snake_case_ ).replace(snake_case_ , ''' ''' ).strip()
return out_string
def _A( self , snake_case_ , snake_case_ = False , snake_case_ = None , snake_case_ = True , **snake_case_ , ):
lowercase =kwargs.pop('''use_source_tokenizer''' , snake_case_ )
lowercase =self.convert_ids_to_tokens(snake_case_ , skip_special_tokens=snake_case_ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowercase =[]
lowercase =[]
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case_ ) )
lowercase =[]
sub_texts.append(snake_case_ )
else:
current_sub_text.append(snake_case_ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case_ ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
lowercase =''''''.join(snake_case_ )
lowercase =(
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowercase =self.clean_up_tokenization(snake_case_ )
return clean_text
else:
return text
def _A( self , snake_case_ , snake_case_ = None ):
lowercase =[self.sep_token_id]
lowercase =[self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _A( self , snake_case_ , snake_case_ = None , snake_case_ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ )
if token_ids_a is not None:
return ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1, 1]
return ([0] * len(snake_case_ )) + [1, 1]
def _A( self , snake_case_ , snake_case_ = None ):
lowercase =[self.sep_token_id]
lowercase =[2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _A( self , snake_case_ , snake_case_ = None ):
if not os.path.isdir(snake_case_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowercase =os.path.join(
snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case_ )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case_ , '''wb''' ) as fi:
lowercase =self.sp_model.serialized_model_proto()
fi.write(snake_case_ )
return (out_vocab_file,)
| 72 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : List[str] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Union[str, Any] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
a_ : str = logging.getLogger(__name__)
a_ : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
a_ : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _snake_case :
_lowercase : Optional[str] = field(
default=A__ , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A__ )} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
_lowercase : bool = field(
default=A__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
_lowercase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
_lowercase : bool = field(
default=A__ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'--config_overrides can\'t be used in combination with --config_name or --model_name_or_path')
@dataclass
class _snake_case :
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
_lowercase : Optional[str] = field(default=A__ , metadata={'''help''': '''The input training data file (a text file).'''} )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , )
_lowercase : Optional[str] = field(
default=A__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , )
_lowercase : bool = field(
default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
_lowercase : Optional[int] = field(
default=5 , metadata={
'''help''': '''The percentage of the train set used as validation set in case there\'s no validation split'''
} , )
_lowercase : Optional[int] = field(
default=A__ , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated. Default to the max input length of the model.'''
)
} , )
_lowercase : Optional[int] = field(
default=A__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
_lowercase : float = field(
default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} )
_lowercase : bool = field(
default=A__ , metadata={
'''help''': (
'''Whether to pad all samples to `max_seq_length`. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch.'''
)
} , )
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
if self.train_file is not None:
SCREAMING_SNAKE_CASE = self.train_file.split('.')[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
SCREAMING_SNAKE_CASE = self.validation_file.split('.')[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
with open(_UpperCAmelCase , 'r' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = [json.loads(_UpperCAmelCase) for line in f.read().splitlines() if (len(_UpperCAmelCase) > 0 and not line.isspace())]
assert len(_UpperCAmelCase) == len(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {c: dataset[c] for c in dataset.column_names}
SCREAMING_SNAKE_CASE = refs
return Dataset.from_dict(_UpperCAmelCase)
def lowerCamelCase__ ():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith('.json'):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.')
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.')
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''')
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , _UpperCAmelCase)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name)
if "validation" not in datasets.keys():
SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''train[:{data_args.validation_split_percentage}%]''' , )
SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''train[{data_args.validation_split_percentage}%:]''' , )
else:
SCREAMING_SNAKE_CASE = {}
if data_args.train_file is not None:
SCREAMING_SNAKE_CASE = data_args.train_file
if data_args.validation_file is not None:
SCREAMING_SNAKE_CASE = data_args.validation_file
SCREAMING_SNAKE_CASE = data_args.train_file.split('.')[-1]
if extension == "txt":
SCREAMING_SNAKE_CASE = 'text'
SCREAMING_SNAKE_CASE = load_dataset(_UpperCAmelCase , data_files=_UpperCAmelCase)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , **_UpperCAmelCase)
elif model_args.model_name_or_path:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase)
else:
SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.')
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''')
config.update_from_string(model_args.config_overrides)
logger.info(F'''New config: {config}''')
SCREAMING_SNAKE_CASE = {
'cache_dir': model_args.cache_dir,
'use_fast': model_args.use_fast_tokenizer,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_UpperCAmelCase)
elif model_args.model_name_or_path:
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_UpperCAmelCase)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.')
if model_args.model_name_or_path:
SCREAMING_SNAKE_CASE = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch')
SCREAMING_SNAKE_CASE = AutoModelForMaskedLM.from_config(_UpperCAmelCase)
model.resize_token_embeddings(len(_UpperCAmelCase))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
SCREAMING_SNAKE_CASE = datasets['train'].column_names
else:
SCREAMING_SNAKE_CASE = datasets['validation'].column_names
SCREAMING_SNAKE_CASE = 'text' if 'text' in column_names else column_names[0]
SCREAMING_SNAKE_CASE = 'max_length' if data_args.pad_to_max_length else False
def tokenize_function(_UpperCAmelCase):
# Remove empty lines
SCREAMING_SNAKE_CASE = [line for line in examples['text'] if len(_UpperCAmelCase) > 0 and not line.isspace()]
return tokenizer(examples['text'] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=data_args.max_seq_length)
SCREAMING_SNAKE_CASE = datasets.map(
_UpperCAmelCase , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
SCREAMING_SNAKE_CASE = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file)
if data_args.validation_ref_file is not None:
SCREAMING_SNAKE_CASE = add_chinese_references(
tokenized_datasets['validation'] , data_args.validation_ref_file)
# If we have ref files, need to avoid it removed by trainer
SCREAMING_SNAKE_CASE = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
SCREAMING_SNAKE_CASE = False
# Data collator
# This one will take care of randomly masking the tokens.
SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask(tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability)
# Initialize our Trainer
SCREAMING_SNAKE_CASE = Trainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
SCREAMING_SNAKE_CASE = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
SCREAMING_SNAKE_CASE = model_args.model_name_or_path
else:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=_UpperCAmelCase)
trainer.save_model() # Saves the tokenizer too for easy upload
SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'train_results.txt')
if trainer.is_world_process_zero():
with open(_UpperCAmelCase , 'w') as writer:
logger.info('***** Train results *****')
for key, value in sorted(train_result.metrics.items()):
logger.info(F''' {key} = {value}''')
writer.write(F'''{key} = {value}\n''')
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json'))
# Evaluation
SCREAMING_SNAKE_CASE = {}
if training_args.do_eval:
logger.info('*** Evaluate ***')
SCREAMING_SNAKE_CASE = trainer.evaluate()
SCREAMING_SNAKE_CASE = math.exp(eval_output['eval_loss'])
SCREAMING_SNAKE_CASE = perplexity
SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt')
if trainer.is_world_process_zero():
with open(_UpperCAmelCase , 'w') as writer:
logger.info('***** Eval results *****')
for key, value in sorted(results.items()):
logger.info(F''' {key} = {value}''')
writer.write(F'''{key} = {value}\n''')
return results
def lowerCamelCase__ (_UpperCAmelCase):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 73 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[List[PIL.Image.Image], np.ndarray]
a : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 57 | 0 |
from __future__ import annotations
def a__ ( snake_case , snake_case , snake_case ):
"""simple docstring"""
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance < 0:
raise ValueError('''Resistance cannot be negative''' )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 74 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
A_ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case (UpperCAmelCase__ ) -> str:
UpperCamelCase_: Tuple = {}
with open(UpperCAmelCase__ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[Any] = line.strip()
if line:
UpperCamelCase_: List[Any] = line.split()
UpperCamelCase_: Optional[Any] = line_number
UpperCamelCase_: Any = words[0]
UpperCamelCase_: List[Any] = value
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
for attribute in key.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: Dict = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Optional[Any] = hf_pointer
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Tuple = shape_pointer.shape
# let's reduce dimension
UpperCamelCase_: int = value[0]
else:
UpperCamelCase_: Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase_: Optional[int] = value
elif weight_type == "weight_g":
UpperCamelCase_: Any = value
elif weight_type == "weight_v":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "bias":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = value
else:
UpperCamelCase_: int = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: List[Any] = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: List[Any] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Any = '.'.join([key, hf_param_name] )
else:
UpperCamelCase_: Union[str, Any] = key
UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0]
A_ : str = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any:
UpperCamelCase_: Optional[int] = False
for key, mapped_key in MAPPING.items():
UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase_: Optional[Any] = True
if "*" in mapped_key:
UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2]
UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ )
if "weight_g" in name:
UpperCamelCase_: Union[str, Any] = 'weight_g'
elif "weight_v" in name:
UpperCamelCase_: Dict = 'weight_v'
elif "bias" in name:
UpperCamelCase_: int = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_: str = 'weight'
else:
UpperCamelCase_: Union[str, Any] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return is_used
return is_used
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
UpperCamelCase_: List[Any] = []
UpperCamelCase_: Dict = fairseq_model.state_dict()
UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_: Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase_: List[Any] = True
else:
UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not is_used:
unused_weights.append(UpperCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1]
UpperCamelCase_: int = name.split('.' )
UpperCamelCase_: int = int(items[0] )
UpperCamelCase_: Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase_: int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase_: List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(UpperCAmelCase__ )
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict:
if config_path is not None:
UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ )
else:
UpperCamelCase_: List[str] = WavaVecaConfig()
if is_seq_class:
UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ )
UpperCamelCase_: Tuple = idalabel
UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
feature_extractor.save_pretrained(UpperCAmelCase__ )
elif is_finetuned:
if dict_path:
UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase_: Dict = target_dict.pad_index
UpperCamelCase_: Tuple = target_dict.bos_index
UpperCamelCase_: Optional[Any] = target_dict.eos_index
UpperCamelCase_: Union[str, Any] = len(target_dict.symbols )
UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) )
return
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
UpperCamelCase_: str = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase_: List[str] = 0
UpperCamelCase_: List[Any] = 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer(
UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , )
UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase_: Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ )
processor.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ )
else:
UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ )
if is_finetuned or is_seq_class:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ )
UpperCamelCase_: str = model[0].eval()
recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
A_ : int = parser.parse_args()
A_ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 57 | 0 |
'''simple docstring'''
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
UpperCamelCase__ = {
'''text_branch''': '''text_model''',
'''audio_branch''': '''audio_model.audio_encoder''',
'''attn''': '''attention.self''',
'''self.proj''': '''output.dense''',
'''attention.self_mask''': '''attn_mask''',
'''mlp.fc1''': '''intermediate.dense''',
'''mlp.fc2''': '''output.dense''',
'''norm1''': '''layernorm_before''',
'''norm2''': '''layernorm_after''',
'''bn0''': '''batch_norm''',
}
UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''')
def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
UpperCAmelCase__ , UpperCAmelCase__ : List[str] = create_model(
'''HTSAT-tiny''' , '''roberta''' , lowerCAmelCase__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=lowerCAmelCase__ , fusion_type='''aff_2d''' if enable_fusion else None , )
return model, model_cfg
def a__ ( lowerCAmelCase__ ) -> Optional[Any]:
UpperCAmelCase__ : int = {}
UpperCAmelCase__ : Any = R'''.*sequential.(\d+).*'''
UpperCAmelCase__ : Optional[int] = R'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
UpperCAmelCase__ : List[str] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ )
if re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
# replace sequential layers with list
UpperCAmelCase__ : Any = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 )
UpperCAmelCase__ : Any = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(lowerCAmelCase__ )//3}.linear.""" )
elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ):
UpperCAmelCase__ : Union[str, Any] = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
UpperCAmelCase__ : Dict = 1 if projecton_layer == 0 else 2
UpperCAmelCase__ : Union[str, Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" )
if "audio" and "qkv" in key:
# split qkv into query key and value
UpperCAmelCase__ : Dict = value
UpperCAmelCase__ : List[Any] = mixed_qkv.size(0 ) // 3
UpperCAmelCase__ : str = mixed_qkv[:qkv_dim]
UpperCAmelCase__ : Dict = mixed_qkv[qkv_dim : qkv_dim * 2]
UpperCAmelCase__ : Union[str, Any] = mixed_qkv[qkv_dim * 2 :]
UpperCAmelCase__ : str = query_layer
UpperCAmelCase__ : Tuple = key_layer
UpperCAmelCase__ : int = value_layer
else:
UpperCAmelCase__ : List[Any] = value
return model_state_dict
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[int]:
UpperCAmelCase__ , UpperCAmelCase__ : Dict = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ )
clap_model.eval()
UpperCAmelCase__ : Union[str, Any] = clap_model.state_dict()
UpperCAmelCase__ : Optional[int] = rename_state_dict(lowerCAmelCase__ )
UpperCAmelCase__ : Tuple = ClapConfig()
UpperCAmelCase__ : Tuple = enable_fusion
UpperCAmelCase__ : Union[str, Any] = ClapModel(lowerCAmelCase__ )
# ignore the spectrogram embedding layer
model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
transformers_config.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''')
UpperCamelCase__ = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 75 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils )
UpperCamelCase_: Dict = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
UpperCamelCase_: Tuple = test_metrics
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _a ( self ):
self.test_metrics.main()
@require_multi_gpu
def _a ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
| 57 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 76 |
import math
class _lowerCAmelCase:
"""simple docstring"""
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: int = 0.0
UpperCamelCase_: Tuple = 0.0
for i in range(len(_lowerCamelCase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
for i in range(len(_lowerCamelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def snake_case () -> None:
# Training Examples ( m, n )
UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCamelCase_: Dict = SelfOrganizingMap()
UpperCamelCase_: List[Any] = 3
UpperCamelCase_: List[str] = 0.5
for _ in range(UpperCAmelCase__ ):
for j in range(len(UpperCAmelCase__ ) ):
# training sample
UpperCamelCase_: int = training_samples[j]
# Compute the winning vector
UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# Update the winning vector
UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# classify test sample
UpperCamelCase_: Dict = [0, 0, 0, 1]
UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 57 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A = logging.get_logger(__name__)
A = {
"""distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""",
"""distilbert-base-uncased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json"""
),
"""distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""",
"""distilbert-base-cased-distilled-squad""": (
"""https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json"""
),
"""distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""",
"""distilbert-base-multilingual-cased""": (
"""https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json"""
),
"""distilbert-base-uncased-finetuned-sst-2-english""": (
"""https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json"""
),
}
class a__ ( __magic_name__ ):
lowercase_ = "distilbert"
lowercase_ = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self : Optional[int] , UpperCamelCase_ : str=30522 , UpperCamelCase_ : Tuple=512 , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : List[str]=6 , UpperCamelCase_ : str=12 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : Optional[Any]=4 * 768 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Tuple=0.2 , UpperCamelCase_ : Optional[int]=0 , **UpperCamelCase_ : List[str] , ):
"""simple docstring"""
__UpperCAmelCase : int = vocab_size
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : str = sinusoidal_pos_embds
__UpperCAmelCase : Union[str, Any] = n_layers
__UpperCAmelCase : str = n_heads
__UpperCAmelCase : Union[str, Any] = dim
__UpperCAmelCase : str = hidden_dim
__UpperCAmelCase : Optional[int] = dropout
__UpperCAmelCase : Optional[int] = attention_dropout
__UpperCAmelCase : Optional[int] = activation
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : int = qa_dropout
__UpperCAmelCase : Optional[Any] = seq_classif_dropout
super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_)
class a__ ( __magic_name__ ):
@property
def a_ ( self : Union[str, Any]):
"""simple docstring"""
if self.task == "multiple-choice":
__UpperCAmelCase : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
])
| 77 |
from collections import namedtuple
A_ : Tuple = namedtuple('from_to', 'from_ to')
A_ : int = {
'cubicmeter': from_to(1, 1),
'litre': from_to(0.001, 1000),
'kilolitre': from_to(1, 1),
'gallon': from_to(0.00454, 264.172),
'cubicyard': from_to(0.76455, 1.30795),
'cubicfoot': from_to(0.028, 35.3147),
'cup': from_to(0.000236588, 4226.75),
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE_: Optional[Any] =logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_: List[Any] ={
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class __A ( UpperCamelCase__ ):
a__ : List[Any] = """perceiver"""
def __init__(self : Optional[int] , __a : Tuple=256 , __a : Optional[Any]=1280 , __a : Optional[int]=768 , __a : Any=1 , __a : List[str]=26 , __a : Dict=8 , __a : List[Any]=8 , __a : Tuple=None , __a : List[str]=None , __a : Optional[int]="kv" , __a : Union[str, Any]=1 , __a : List[str]=1 , __a : List[Any]="gelu" , __a : List[str]=0.1 , __a : str=0.02 , __a : List[str]=1E-12 , __a : Optional[int]=True , __a : Tuple=262 , __a : Dict=2048 , __a : int=56 , __a : Optional[int]=[368, 496] , __a : Any=16 , __a : Optional[Any]=1920 , __a : Any=16 , __a : str=[1, 16, 224, 224] , **__a : Any , ):
super().__init__(**__a )
UpperCAmelCase_ = num_latents
UpperCAmelCase_ = d_latents
UpperCAmelCase_ = d_model
UpperCAmelCase_ = num_blocks
UpperCAmelCase_ = num_self_attends_per_block
UpperCAmelCase_ = num_self_attention_heads
UpperCAmelCase_ = num_cross_attention_heads
UpperCAmelCase_ = qk_channels
UpperCAmelCase_ = v_channels
UpperCAmelCase_ = cross_attention_shape_for_attention
UpperCAmelCase_ = self_attention_widening_factor
UpperCAmelCase_ = cross_attention_widening_factor
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = use_query_residual
# masked language modeling attributes
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
# image classification attributes
UpperCAmelCase_ = image_size
# flow attributes
UpperCAmelCase_ = train_size
# multimodal autoencoding attributes
UpperCAmelCase_ = num_frames
UpperCAmelCase_ = audio_samples_per_frame
UpperCAmelCase_ = samples_per_patch
UpperCAmelCase_ = output_shape
class __A ( UpperCamelCase__ ):
@property
def _lowercase (self : Dict ):
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
] )
@property
def _lowercase (self : Optional[Any] ):
return 1E-4
def _lowercase (self : Union[str, Any] , __a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __a : int = -1 , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , __a : int = 3 , __a : int = 40 , __a : int = 40 , ):
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(__a , __a ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ = compute_effective_axis_dimension(
__a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ = preprocessor.num_special_tokens_to_add(__a )
UpperCAmelCase_ = compute_effective_axis_dimension(
__a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ = [" ".join(["a"] ) * seq_length] * batch_size
UpperCAmelCase_ = dict(preprocessor(__a , return_tensors=__a ) )
UpperCAmelCase_ = inputs.pop("input_ids" )
return inputs
elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch )
UpperCAmelCase_ = self._generate_dummy_images(__a , __a , __a , __a )
UpperCAmelCase_ = dict(preprocessor(images=__a , return_tensors=__a ) )
UpperCAmelCase_ = inputs.pop("pixel_values" )
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
| 78 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
A_ : int = logging.get_logger(__name__)
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ):
warnings.warn(
'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use CLIPImageProcessor instead.' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 57 | 0 |
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class UpperCAmelCase_ :
__lowerCamelCase = BlenderbotConfig
__lowerCamelCase = {}
__lowerCamelCase = 'gelu'
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ):
UpperCAmelCase__ : List[str] = parent
UpperCAmelCase__ : str = batch_size
UpperCAmelCase__ : Optional[int] = seq_length
UpperCAmelCase__ : Dict = is_training
UpperCAmelCase__ : List[Any] = use_labels
UpperCAmelCase__ : List[Any] = vocab_size
UpperCAmelCase__ : Optional[int] = hidden_size
UpperCAmelCase__ : Optional[Any] = num_hidden_layers
UpperCAmelCase__ : int = num_attention_heads
UpperCAmelCase__ : Any = intermediate_size
UpperCAmelCase__ : Dict = hidden_dropout_prob
UpperCAmelCase__ : int = attention_probs_dropout_prob
UpperCAmelCase__ : Any = max_position_embeddings
UpperCAmelCase__ : Dict = eos_token_id
UpperCAmelCase__ : List[Any] = pad_token_id
UpperCAmelCase__ : Optional[int] = bos_token_id
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase__ : Any = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ : Dict = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase__ : Tuple = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return config, inputs_dict
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Union[str, Any] = TFBlenderbotModel(config=_lowerCAmelCase ).get_decoder()
UpperCAmelCase__ : Dict = inputs_dict["""input_ids"""]
UpperCAmelCase__ : Union[str, Any] = input_ids[:1, :]
UpperCAmelCase__ : Dict = inputs_dict["""attention_mask"""][:1, :]
UpperCAmelCase__ : List[Any] = inputs_dict["""head_mask"""]
UpperCAmelCase__ : Optional[Any] = 1
# first forward pass
UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase__ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase__ : str = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase__ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0]
UpperCAmelCase__ : Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase__ : Any = output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase__ : Any = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 )
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]:
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase__ : Tuple = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase__ : Tuple = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase__ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
__lowerCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase = True
__lowerCamelCase = False
__lowerCamelCase = False
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Union[str, Any] = TFBlenderbotModelTester(self )
UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCAmelCase )
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase )
@require_tokenizers
@require_tf
class UpperCAmelCase_ ( unittest.TestCase ):
__lowerCamelCase = ['My friends are cool but they eat too many carbs.']
__lowerCamelCase = 'facebook/blenderbot-400M-distill'
@cached_property
def __UpperCAmelCase ( self ):
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Optional[int] = self.tokenizer(self.src_text , return_tensors="""tf""" )
UpperCAmelCase__ : Union[str, Any] = self.model.generate(
model_inputs.input_ids , )
UpperCAmelCase__ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 79 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
A_ : Optional[int] = 256
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[str, Any] =['''melgan''']
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
super().__init__()
# From MELGAN
UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training.
UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples
UpperCamelCase_: Tuple = 1_2_8
self.register_modules(
notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , )
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range
if clip:
UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value )
# Scale to [0, 1].
UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ):
UpperCamelCase_ ,UpperCamelCase_: Dict = input_range
UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs
# Scale to [0, 1].
UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = input_tokens > 0
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder(
encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder(
encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = noise_time
if not torch.is_tensor(_lowerCamelCase ):
UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0:
UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
UpperCamelCase_: Any = self.decoder(
encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase )
return logits
@torch.no_grad()
def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(_lowerCamelCase )}.''' )
UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa )
UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
for i, encoder_input_tokens in enumerate(_lowerCamelCase ):
if i == 0:
UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
UpperCamelCase_: Any = ones
UpperCamelCase_: str = self.scale_features(
_lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
UpperCamelCase_: List[str] = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_lowerCamelCase )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCamelCase_: int = self.decode(
encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample
UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] )
UpperCamelCase_: Any = mel[:1]
UpperCamelCase_: List[str] = mel.cpu().float().numpy()
UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_lowerCamelCase , _lowerCamelCase )
logger.info('Generated segment' , _lowerCamelCase )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
UpperCamelCase_: int = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_lowerCamelCase )
| 57 | 0 |
def snake_case ( lowerCamelCase = 1_000 ):
'''simple docstring'''
__lowercase = -1
__lowercase = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
__lowercase = (n * n - 2 * a * n) // (2 * n - 2 * a)
__lowercase = n - a - b
if c * c == (a * a + b * b):
__lowercase = a * b * c
if candidate >= product:
__lowercase = candidate
return product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 80 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
A_ : Optional[Any] = ['names', 'prefix']
A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
A_ : List[Any] = ['encoding_errors', 'on_bad_lines']
A_ : Optional[Any] = ['date_format']
@dataclass
class _lowerCAmelCase( datasets.BuilderConfig ):
"""simple docstring"""
a : str =","
a : Optional[str] =None
a : Optional[Union[int, List[int], str]] ="infer"
a : Optional[List[str]] =None
a : Optional[List[str]] =None
a : Optional[Union[int, str, List[int], List[str]]] =None
a : Optional[Union[List[int], List[str]]] =None
a : Optional[str] =None
a : bool =True
a : Optional[Literal["c", "python", "pyarrow"]] =None
a : Dict[Union[int, str], Callable[[Any], Any]] =None
a : Optional[list] =None
a : Optional[list] =None
a : bool =False
a : Optional[Union[int, List[int]]] =None
a : Optional[int] =None
a : Optional[Union[str, List[str]]] =None
a : bool =True
a : bool =True
a : bool =False
a : bool =True
a : Optional[str] =None
a : str ="."
a : Optional[str] =None
a : str ='"'
a : int =0
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : bool =True
a : bool =True
a : int =0
a : bool =True
a : bool =False
a : Optional[str] =None
a : int =10000
a : Optional[datasets.Features] =None
a : Optional[str] ="strict"
a : Literal["error", "warn", "skip"] ="error"
a : Optional[str] =None
def _a ( self ):
if self.delimiter is not None:
UpperCamelCase_: Optional[Any] = self.delimiter
if self.column_names is not None:
UpperCamelCase_: int = self.column_names
@property
def _a ( self ):
UpperCamelCase_: Any = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase( datasets.ArrowBasedBuilder ):
"""simple docstring"""
a : Dict =CsvConfig
def _a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _lowerCamelCase ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_: List[Any] = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = [files]
UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_: Tuple = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = [files]
UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _a ( self , _lowerCamelCase ):
if self.config.features is not None:
UpperCamelCase_: List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase )
return pa_table
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCamelCase_: Dict = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise
| 57 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
_snake_case : List[str] = logging.get_logger(__name__)
_snake_case : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case : Any = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
_snake_case : str = {
"distilbert-base-uncased": 512,
"distilbert-base-uncased-distilled-squad": 512,
"distilbert-base-cased": 512,
"distilbert-base-cased-distilled-squad": 512,
"distilbert-base-german-cased": 512,
"distilbert-base-multilingual-cased": 512,
}
_snake_case : Dict = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class a (_lowerCAmelCase ):
"""simple docstring"""
__UpperCAmelCase : Dict = VOCAB_FILES_NAMES
__UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
__UpperCAmelCase : int = ["input_ids", "attention_mask"]
__UpperCAmelCase : Tuple = DistilBertTokenizer
def __init__( self : int , lowerCamelCase : Any=None , lowerCamelCase : int=None , lowerCamelCase : Tuple=True , lowerCamelCase : int="[UNK]" , lowerCamelCase : int="[SEP]" , lowerCamelCase : Optional[Any]="[PAD]" , lowerCamelCase : List[str]="[CLS]" , lowerCamelCase : List[Any]="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : str=None , **lowerCamelCase : int , ) -> List[Any]:
super().__init__(
lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , )
__snake_case : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , lowerCamelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , lowerCamelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , lowerCamelCase ) != tokenize_chinese_chars
):
__snake_case : List[Any] = getattr(lowerCamelCase , normalizer_state.pop("type" ) )
__snake_case : Union[str, Any] = do_lower_case
__snake_case : Union[str, Any] = strip_accents
__snake_case : List[str] = tokenize_chinese_chars
__snake_case : Optional[Any] = normalizer_class(**lowerCamelCase )
__snake_case : List[Any] = do_lower_case
def __snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Any=None ) -> Any:
__snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __snake_case ( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]:
__snake_case : Union[str, Any] = [self.sep_token_id]
__snake_case : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]:
__snake_case : str = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase )
return tuple(lowerCamelCase )
| 81 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : str = logging.get_logger(__name__)
A_ : Union[str, Any] = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Tuple ='''open-llama'''
def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
UpperCamelCase_: int = vocab_size
UpperCamelCase_: List[Any] = max_position_embeddings
UpperCamelCase_: Dict = hidden_size
UpperCamelCase_: Dict = intermediate_size
UpperCamelCase_: Union[str, Any] = num_hidden_layers
UpperCamelCase_: Dict = num_attention_heads
UpperCamelCase_: Union[str, Any] = hidden_act
UpperCamelCase_: Union[str, Any] = initializer_range
UpperCamelCase_: List[Any] = rms_norm_eps
UpperCamelCase_: Union[str, Any] = use_cache
UpperCamelCase_: Dict = kwargs.pop(
'use_memorry_efficient_attention' , _lowerCamelCase )
UpperCamelCase_: Union[str, Any] = hidden_dropout_prob
UpperCamelCase_: Any = attention_dropout_prob
UpperCamelCase_: int = use_stable_embedding
UpperCamelCase_: Tuple = shared_input_output_embedding
UpperCamelCase_: str = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , )
def _a ( self ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '
f'''got {self.rope_scaling}''' )
UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase )
UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 57 | 0 |
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCamelCase = logging.get_logger(__name__)
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
def constraint_to_multiple_of(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0 , lowerCAmelCase__=None ):
UpperCAmelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCAmelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCAmelCase_ = math.ceil(val / multiple ) * multiple
return x
UpperCAmelCase_ = (output_size, output_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else output_size
UpperCAmelCase_ , UpperCAmelCase_ = get_image_size(lowerCAmelCase__ )
UpperCAmelCase_ , UpperCAmelCase_ = output_size
# determine new height and width
UpperCAmelCase_ = output_height / input_height
UpperCAmelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCAmelCase_ = scale_width
else:
# fit height
UpperCAmelCase_ = scale_height
UpperCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase__ )
UpperCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase__ )
return (new_height, new_width)
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = ['''pixel_values''']
def __init__( self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : int , ) -> None:
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
UpperCAmelCase_ = size if size is not None else {"height": 384, "width": 384}
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
UpperCAmelCase_ = do_resize
UpperCAmelCase_ = size
UpperCAmelCase_ = keep_aspect_ratio
UpperCAmelCase_ = ensure_multiple_of
UpperCAmelCase_ = resample
UpperCAmelCase_ = do_rescale
UpperCAmelCase_ = rescale_factor
UpperCAmelCase_ = do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 1 , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" )
UpperCAmelCase_ = get_resize_output_image_size(
_UpperCAmelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def lowercase__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Any , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ = size if size is not None else self.size
UpperCAmelCase_ = get_size_dict(_UpperCAmelCase )
UpperCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCAmelCase_ = resample if resample is not None else self.resample
UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ = image_std if image_std is not None else self.image_std
UpperCAmelCase_ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase_ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase_ = {"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Tuple] = None ) -> int:
'''simple docstring'''
UpperCAmelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(_UpperCAmelCase ):
UpperCAmelCase_ = target_sizes.numpy()
UpperCAmelCase_ = []
for idx in range(len(_UpperCAmelCase ) ):
UpperCAmelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_UpperCAmelCase )
UpperCAmelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_UpperCAmelCase )
else:
UpperCAmelCase_ = logits.argmax(dim=1 )
UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 82 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase:
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ):
UpperCamelCase_: Tuple = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = image_size
UpperCamelCase_: Tuple = patch_size
UpperCamelCase_: Tuple = num_channels
UpperCamelCase_: Dict = embed_dim
UpperCamelCase_: List[Any] = hidden_sizes
UpperCamelCase_: List[str] = depths
UpperCamelCase_: List[str] = num_heads
UpperCamelCase_: Optional[int] = window_size
UpperCamelCase_: Tuple = mlp_ratio
UpperCamelCase_: Dict = qkv_bias
UpperCamelCase_: str = hidden_dropout_prob
UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob
UpperCamelCase_: int = drop_path_rate
UpperCamelCase_: Dict = hidden_act
UpperCamelCase_: List[str] = use_absolute_embeddings
UpperCamelCase_: Dict = patch_norm
UpperCamelCase_: Optional[Any] = layer_norm_eps
UpperCamelCase_: List[str] = initializer_range
UpperCamelCase_: List[Any] = is_training
UpperCamelCase_: Optional[int] = scope
UpperCamelCase_: str = use_labels
UpperCamelCase_: List[str] = type_sequence_label_size
UpperCamelCase_: Union[str, Any] = encoder_stride
UpperCamelCase_: Dict = out_features
UpperCamelCase_: str = out_indices
def _a ( self ):
UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_: List[Any] = None
if self.use_labels:
UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase_: Optional[Any] = self.get_config()
return config, pixel_values, labels
def _a ( self ):
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: int = model(_lowerCamelCase )
UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
UpperCamelCase_: int = None
UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Any = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCamelCase_: List[Any] = 1
UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = self.type_sequence_label_size
UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase_: Union[str, Any] = 1
UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self ):
UpperCamelCase_: Dict = self.prepare_config_and_inputs()
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs
UpperCamelCase_: int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[int] =(
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
a : Any =(
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
a : Dict =False
a : Union[str, Any] =False
a : Tuple =False
a : Optional[int] =False
a : Union[str, Any] =False
def _a ( self ):
UpperCamelCase_: str = FocalNetModelTester(self )
UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase )
def _a ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self ):
return
def _a ( self ):
UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@unittest.skip(reason='FocalNet does not use inputs_embeds' )
def _a ( self ):
pass
@unittest.skip(reason='FocalNet does not use feedforward chunking' )
def _a ( self ):
pass
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase_: List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: List[Any] = model_class(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_: Any = [*signature.parameters.keys()]
UpperCamelCase_: List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Tuple = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
UpperCamelCase_: Union[str, Any] = outputs.hidden_states
UpperCamelCase_: Tuple = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
# FocalNet has a different seq_length
UpperCamelCase_: Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCamelCase_: Dict = outputs.reshaped_hidden_states
self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape
UpperCamelCase_: List[str] = (
reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: int = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: int = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: str = 3
UpperCamelCase_: Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCamelCase_: int = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
UpperCamelCase_: Dict = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Optional[Any] = True
self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) )
@slow
def _a ( self ):
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def _a ( self ):
UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase )
for model_class in self.all_model_classes:
UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self ):
# TODO update organization
return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None
@slow
def _a ( self ):
UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = self.default_image_processor
UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: List[str] = model(**_lowerCamelCase )
# verify the logits
UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 )
@require_torch
class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else ()
a : List[str] =FocalNetConfig
a : List[str] =False
def _a ( self ):
UpperCamelCase_: Any = FocalNetModelTester(self )
| 57 | 0 |
"""simple docstring"""
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
lowerCAmelCase__ = {
'''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''',
'''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''',
'''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''',
'''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''',
'''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''',
'''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''',
'''mask_downscaling.0''': '''mask_embed.conv1''',
'''mask_downscaling.1''': '''mask_embed.layer_norm1''',
'''mask_downscaling.3''': '''mask_embed.conv2''',
'''mask_downscaling.4''': '''mask_embed.layer_norm2''',
'''mask_downscaling.6''': '''mask_embed.conv3''',
'''point_embeddings''': '''point_embed''',
'''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''',
'''image_encoder''': '''vision_encoder''',
'''neck.0''': '''neck.conv1''',
'''neck.1''': '''neck.layer_norm1''',
'''neck.2''': '''neck.conv2''',
'''neck.3''': '''neck.layer_norm2''',
'''patch_embed.proj''': '''patch_embed.projection''',
'''.norm''': '''.layer_norm''',
'''blocks''': '''layers''',
}
def snake_case_ ( A_ : Any ):
'''simple docstring'''
_lowerCamelCase : Tuple = {}
state_dict.pop('''pixel_mean''', A_ )
state_dict.pop('''pixel_std''', A_ )
_lowerCamelCase : List[Any] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'''
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
_lowerCamelCase : Dict = key.replace(A_, A_ )
if re.match(A_, A_ ):
_lowerCamelCase : Union[str, Any] = int(re.match(A_, A_ ).group(2 ) )
if layer_nb == 0:
_lowerCamelCase : Tuple = key.replace('''layers.0''', '''proj_in''' )
elif layer_nb == 1:
_lowerCamelCase : Any = key.replace('''layers.1''', '''layers.0''' )
elif layer_nb == 2:
_lowerCamelCase : Optional[int] = key.replace('''layers.2''', '''proj_out''' )
_lowerCamelCase : Optional[Any] = value
_lowerCamelCase : int = model_state_dict[
'''prompt_encoder.shared_embedding.positional_embedding'''
]
return model_state_dict
def snake_case_ ( A_ : List[Any], A_ : int, A_ : List[Any], A_ : Union[str, Any]="ybelkada/segment-anything" ):
'''simple docstring'''
_lowerCamelCase : Tuple = hf_hub_download(A_, F'''checkpoints/{model_name}.pth''' )
if "sam_vit_b" in model_name:
_lowerCamelCase : Union[str, Any] = SamConfig()
elif "sam_vit_l" in model_name:
_lowerCamelCase : Tuple = SamVisionConfig(
hidden_size=10_24, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], )
_lowerCamelCase : List[Any] = SamConfig(
vision_config=A_, )
elif "sam_vit_h" in model_name:
_lowerCamelCase : Dict = SamVisionConfig(
hidden_size=12_80, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], )
_lowerCamelCase : Any = SamConfig(
vision_config=A_, )
_lowerCamelCase : List[str] = torch.load(A_, map_location='''cpu''' )
_lowerCamelCase : int = replace_keys(A_ )
_lowerCamelCase : str = SamImageProcessor()
_lowerCamelCase : Tuple = SamProcessor(image_processor=A_ )
_lowerCamelCase : List[Any] = SamModel(A_ )
hf_model.load_state_dict(A_ )
_lowerCamelCase : Any = hf_model.to('''cuda''' )
_lowerCamelCase : List[str] = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'''
_lowerCamelCase : Tuple = Image.open(requests.get(A_, stream=A_ ).raw ).convert('''RGB''' )
_lowerCamelCase : Any = [[[4_00, 6_50]]]
_lowerCamelCase : Tuple = [[1]]
_lowerCamelCase : Union[str, Any] = processor(images=np.array(A_ ), return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
_lowerCamelCase : List[str] = hf_model(**A_ )
_lowerCamelCase : Tuple = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579890251159668
_lowerCamelCase : int = processor(
images=np.array(A_ ), input_points=A_, input_labels=A_, return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
_lowerCamelCase : str = hf_model(**A_ )
_lowerCamelCase : List[Any] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712603092193604
_lowerCamelCase : List[str] = ((75, 2_75, 17_25, 8_50),)
_lowerCamelCase : Tuple = processor(images=np.array(A_ ), input_boxes=A_, return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
_lowerCamelCase : List[Any] = hf_model(**A_ )
_lowerCamelCase : List[Any] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686015605926514
# Test with 2 points and 1 image.
_lowerCamelCase : Dict = [[[4_00, 6_50], [8_00, 6_50]]]
_lowerCamelCase : Tuple = [[1, 1]]
_lowerCamelCase : List[Any] = processor(
images=np.array(A_ ), input_points=A_, input_labels=A_, return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
_lowerCamelCase : Any = hf_model(**A_ )
_lowerCamelCase : Optional[Any] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936047792434692
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser()
lowerCAmelCase__ = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195''']
parser.add_argument(
'''--model_name''',
default='''sam_vit_h_4b8939''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
parser.add_argument(
'''--model_hub_id''',
default='''ybelkada/segment-anything''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
lowerCAmelCase__ = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 83 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : Tuple = {
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[Any] = ['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[Any] = [
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCAmelCase = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase = ['''EncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase = ['''TFEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase = ['''FlaxEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 84 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def snake_case (UpperCAmelCase__ ) -> Union[str, Any]:
if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ):
return False
return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any:
UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: List[str] = model
UpperCamelCase_: Dict = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Dict = model.module
if not keep_fpaa_wrapper:
UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' )
UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ )
if original_forward is not None:
while hasattr(UpperCAmelCase__ , '__wrapped__' ):
UpperCamelCase_: Any = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase_: Optional[int] = forward
if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ):
convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ )
if is_compiled:
UpperCamelCase_: Union[str, Any] = model
UpperCamelCase_: Tuple = compiled_model
return model
def snake_case () -> List[str]:
PartialState().wait_for_everyone()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict:
if PartialState().distributed_type == DistributedType.TPU:
xm.save(UpperCAmelCase__ , UpperCAmelCase__ )
elif PartialState().local_process_index == 0:
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
@contextmanager
def snake_case (**UpperCAmelCase__ ) -> Any:
for key, value in kwargs.items():
UpperCamelCase_: int = str(UpperCAmelCase__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def snake_case (UpperCAmelCase__ ) -> str:
if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ):
UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ )
if hasattr(UpperCAmelCase__ , '__qualname__' ):
return obj.__qualname__
if hasattr(UpperCAmelCase__ , '__name__' ):
return obj.__name__
return str(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
for key, value in source.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} )
merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ )
else:
UpperCamelCase_: str = value
return destination
def snake_case (UpperCAmelCase__ = None ) -> bool:
if port is None:
UpperCamelCase_: List[str] = 2_9_5_0_0
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('localhost', port) ) == 0
| 57 | 0 |
def _a ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Tuple = [1]
for i in range(2 , lowercase__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
SCREAMING_SNAKE_CASE__ : str = list(range(lowercase__ ) )
# Find permutation
while factorials:
SCREAMING_SNAKE_CASE__ : Optional[int] = factorials.pop()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = divmod(lowercase__ , lowercase__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 85 |
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
A_ : Optional[Any] = data_utils.TransfoXLTokenizer
A_ : Union[str, Any] = data_utils.TransfoXLCorpus
A_ : Any = data_utils
A_ : Optional[Any] = data_utils
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(UpperCAmelCase__ , 'rb' ) as fp:
UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ )
UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ )
UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
UpperCamelCase_: List[str] = TransfoXLConfig()
else:
UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ )
UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' )
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ : int = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
A_ : Tuple = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 57 | 0 |
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def __snake_case ( __UpperCamelCase : bool = True ,*__UpperCamelCase : Tuple ,**__UpperCamelCase : Dict ):
"""simple docstring"""
if not is_tqdm_available():
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." )
A_ = False
if main_process_only:
A_ = PartialState().local_process_index == 0
return _tqdm(*__UpperCamelCase ,**__UpperCamelCase ,disable=__UpperCamelCase )
| 86 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : List[str] = logging.get_logger(__name__)
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]:
UpperCamelCase_: Tuple = b.T
UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 )
UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 )
UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :]
return d
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: List[str] = x.reshape(-1 , 3 )
UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ )
return np.argmin(UpperCAmelCase__ , axis=1 )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Any =['''pixel_values''']
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ):
super().__init__(**_lowerCamelCase )
UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6}
UpperCamelCase_: str = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None
UpperCamelCase_: Optional[int] = do_resize
UpperCamelCase_: List[Any] = size
UpperCamelCase_: Optional[int] = resample
UpperCamelCase_: str = do_normalize
UpperCamelCase_: str = do_color_quantize
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ):
UpperCamelCase_: Any = get_size_dict(_lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
_lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ):
UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase )
UpperCamelCase_: Optional[Any] = image - 1
return image
def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ):
UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_: Tuple = size if size is not None else self.size
UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase )
UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample
UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters
UpperCamelCase_: Dict = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase )
if not valid_images(_lowerCamelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images]
if do_resize:
UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images]
if do_normalize:
UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images]
if do_color_quantize:
UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase )
UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
UpperCamelCase_: Dict = images.shape[0]
UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
UpperCamelCase_: List[Any] = list(_lowerCamelCase )
else:
UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images]
UpperCamelCase_: str = {'input_ids': images}
return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
| 57 | 0 |
_lowerCamelCase : int = {
"""meter""": """m""",
"""kilometer""": """km""",
"""megametre""": """Mm""",
"""gigametre""": """Gm""",
"""terametre""": """Tm""",
"""petametre""": """Pm""",
"""exametre""": """Em""",
"""zettametre""": """Zm""",
"""yottametre""": """Ym""",
}
# Exponent of the factor(meter)
_lowerCamelCase : Union[str, Any] = {
"""m""": 0,
"""km""": 3,
"""Mm""": 6,
"""Gm""": 9,
"""Tm""": 12,
"""Pm""": 15,
"""Em""": 18,
"""Zm""": 21,
"""Ym""": 24,
}
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float:
"""simple docstring"""
A__ = from_type.lower().strip('''s''' )
A__ = to_type.lower().strip('''s''' )
A__ = UNIT_SYMBOL.get(lowercase_ , lowercase_ )
A__ = UNIT_SYMBOL.get(lowercase_ , lowercase_ )
if from_sanitized not in METRIC_CONVERSION:
A__ = (
f"""Invalid 'from_type' value: {from_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(lowercase_ )}"""
)
raise ValueError(lowercase_ )
if to_sanitized not in METRIC_CONVERSION:
A__ = (
f"""Invalid 'to_type' value: {to_type!r}.\n"""
f"""Conversion abbreviations are: {", ".join(lowercase_ )}"""
)
raise ValueError(lowercase_ )
A__ = METRIC_CONVERSION[from_sanitized]
A__ = METRIC_CONVERSION[to_sanitized]
A__ = 1
if from_exponent > to_exponent:
A__ = from_exponent - to_exponent
else:
A__ = -(to_exponent - from_exponent)
return value * pow(10 , lowercase_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 87 |
import numpy
# List of input, output pairs
A_ : Any = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150))
A_ : Any = [2, 4, 1, 5]
A_ : List[Any] = len(train_data)
A_ : List[Any] = 0.009
def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]:
return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output(
UpperCAmelCase__ , UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[Any] = 0
for i in range(len(UpperCAmelCase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]:
UpperCamelCase_: Any = 0
for i in range(UpperCAmelCase__ ):
if index == -1:
summation_value += _error(UpperCAmelCase__ )
else:
summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index]
return summation_value
def snake_case (UpperCAmelCase__ ) -> Optional[Any]:
UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m
return cost_derivative_value
def snake_case () -> Union[str, Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCamelCase_: str = 0.00_0002
UpperCamelCase_: Any = 0
UpperCamelCase_: int = 0
while True:
j += 1
UpperCamelCase_: int = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase__ ) ):
UpperCamelCase_: Any = get_cost_derivative(i - 1 )
UpperCamelCase_: Optional[int] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ):
break
UpperCamelCase_: Optional[int] = temp_parameter_vector
print(('Number of iterations:', j) )
def snake_case () -> int:
for i in range(len(UpperCAmelCase__ ) ):
print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print('\nTesting gradient descent for a linear hypothesis function.\n')
test_gradient_descent()
| 57 | 0 |
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class lowercase__ :
def __init__( self , SCREAMING_SNAKE_CASE , ) -> Dict:
_lowerCamelCase : Union[str, Any] = parent
_lowerCamelCase : str = 13
_lowerCamelCase : Union[str, Any] = 7
_lowerCamelCase : Optional[int] = 30
_lowerCamelCase : Optional[int] = self.seq_length + self.mem_len
_lowerCamelCase : Dict = 15
_lowerCamelCase : int = True
_lowerCamelCase : Union[str, Any] = True
_lowerCamelCase : List[Any] = 99
_lowerCamelCase : Tuple = [10, 50, 80]
_lowerCamelCase : Tuple = 32
_lowerCamelCase : int = 32
_lowerCamelCase : Optional[Any] = 4
_lowerCamelCase : Optional[Any] = 8
_lowerCamelCase : List[Any] = 128
_lowerCamelCase : Dict = 2
_lowerCamelCase : str = 2
_lowerCamelCase : Any = None
_lowerCamelCase : Union[str, Any] = 1
_lowerCamelCase : int = 0
_lowerCamelCase : Tuple = 3
_lowerCamelCase : str = self.vocab_size - 1
_lowerCamelCase : str = 0.01
def UpperCamelCase_ ( self) -> Optional[Any]:
_lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_lowerCamelCase : Dict = None
if self.use_labels:
_lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_lowerCamelCase : Optional[Any] = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def UpperCamelCase_ ( self) -> int:
random.seed(self.seed)
tf.random.set_seed(self.seed)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Any:
_lowerCamelCase : str = TFTransfoXLModel(SCREAMING_SNAKE_CASE)
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE).to_tuple()
_lowerCamelCase : int = {"""input_ids""": input_ids_a, """mems""": mems_a}
_lowerCamelCase , _lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Tuple:
_lowerCamelCase : str = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE)
_lowerCamelCase , _lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE).to_tuple()
_lowerCamelCase : Tuple = {"""input_ids""": input_ids_a, """labels""": lm_labels}
_lowerCamelCase , _lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE).to_tuple()
_lowerCamelCase , _lowerCamelCase : int = model([input_ids_a, mems_a]).to_tuple()
_lowerCamelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
_lowerCamelCase , _lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]:
_lowerCamelCase : Tuple = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : str = self.prepare_config_and_inputs()
((_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase) , (_lowerCamelCase)) : int = config_and_inputs
_lowerCamelCase : Optional[Any] = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class lowercase__ ( A_ ,A_ ,unittest.TestCase ):
__UpperCAmelCase = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__UpperCAmelCase = () if is_tf_available() else ()
__UpperCAmelCase = (
{
'''feature-extraction''': TFTransfoXLModel,
'''text-classification''': TFTransfoXLForSequenceClassification,
'''text-generation''': TFTransfoXLLMHeadModel,
'''zero-shot''': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[Any]:
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def UpperCamelCase_ ( self) -> Any:
_lowerCamelCase : List[str] = TFTransfoXLModelTester(self)
_lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , d_embed=37)
def UpperCamelCase_ ( self) -> Any:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self) -> Optional[Any]:
self.model_tester.set_seed()
_lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> Tuple:
self.model_tester.set_seed()
_lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self) -> str:
_lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCamelCase : Any = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
_lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE)
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer)
if model_class in list_other_models_with_output_ebd:
_lowerCamelCase : Union[str, Any] = model.get_output_embeddings()
assert isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Layer)
_lowerCamelCase : Tuple = model.get_bias()
assert name is None
else:
_lowerCamelCase : Dict = model.get_output_embeddings()
assert x is None
_lowerCamelCase : List[str] = model.get_bias()
assert name is None
def UpperCamelCase_ ( self) -> Dict:
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def UpperCamelCase_ ( self) -> int:
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCamelCase : Any = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE)
self.assertIsNotNone(SCREAMING_SNAKE_CASE)
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""")
def UpperCamelCase_ ( self) -> Any:
pass
@require_tf
class lowercase__ ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""")
@slow
def UpperCamelCase_ ( self) -> List[Any]:
_lowerCamelCase : Optional[int] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""")
# fmt: off
_lowerCamelCase : int = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
_lowerCamelCase : List[str] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
_lowerCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE , max_length=200 , do_sample=SCREAMING_SNAKE_CASE)
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE)
| 88 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 57 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self) -> Union[str, Any]:
"""simple docstring"""
_lowercase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4')
_lowercase : Optional[Any] = sd_pipe.to(lowerCamelCase)
sd_pipe.set_progress_bar_config(disable=lowerCamelCase)
sd_pipe.set_scheduler('sample_euler')
_lowercase : str = 'A painting of a squirrel eating a burger'
_lowercase : int = torch.manual_seed(0)
_lowercase : int = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type='np')
_lowercase : Union[str, Any] = output.images
_lowercase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Dict = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
_lowercase : int = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
_lowercase : Optional[int] = sd_pipe.to(lowerCamelCase)
sd_pipe.set_progress_bar_config(disable=lowerCamelCase)
sd_pipe.set_scheduler('sample_euler')
_lowercase : Any = 'A painting of a squirrel eating a burger'
_lowercase : Any = torch.manual_seed(0)
_lowercase : Union[str, Any] = sd_pipe([prompt], generator=lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type='np')
_lowercase : List[str] = output.images
_lowercase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Tuple = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-1
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
_lowercase : Any = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base')
_lowercase : List[str] = sd_pipe.to(lowerCamelCase)
sd_pipe.set_progress_bar_config(disable=lowerCamelCase)
sd_pipe.set_scheduler('sample_dpmpp_2m')
_lowercase : Optional[Any] = 'A painting of a squirrel eating a burger'
_lowercase : Optional[Any] = torch.manual_seed(0)
_lowercase : Union[str, Any] = sd_pipe(
[prompt], generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=15, output_type='np', use_karras_sigmas=lowerCamelCase, )
_lowercase : List[Any] = output.images
_lowercase : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Dict = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
| 89 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class _lowerCAmelCase:
"""simple docstring"""
a : int =PegasusConfig
a : List[str] ={}
a : Optional[int] ='''gelu'''
def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ):
UpperCamelCase_: List[Any] = parent
UpperCamelCase_: Dict = batch_size
UpperCamelCase_: List[str] = seq_length
UpperCamelCase_: List[str] = is_training
UpperCamelCase_: Any = use_labels
UpperCamelCase_: Optional[Any] = vocab_size
UpperCamelCase_: Tuple = hidden_size
UpperCamelCase_: List[Any] = num_hidden_layers
UpperCamelCase_: Any = num_attention_heads
UpperCamelCase_: Optional[Any] = intermediate_size
UpperCamelCase_: Optional[int] = hidden_dropout_prob
UpperCamelCase_: int = attention_probs_dropout_prob
UpperCamelCase_: Union[str, Any] = max_position_embeddings
UpperCamelCase_: Dict = eos_token_id
UpperCamelCase_: Union[str, Any] = pad_token_id
UpperCamelCase_: List[Any] = bos_token_id
def _a ( self ):
UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase_: Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return config, inputs_dict
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder()
UpperCamelCase_: Optional[int] = inputs_dict['input_ids']
UpperCamelCase_: Optional[int] = input_ids[:1, :]
UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :]
UpperCamelCase_: Optional[int] = inputs_dict['head_mask']
UpperCamelCase_: Optional[int] = 1
# first forward pass
UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str:
if attention_mask is None:
UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase_: int = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else ()
a : Tuple =(
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
a : List[str] =True
a : List[str] =False
a : Tuple =False
def _a ( self ):
UpperCamelCase_: Dict = TFPegasusModelTester(self )
UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase )
def _a ( self ):
self.config_tester.run_common_tests()
def _a ( self ):
UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
a : Dict =[
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
a : int =[
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
a : Union[str, Any] ='''google/pegasus-xsum'''
@cached_property
def _a ( self ):
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _a ( self ):
UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase )
assert self.expected_text == generated_words
def _a ( self , **_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' )
UpperCamelCase_: Any = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , )
UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )
return generated_words
@slow
def _a ( self ):
self._assert_generated_batch_equal_expected()
| 57 | 0 |
'''simple docstring'''
from __future__ import annotations
def _snake_case ( A ) -> list[int]:
lowerCAmelCase__ = 2
lowerCAmelCase__ = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(A )
if n > 1:
factors.append(A )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 90 |
import unittest
import numpy as np
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ )
if shape_a[0] != shape_b[0]:
UpperCamelCase_: Any = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCAmelCase__ )
if shape_b[1] != shape_c[1]:
UpperCamelCase_: int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCAmelCase__ )
UpperCamelCase_: Dict = pseudo_inv
if a_inv is None:
try:
UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] )
UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase )
self.assertAlmostEqual(_lowerCamelCase , det_a * det_s )
def _a ( self ):
UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 57 | 0 |
"""simple docstring"""
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : str ):
A = XCLIPTextConfig()
# derive patch size from model name
A = model_name.find('patch' )
A = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
A = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ )
if "large" in model_name:
A = 768
A = 3072
A = 12
A = 1024
A = 4096
A = 16
A = 24
A = 768
A = 3072
if model_name == "xclip-large-patch14-16-frames":
A = 336
A = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ )
if "large" in model_name:
A = 768
return config
def _snake_case ( snake_case__ : Optional[Any] ):
# text encoder
if name == "token_embedding.weight":
A = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
A = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
A = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
A = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
A = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
A = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
A = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
A = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
A = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
A = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
A = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
A = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
A = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
A = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
A = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
A = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
A = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
A = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
A = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
A = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
A = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
A = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def _snake_case ( snake_case__ : Dict , snake_case__ : str ):
for key in orig_state_dict.copy().keys():
A = orig_state_dict.pop(snake_case__ )
if "attn.in_proj" in key:
A = key.split('.' )
if key.startswith('visual' ):
A = key_split[3]
A = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
A = val[
:dim, :
]
A = val[
dim : dim * 2, :
]
A = val[
-dim:, :
]
else:
A = val[
:dim
]
A = val[
dim : dim * 2
]
A = val[
-dim:
]
else:
if "weight" in key:
A = val[
:dim, :
]
A = val[
dim : dim * 2, :
]
A = val[
-dim:, :
]
else:
A = val[:dim]
A = val[
dim : dim * 2
]
A = val[-dim:]
elif key.startswith('mit' ):
A = key_split[2]
A = config.vision_config.mit_hidden_size
if "weight" in key:
A = val[:dim, :]
A = val[dim : dim * 2, :]
A = val[-dim:, :]
else:
A = val[:dim]
A = val[dim : dim * 2]
A = val[-dim:]
else:
A = key_split[2]
A = config.text_config.hidden_size
if "weight" in key:
A = val[:dim, :]
A = val[
dim : dim * 2, :
]
A = val[-dim:, :]
else:
A = val[:dim]
A = val[
dim : dim * 2
]
A = val[-dim:]
else:
A = rename_key(snake_case__ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
A = val.T
A = val
return orig_state_dict
def _snake_case ( snake_case__ : Union[str, Any] ):
if num_frames == 8:
A = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
A = 'eating_spaghetti.npy'
elif num_frames == 32:
A = 'eating_spaghetti_32_frames.npy'
A = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , )
A = np.load(snake_case__ )
return list(snake_case__ )
def _snake_case ( snake_case__ : Dict , snake_case__ : List[str]=None , snake_case__ : Tuple=False ):
A = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
A = model_to_url[model_name]
A = 8
if "16-frames" in model_name:
A = 16
elif "shot" in model_name:
A = 32
A = get_xclip_config(snake_case__ , snake_case__ )
A = XCLIPModel(snake_case__ )
model.eval()
if "drive" in checkpoint_url:
A = 'pytorch_model.bin'
gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ )
A = torch.load(snake_case__ , map_location='cpu' )['model']
else:
A = torch.hub.load_state_dict_from_url(snake_case__ )['model']
A = convert_state_dict(snake_case__ , snake_case__ )
A = XCLIPModel(snake_case__ )
A , A = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
A = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
A = VideoMAEImageProcessor(size=snake_case__ )
A = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
A = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
A = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ )
A = prepare_video(snake_case__ )
A = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
A = model(**snake_case__ )
# Verify outputs
A = outputs.logits_per_video
A = logits_per_video.softmax(dim=1 )
print('Probs:' , snake_case__ )
# kinetics-400
if model_name == "xclip-base-patch32":
A = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
A = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] )
elif model_name == "xclip-base-patch16":
A = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
A = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] )
elif model_name == "xclip-large-patch14":
A = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
A = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
A = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
A = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
A = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
A = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
A = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
A = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
A = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
A = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
A = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
A = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
A = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
A = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] )
else:
raise ValueError(F'Model name {model_name} not supported' )
assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case__ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(snake_case__ , organization='nielsr' )
processor.push_to_hub(snake_case__ , organization='nielsr' )
slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''xclip-base-patch32''',
type=str,
help='''Name of the model.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_lowercase = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 91 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int:
# Load configuration defined in the metadata file
with open(UpperCAmelCase__ ) as metadata_file:
UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ )
UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] )
# Load in the weights from the checkpoint_path
UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module']
# Load the entity vocab file
UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ )
# add an entry for [MASK2]
UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] )
# Add special tokens to the token vocabulary for downstream tasks
UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ )
tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f:
UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ )
UpperCamelCase_: str = 'MLukeTokenizer'
with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
# Initialize the embeddings of the special tokens
UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0]
UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0]
UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight']
UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 )
UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
UpperCamelCase_: Union[str, Any] = state_dict[bias_name]
UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 )
UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 )
UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.'''
UpperCamelCase_: str = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
UpperCamelCase_: Dict = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight']
UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias']
UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 )
UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval()
state_dict.pop('entity_predictions.decoder.weight' )
state_dict.pop('lm_head.decoder.weight' )
state_dict.pop('lm_head.decoder.bias' )
UpperCamelCase_: Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )):
UpperCamelCase_: Union[str, Any] = state_dict[key]
else:
UpperCamelCase_: Dict = state_dict[key]
UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(UpperCAmelCase__ ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' )
UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).'
UpperCamelCase_: Optional[int] = (0, 9)
UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: str = model(**UpperCAmelCase__ )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) )
UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ )
UpperCamelCase_: int = 'Tokyo is the capital of <mask>.'
UpperCamelCase_: Dict = (2_4, 3_0)
UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' )
UpperCamelCase_: Dict = model(**UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist()
UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) )
UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item()
UpperCamelCase_: Optional[Any] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) )
model.save_pretrained(UpperCAmelCase__ )
def snake_case (UpperCAmelCase__ ) -> int:
UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]']
UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )]
UpperCamelCase_: Tuple = {}
for entry in data:
UpperCamelCase_: Optional[int] = entry['id']
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
UpperCamelCase_: Union[str, Any] = entity_id
break
UpperCamelCase_: Dict = F'''{language}:{entity_name}'''
UpperCamelCase_: Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
A_ : List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 57 | 0 |
'''simple docstring'''
import numpy as np
import datasets
UpperCamelCase_ = """
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
"""
UpperCamelCase_ = """\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
"""
UpperCamelCase_ = """
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{'mahalanobis': array([0.5])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def lowerCamelCase_ ( self : Any ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ),
} ) , )
def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str ):
'''simple docstring'''
# convert to numpy arrays
lowercase : Optional[Any] =np.array(UpperCAmelCase__ )
lowercase : List[str] =np.array(UpperCAmelCase__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError('''Expected `X` to be a 2D vector''' )
if len(reference_distribution.shape ) != 2:
raise ValueError('''Expected `reference_distribution` to be a 2D vector''' )
if reference_distribution.shape[0] < 2:
raise ValueError(
'''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' )
# Get mahalanobis distance for each prediction
lowercase : Tuple =X - np.mean(UpperCAmelCase__ )
lowercase : int =np.cov(reference_distribution.T )
try:
lowercase : Dict =np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
lowercase : Optional[Any] =np.linalg.pinv(UpperCAmelCase__ )
lowercase : int =np.dot(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase : Any =np.dot(UpperCAmelCase__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 92 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[Any] = logging.get_logger(__name__)
A_ : Optional[Any] = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Dict ='''distilbert'''
a : List[str] ={
'''hidden_size''': '''dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
}
def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ):
UpperCamelCase_: Tuple = vocab_size
UpperCamelCase_: str = max_position_embeddings
UpperCamelCase_: Optional[int] = sinusoidal_pos_embds
UpperCamelCase_: Union[str, Any] = n_layers
UpperCamelCase_: Optional[int] = n_heads
UpperCamelCase_: int = dim
UpperCamelCase_: Tuple = hidden_dim
UpperCamelCase_: Any = dropout
UpperCamelCase_: Optional[Any] = attention_dropout
UpperCamelCase_: List[str] = activation
UpperCamelCase_: Optional[Any] = initializer_range
UpperCamelCase_: Optional[Any] = qa_dropout
UpperCamelCase_: List[str] = seq_classif_dropout
super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase )
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
@property
def _a ( self ):
if self.task == "multiple-choice":
UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 57 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _lowerCAmelCase ( a , unittest.TestCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = DebertaTokenizer
__magic_name__ :str = True
__magic_name__ :Dict = DebertaTokenizerFast
def snake_case ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase__ :Dict = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'[UNK]',
]
lowerCAmelCase__ :Union[str, Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ :Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
lowerCAmelCase__ :int = {'unk_token': '[UNK]'}
lowerCAmelCase__ :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase__ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__UpperCAmelCase ) )
def snake_case ( self , **__UpperCAmelCase ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def snake_case ( self , __UpperCAmelCase ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = 'lower newer'
lowerCAmelCase__ :List[str] = 'lower newer'
return input_text, output_text
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Dict = self.get_tokenizer()
lowerCAmelCase__ :List[Any] = 'lower newer'
lowerCAmelCase__ :Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
lowerCAmelCase__ :Tuple = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :Any = tokens + [tokenizer.unk_token]
lowerCAmelCase__ :str = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Optional[Any] = self.get_tokenizer()
lowerCAmelCase__ :Optional[int] = tokenizer('Hello' , 'World' )
lowerCAmelCase__ :List[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['token_type_ids'] , __UpperCAmelCase )
@slow
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Any = self.tokenizer_class.from_pretrained('microsoft/deberta-base' )
lowerCAmelCase__ :Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=__UpperCAmelCase )
lowerCAmelCase__ :str = tokenizer.encode('multi-sequence build' , add_special_tokens=__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = tokenizer.encode(
'sequence builders' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase )
lowerCAmelCase__ :Any = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase )
lowerCAmelCase__ :Optional[int] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase )
lowerCAmelCase__ :str = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Any = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
lowerCAmelCase__ :Tuple = tokenizer_class.from_pretrained('microsoft/deberta-base' )
lowerCAmelCase__ :Optional[int] = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
lowerCAmelCase__ :Optional[int] = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase )
lowerCAmelCase__ :Tuple = [tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for seq in encoding['input_ids']]
# fmt: off
lowerCAmelCase__ :Tuple = {
'input_ids': [
[1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2]
],
'token_type_ids': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
lowerCAmelCase__ :List[Any] = [
'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations',
'ALBERT incorporates two parameter reduction techniques',
'The first one is a factorized embedding parameterization. By decomposing the large vocabulary'
' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'
' vocabulary embedding.',
]
self.assertDictEqual(encoding.data , __UpperCAmelCase )
for expected, decoded in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 93 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : int = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
'''simple docstring'''
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
SCREAMING_SNAKE_CASE = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n'
SCREAMING_SNAKE_CASE = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n'
SCREAMING_SNAKE_CASE = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def lowercase_ ( __A : List[Any] , __A : List[Any] ) -> int:
"""simple docstring"""
return float((preds == labels).mean() )
def lowercase_ ( __A : Any , __A : Union[str, Any] ) -> int:
"""simple docstring"""
lowercase : int =simple_accuracy(__A , __A )
lowercase : Optional[int] =float(fa_score(y_true=__A , y_pred=__A ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowercase_ ( __A : Any , __A : List[str] ) -> str:
"""simple docstring"""
lowercase : Any =float(pearsonr(__A , __A )[0] )
lowercase : Optional[int] =float(spearmanr(__A , __A )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , )
def A__ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase , UpperCAmelCase )}
elif self.config_name == "stsb":
return pearson_and_spearman(UpperCAmelCase , UpperCAmelCase )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(UpperCAmelCase , UpperCAmelCase )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
| 94 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A_ : List[str] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Union[str, Any] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 57 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class UpperCamelCase_ (unittest.TestCase ):
@property
def _SCREAMING_SNAKE_CASE ( self : int ) -> Any:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = ort.SessionOptions()
UpperCAmelCase_ : int = False
return options
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]:
UpperCAmelCase_ : Any = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
UpperCAmelCase_ : Dict = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
UpperCAmelCase_ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" )
# using the PNDM scheduler by default
UpperCAmelCase_ : Tuple = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
UpperCAmelCase_ : int = "A red cat sitting on a park bench"
UpperCAmelCase_ : Any = np.random.RandomState(0 )
UpperCAmelCase_ : Optional[Any] = pipe(
prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCAmelCase_ , output_type="np" , )
UpperCAmelCase_ : List[str] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 95 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
a : Union[List[PIL.Image.Image], np.ndarray]
a : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 57 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__lowerCamelCase = {
'vocab_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt',
},
'tokenizer_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'
),
'google/realm-orqa-nq-openqa': (
'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-nq-reader': (
'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-openqa': (
'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-reader': (
'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'
),
},
}
__lowerCamelCase = {
'google/realm-cc-news-pretrained-embedder': 5_12,
'google/realm-cc-news-pretrained-encoder': 5_12,
'google/realm-cc-news-pretrained-scorer': 5_12,
'google/realm-cc-news-pretrained-openqa': 5_12,
'google/realm-orqa-nq-openqa': 5_12,
'google/realm-orqa-nq-reader': 5_12,
'google/realm-orqa-wq-openqa': 5_12,
'google/realm-orqa-wq-reader': 5_12,
}
__lowerCamelCase = {
'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True},
'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-reader': {'do_lower_case': True},
'google/realm-orqa-wq-openqa': {'do_lower_case': True},
'google/realm-orqa-wq-reader': {'do_lower_case': True},
}
class __A ( SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = RealmTokenizer
def __init__( self : Optional[Any] , __snake_case : Optional[int]=None , __snake_case : str=None , __snake_case : Dict=True , __snake_case : Tuple="[UNK]" , __snake_case : Any="[SEP]" , __snake_case : Tuple="[PAD]" , __snake_case : str="[CLS]" , __snake_case : Optional[int]="[MASK]" , __snake_case : str=True , __snake_case : Optional[int]=None , **__snake_case : Union[str, Any] , ) -> List[Any]:
super().__init__(
__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , )
__magic_name__: List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , __snake_case ) != do_lower_case
or normalizer_state.get("""strip_accents""" , __snake_case ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , __snake_case ) != tokenize_chinese_chars
):
__magic_name__: Dict = getattr(__snake_case , normalizer_state.pop("""type""" ) )
__magic_name__: Optional[Any] = do_lower_case
__magic_name__: Optional[int] = strip_accents
__magic_name__: Union[str, Any] = tokenize_chinese_chars
__magic_name__: Any = normalizer_class(**__snake_case )
__magic_name__: List[Any] = do_lower_case
def lowerCamelCase__ ( self : str , __snake_case : int , **__snake_case : Union[str, Any] ) -> Union[str, Any]:
__magic_name__: Any = PaddingStrategy.MAX_LENGTH
__magic_name__: Union[str, Any] = text
__magic_name__: int = kwargs.pop("""text_pair""" , __snake_case )
__magic_name__: Optional[Any] = kwargs.pop("""return_tensors""" , __snake_case )
__magic_name__: str = {
"""input_ids""": [],
"""attention_mask""": [],
"""token_type_ids""": [],
}
for idx, candidate_text in enumerate(__snake_case ):
if batch_text_pair is not None:
__magic_name__: Dict = batch_text_pair[idx]
else:
__magic_name__: Optional[Any] = None
__magic_name__: Dict = super().__call__(__snake_case , __snake_case , return_tensors=__snake_case , **__snake_case )
__magic_name__: Dict = encoded_candidates.get("""input_ids""" )
__magic_name__: List[Any] = encoded_candidates.get("""attention_mask""" )
__magic_name__: int = encoded_candidates.get("""token_type_ids""" )
if encoded_input_ids is not None:
output_data["input_ids"].append(__snake_case )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(__snake_case )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(__snake_case )
__magic_name__: str = {key: item for key, item in output_data.items() if len(__snake_case ) != 0}
return BatchEncoding(__snake_case , tensor_type=__snake_case )
def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[Any]=None ) -> str:
__magic_name__: List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCamelCase__ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
__magic_name__: str = [self.sep_token_id]
__magic_name__: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase__ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
__magic_name__: Optional[Any] = self._tokenizer.model.save(__snake_case , name=__snake_case )
return tuple(__snake_case )
| 96 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A_ : Tuple = logging.get_logger(__name__)
A_ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
A_ : int = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def snake_case (UpperCAmelCase__ ) -> str:
UpperCamelCase_: Tuple = {}
with open(UpperCAmelCase__ , 'r' ) as file:
for line_number, line in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[Any] = line.strip()
if line:
UpperCamelCase_: List[Any] = line.split()
UpperCamelCase_: Optional[Any] = line_number
UpperCamelCase_: Any = words[0]
UpperCamelCase_: List[Any] = value
return result
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
for attribute in key.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: Dict = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Optional[Any] = hf_pointer
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Tuple = shape_pointer.shape
# let's reduce dimension
UpperCamelCase_: int = value[0]
else:
UpperCamelCase_: Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCamelCase_: Optional[int] = value
elif weight_type == "weight_g":
UpperCamelCase_: Any = value
elif weight_type == "weight_v":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "bias":
UpperCamelCase_: Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Optional[Any] = value
else:
UpperCamelCase_: int = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(UpperCAmelCase__ ):
UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]]
UpperCamelCase_: List[Any] = 'param'
if weight_type is not None and weight_type != "param":
UpperCamelCase_: List[Any] = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCamelCase_: Any = '.'.join([key, hf_param_name] )
else:
UpperCamelCase_: Union[str, Any] = key
UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0]
A_ : str = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any:
UpperCamelCase_: Optional[int] = False
for key, mapped_key in MAPPING.items():
UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
UpperCamelCase_: Optional[Any] = True
if "*" in mapped_key:
UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2]
UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ )
if "weight_g" in name:
UpperCamelCase_: Union[str, Any] = 'weight_g'
elif "weight_v" in name:
UpperCamelCase_: Dict = 'weight_v'
elif "bias" in name:
UpperCamelCase_: int = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCamelCase_: str = 'weight'
else:
UpperCamelCase_: Union[str, Any] = None
if hf_dict is not None:
rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return is_used
return is_used
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
UpperCamelCase_: List[Any] = []
UpperCamelCase_: Dict = fairseq_model.state_dict()
UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase_: Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , )
UpperCamelCase_: List[Any] = True
else:
UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if not is_used:
unused_weights.append(UpperCAmelCase__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any:
UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1]
UpperCamelCase_: int = name.split('.' )
UpperCamelCase_: int = int(items[0] )
UpperCamelCase_: Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCamelCase_: int = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCamelCase_: Union[str, Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCamelCase_: List[Any] = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(UpperCAmelCase__ )
@torch.no_grad()
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict:
if config_path is not None:
UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ )
else:
UpperCamelCase_: List[str] = WavaVecaConfig()
if is_seq_class:
UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ )
UpperCamelCase_: Tuple = idalabel
UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
feature_extractor.save_pretrained(UpperCAmelCase__ )
elif is_finetuned:
if dict_path:
UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase_: Dict = target_dict.pad_index
UpperCamelCase_: Tuple = target_dict.bos_index
UpperCamelCase_: Optional[Any] = target_dict.eos_index
UpperCamelCase_: Union[str, Any] = len(target_dict.symbols )
UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) )
return
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
UpperCamelCase_: str = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCamelCase_: List[str] = 0
UpperCamelCase_: List[Any] = 1
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer(
UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , )
UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False
UpperCamelCase_: Tuple = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , )
UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ )
processor.save_pretrained(UpperCAmelCase__ )
UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ )
else:
UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ )
if is_finetuned or is_seq_class:
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' )
UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ )
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ )
UpperCamelCase_: str = model[0].eval()
recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ : str = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
A_ : int = parser.parse_args()
A_ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 57 | 0 |
def a ( snake_case__: list ):
'''simple docstring'''
lowercase_ = len(snake_case__ )
for _ in range(snake_case__ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
lowercase_ , lowercase_ = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
__a = list(range(1_0, 0, -1))
print(f"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
| 97 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils )
UpperCamelCase_: Dict = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
UpperCamelCase_: Tuple = test_metrics
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _a ( self ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _a ( self ):
self.test_metrics.main()
@require_multi_gpu
def _a ( self ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
| 57 | 0 |
'''simple docstring'''
import random
def a__ ( lowercase : list, lowercase : Union[str, Any] ) -> tuple:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = [], [], []
for element in data:
if element < pivot:
less.append(lowercase )
elif element > pivot:
greater.append(lowercase )
else:
equal.append(lowercase )
return less, equal, greater
def a__ ( lowercase : list, lowercase : int ) -> Optional[int]:
"""simple docstring"""
if index >= len(lowercase ) or index < 0:
return None
_UpperCamelCase = items[random.randint(0, len(lowercase ) - 1 )]
_UpperCamelCase = 0
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = _partition(lowercase, lowercase )
_UpperCamelCase = len(lowercase )
_UpperCamelCase = len(lowercase )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(lowercase, lowercase )
# must be in larger
else:
return quick_select(lowercase, index - (m + count) )
| 98 |
import math
class _lowerCAmelCase:
"""simple docstring"""
def _a ( self , _lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: int = 0.0
UpperCamelCase_: Tuple = 0.0
for i in range(len(_lowerCamelCase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
for i in range(len(_lowerCamelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def snake_case () -> None:
# Training Examples ( m, n )
UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
UpperCamelCase_: Dict = SelfOrganizingMap()
UpperCamelCase_: List[Any] = 3
UpperCamelCase_: List[str] = 0.5
for _ in range(UpperCAmelCase__ ):
for j in range(len(UpperCAmelCase__ ) ):
# training sample
UpperCamelCase_: int = training_samples[j]
# Compute the winning vector
UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# Update the winning vector
UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# classify test sample
UpperCamelCase_: Dict = [0, 0, 0, 1]
UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 57 | 0 |
from __future__ import annotations
from typing import Any
class __UpperCAmelCase :
"""simple docstring"""
def __init__( self , __A , __A , __A = 0 ):
__a , __a = row, column
__a = [[default_value for c in range(__A )] for r in range(__A )]
def __str__( self ):
__a = f'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
__a = 0
for row_vector in self.array:
for obj in row_vector:
__a = max(__A , len(str(__A ) ) )
__a = f'''%{max_element_length}s'''
# Make string and return
def single_line(__A ) -> str:
nonlocal string_format_identifier
__a = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__A ) for row_vector in self.array )
return s
def __repr__( self ):
return str(self )
def snake_case_ ( self , __A ):
if not (isinstance(__A , (list, tuple) ) and len(__A ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , __A ):
assert self.validate_indicies(__A )
return self.array[loc[0]][loc[1]]
def __setitem__( self , __A , __A ):
assert self.validate_indicies(__A )
__a = value
def __add__( self , __A ):
assert isinstance(__A , __A )
assert self.row == another.row and self.column == another.column
# Add
__a = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__a = self[r, c] + another[r, c]
return result
def __neg__( self ):
__a = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__a = -self[r, c]
return result
def __sub__( self , __A ):
return self + (-another)
def __mul__( self , __A ):
if isinstance(__A , (int, float) ): # Scalar multiplication
__a = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__a = self[r, c] * another
return result
elif isinstance(__A , __A ): # Matrix multiplication
assert self.column == another.row
__a = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__a = f'''Unsupported type given for another ({type(__A )})'''
raise TypeError(__A )
def snake_case_ ( self ):
__a = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__a = self[r, c]
return result
def snake_case_ ( self , __A , __A ):
assert isinstance(__A , __A ) and isinstance(__A , __A )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__a = v.transpose()
__a = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def a ():
# a^(-1)
__a = Matrix(3 , 3 , 0 )
for i in range(3 ):
__a = 1
print(f'''a^(-1) is {ainv}''' )
# u, v
__a = Matrix(3 , 1 , 0 )
__a , __a , __a = 1, 2, -3
__a = Matrix(3 , 1 , 0 )
__a , __a , __a = 4, -2, 5
print(f'''u is {u}''' )
print(f'''v is {v}''' )
print(f'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}''' )
def a ():
import doctest
doctest.testmod()
testa()
| 99 |
from collections import namedtuple
A_ : Tuple = namedtuple('from_to', 'from_ to')
A_ : int = {
'cubicmeter': from_to(1, 1),
'litre': from_to(0.001, 1000),
'kilolitre': from_to(1, 1),
'gallon': from_to(0.00454, 264.172),
'cubicyard': from_to(0.76455, 1.30795),
'cubicfoot': from_to(0.028, 35.3147),
'cup': from_to(0.000236588, 4226.75),
}
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float:
if from_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'''
+ ', '.join(UpperCAmelCase__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 57 | 0 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_A : Dict = logging.get_logger(__name__)
_A : List[str] = {
"""Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""",
"""Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""",
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""",
"""Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""",
"""Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""",
"""Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""",
"""Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""",
"""Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""",
"""Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""",
"""Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""",
"""Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""",
"""Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""",
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ : List[str] = """codegen"""
lowerCamelCase__ : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , A_=5_04_00 , A_=20_48 , A_=20_48 , A_=40_96 , A_=28 , A_=16 , A_=64 , A_=None , A_="gelu_new" , A_=0.0 , A_=0.0 , A_=0.0 , A_=1E-5 , A_=0.02 , A_=True , A_=5_02_56 , A_=5_02_56 , A_=False , **A_ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_ctx
SCREAMING_SNAKE_CASE__ = n_positions
SCREAMING_SNAKE_CASE__ = n_embd
SCREAMING_SNAKE_CASE__ = n_layer
SCREAMING_SNAKE_CASE__ = n_head
SCREAMING_SNAKE_CASE__ = n_inner
SCREAMING_SNAKE_CASE__ = rotary_dim
SCREAMING_SNAKE_CASE__ = activation_function
SCREAMING_SNAKE_CASE__ = resid_pdrop
SCREAMING_SNAKE_CASE__ = embd_pdrop
SCREAMING_SNAKE_CASE__ = attn_pdrop
SCREAMING_SNAKE_CASE__ = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = use_cache
SCREAMING_SNAKE_CASE__ = bos_token_id
SCREAMING_SNAKE_CASE__ = eos_token_id
super().__init__(
bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , A_ , A_ = "default" , A_ = None , A_ = False , ):
'''simple docstring'''
super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ )
if not getattr(self._config , '''pad_token_id''' , A_ ):
# TODO: how to do that better?
SCREAMING_SNAKE_CASE__ = 0
@property
def lowercase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(A_ , direction='''inputs''' )
SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def lowercase_ ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def lowercase_ ( self ):
'''simple docstring'''
return self._config.n_head
def lowercase_ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = super(A_ , self ).generate_dummy_inputs(
A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE__ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE__ = seqlen + 2
SCREAMING_SNAKE_CASE__ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE__ = [
(torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE__ = common_inputs['''attention_mask''']
if self.use_past:
SCREAMING_SNAKE_CASE__ = ordered_inputs['''attention_mask'''].dtype
SCREAMING_SNAKE_CASE__ = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 )
return ordered_inputs
@property
def lowercase_ ( self ):
'''simple docstring'''
return 13
| 100 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
A_ : int = logging.get_logger(__name__)
class _lowerCAmelCase( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ):
warnings.warn(
'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use CLIPImageProcessor instead.' , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 57 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.