code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : List[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A_ : str = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A_ : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A_ : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } A_ : Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } A_ : Any = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } A_ : Any = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A_ : Union[str, Any] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A_ : List[str] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple =VOCAB_FILES_NAMES a : Dict =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : Dict =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a : Optional[Any] =DPRContextEncoderTokenizer class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict =VOCAB_FILES_NAMES a : Optional[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a : int =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : int =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a : Dict =DPRQuestionEncoderTokenizer A_ : Optional[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A_ : Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A_ : List[str] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase_ ) class _lowerCAmelCase: """simple docstring""" def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: UpperCamelCase_: Optional[int] = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: Any = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] UpperCamelCase_: Optional[Any] = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] UpperCamelCase_: Dict = len(_lowerCamelCase ) UpperCamelCase_: Tuple = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages assert len(_lowerCamelCase ) == len( _lowerCamelCase ), f'''There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.''' UpperCamelCase_: str = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['input_ids'] UpperCamelCase_: str = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['input_ids'] UpperCamelCase_: Tuple = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: UpperCamelCase_: List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase_: Dict = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1_6 , _lowerCamelCase = 6_4 , _lowerCamelCase = 4 , ): UpperCamelCase_: Optional[int] = reader_input['input_ids'] UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = reader_output[:3] UpperCamelCase_: Any = len(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) UpperCamelCase_: List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCamelCase_: int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase_: Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase_: str = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase_: Tuple = len(_lowerCamelCase ) UpperCamelCase_: Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: List[str] = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase_: List[Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) UpperCamelCase_: Any = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' UpperCamelCase_: str = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" a : Optional[int] =VOCAB_FILES_NAMES a : int =READER_PRETRAINED_VOCAB_FILES_MAP a : Any =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =READER_PRETRAINED_INIT_CONFIGURATION a : List[Any] =['''input_ids''', '''attention_mask'''] a : Any =DPRReaderTokenizer
57
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
1
from itertools import permutations def snake_case (UpperCAmelCase__ ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCamelCase_: Optional[int] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(UpperCAmelCase__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def snake_case (UpperCAmelCase__ = 1_0 ) -> int: return sum( int(''.join(map(UpperCAmelCase__ , UpperCAmelCase__ ) ) ) for num in permutations(range(UpperCAmelCase__ ) ) if is_substring_divisible(UpperCAmelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Optional[int] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any ='''vivit''' def __init__( self , _lowerCamelCase=2_2_4 , _lowerCamelCase=3_2 , _lowerCamelCase=[2, 1_6, 1_6] , _lowerCamelCase=3 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu_fast" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-06 , _lowerCamelCase=True , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Dict = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: List[Any] = hidden_act UpperCamelCase_: List[str] = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: Dict = initializer_range UpperCamelCase_: Tuple = layer_norm_eps UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = num_frames UpperCamelCase_: str = tubelet_size UpperCamelCase_: str = num_channels UpperCamelCase_: List[str] = qkv_bias super().__init__(**_lowerCamelCase )
57
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ : Dict = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @property def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _a ( self ): UpperCamelCase_: List[Any] = self.dummy_uncond_unet UpperCamelCase_: Union[str, Any] = KarrasVeScheduler() UpperCamelCase_: List[str] = KarrasVePipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: int = torch.manual_seed(0 ) UpperCamelCase_: Dict = pipe(num_inference_steps=2 , generator=_lowerCamelCase , output_type='numpy' ).images UpperCamelCase_: Tuple = torch.manual_seed(0 ) UpperCamelCase_: int = pipe(num_inference_steps=2 , generator=_lowerCamelCase , output_type='numpy' , return_dict=_lowerCamelCase )[0] UpperCamelCase_: str = image[0, -3:, -3:, -1] UpperCamelCase_: List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: List[str] = 'google/ncsnpp-celebahq-256' UpperCamelCase_: str = UNetaDModel.from_pretrained(_lowerCamelCase ) UpperCamelCase_: Any = KarrasVeScheduler() UpperCamelCase_: Union[str, Any] = KarrasVePipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: List[Any] = torch.manual_seed(0 ) UpperCamelCase_: Any = pipe(num_inference_steps=2_0 , generator=_lowerCamelCase , output_type='numpy' ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCamelCase_: Any = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
57
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ ) UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ ) UpperCamelCase_: str = 'MLukeTokenizer' with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: Union[str, Any] = state_dict[bias_name] UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: str = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias'] UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase_: Union[str, Any] = state_dict[key] else: UpperCamelCase_: Dict = state_dict[key] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' ) UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase_: Optional[int] = (0, 9) UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: str = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = 'Tokyo is the capital of <mask>.' UpperCamelCase_: Dict = (2_4, 3_0) UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist() UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] UpperCamelCase_: Tuple = {} for entry in data: UpperCamelCase_: Optional[int] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: Union[str, Any] = entity_id break UpperCamelCase_: Dict = F'''{language}:{entity_name}''' UpperCamelCase_: Optional[int] = entity_id return new_mapping if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
57
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int ='''xlm''' a : str ={ '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , _lowerCamelCase=3_0_1_4_5 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=True , _lowerCamelCase=5_1_2 , _lowerCamelCase=2_0_4_8**-0.5 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.0_2 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=5 , _lowerCamelCase=True , _lowerCamelCase="first" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=5 , _lowerCamelCase=5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Any = vocab_size UpperCamelCase_: Any = emb_dim UpperCamelCase_: Optional[int] = n_layers UpperCamelCase_: int = n_heads UpperCamelCase_: Optional[int] = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: List[Any] = gelu_activation UpperCamelCase_: Optional[int] = sinusoidal_embeddings UpperCamelCase_: Any = causal UpperCamelCase_: Tuple = asm UpperCamelCase_: Optional[Any] = n_langs UpperCamelCase_: int = use_lang_emb UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: Any = bos_index UpperCamelCase_: Any = eos_index UpperCamelCase_: Optional[int] = pad_index UpperCamelCase_: List[str] = unk_index UpperCamelCase_: Optional[Any] = mask_index UpperCamelCase_: Optional[int] = is_encoder UpperCamelCase_: Any = max_position_embeddings UpperCamelCase_: List[Any] = embed_init_std UpperCamelCase_: Union[str, Any] = init_std UpperCamelCase_: Dict = summary_type UpperCamelCase_: Optional[int] = summary_use_proj UpperCamelCase_: Dict = summary_activation UpperCamelCase_: Dict = summary_proj_to_labels UpperCamelCase_: List[Any] = summary_first_dropout UpperCamelCase_: Dict = start_n_top UpperCamelCase_: Optional[Any] = end_n_top UpperCamelCase_: List[Any] = mask_token_id UpperCamelCase_: Optional[int] = lang_id if "n_words" in kwargs: UpperCamelCase_: str = kwargs['n_words'] super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , **_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[Any] =AutoencoderKL a : Union[str, Any] ='''sample''' a : Tuple =1e-2 @property def _a ( self ): UpperCamelCase_: Union[str, Any] = 4 UpperCamelCase_: Any = 3 UpperCamelCase_: str = (3_2, 3_2) UpperCamelCase_: Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def _a ( self ): return (3, 3_2, 3_2) @property def _a ( self ): return (3, 3_2, 3_2) def _a ( self ): UpperCamelCase_: List[Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } UpperCamelCase_: Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a ( self ): pass def _a ( self ): pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def _a ( self ): # enable deterministic behavior for gradient checkpointing UpperCamelCase_ ,UpperCamelCase_: Any = self.prepare_init_args_and_inputs_for_common() UpperCamelCase_: int = self.model_class(**_lowerCamelCase ) model.to(_lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training UpperCamelCase_: List[str] = model(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCamelCase_: Dict = torch.randn_like(_lowerCamelCase ) UpperCamelCase_: str = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCamelCase_: Any = self.model_class(**_lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCamelCase_: int = model_a(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCamelCase_: Optional[int] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCamelCase_: Optional[Any] = dict(model.named_parameters() ) UpperCamelCase_: List[str] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_lowerCamelCase ) UpperCamelCase_: Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _a ( self ): UpperCamelCase_: str = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) UpperCamelCase_: Any = model.to(_lowerCamelCase ) model.eval() if torch_device == "mps": UpperCamelCase_: Optional[Any] = torch.manual_seed(0 ) else: UpperCamelCase_: List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) UpperCamelCase_: Optional[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCamelCase_: Dict = image.to(_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: int = model(_lowerCamelCase , sample_posterior=_lowerCamelCase , generator=_lowerCamelCase ).sample UpperCamelCase_: Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCamelCase_: List[str] = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCamelCase_: List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCamelCase_: int = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2 ) ) @slow class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCamelCase ) for s in shape] )}.npy''' def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase=0 , _lowerCamelCase=(4, 3, 5_1_2, 5_1_2) , _lowerCamelCase=False ): UpperCamelCase_: Optional[Any] = torch.floataa if fpaa else torch.floataa UpperCamelCase_: Any = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) ).to(_lowerCamelCase ).to(_lowerCamelCase ) return image def _a ( self , _lowerCamelCase="CompVis/stable-diffusion-v1-4" , _lowerCamelCase=False ): UpperCamelCase_: List[str] = 'fp16' if fpaa else None UpperCamelCase_: int = torch.floataa if fpaa else torch.floataa UpperCamelCase_: Optional[Any] = AutoencoderKL.from_pretrained( _lowerCamelCase , subfolder='vae' , torch_dtype=_lowerCamelCase , revision=_lowerCamelCase , ) model.to(_lowerCamelCase ).eval() return model def _a ( self , _lowerCamelCase=0 ): if torch_device == "mps": return torch.manual_seed(_lowerCamelCase ) return torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [4_7, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = self.get_sd_vae_model() UpperCamelCase_: str = self.get_sd_image(_lowerCamelCase ) UpperCamelCase_: int = self.get_generator(_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: List[str] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape UpperCamelCase_: Tuple = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCamelCase_: List[Any] = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [4_7, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) UpperCamelCase_: str = self.get_sd_image(_lowerCamelCase , fpaa=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.get_generator(_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape UpperCamelCase_: str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCamelCase_: Any = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [4_7, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = self.get_sd_vae_model() UpperCamelCase_: Union[str, Any] = self.get_sd_image(_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ).sample assert sample.shape == image.shape UpperCamelCase_: List[str] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCamelCase_: Any = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [3_7, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = self.get_sd_vae_model() UpperCamelCase_: Dict = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): UpperCamelCase_: List[str] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] UpperCamelCase_: Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCamelCase_: Optional[Any] = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [1_6, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) UpperCamelCase_: int = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 6_4, 6_4) , fpaa=_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: Tuple = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] UpperCamelCase_: Any = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCamelCase_: Tuple = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=5e-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) UpperCamelCase_: Optional[int] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 6_4, 6_4) , fpaa=_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: Optional[int] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCamelCase_: Tuple = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.get_sd_vae_model() UpperCamelCase_: Dict = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): UpperCamelCase_: Optional[int] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCamelCase_: int = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [4_7, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = self.get_sd_vae_model() UpperCamelCase_: int = self.get_sd_image(_lowerCamelCase ) UpperCamelCase_: Dict = self.get_generator(_lowerCamelCase ) with torch.no_grad(): UpperCamelCase_: str = model.encode(_lowerCamelCase ).latent_dist UpperCamelCase_: Union[str, Any] = dist.sample(generator=_lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCamelCase_: Any = sample[0, -1, -3:, -3:].flatten().cpu() UpperCamelCase_: Optional[int] = torch.tensor(_lowerCamelCase ) UpperCamelCase_: int = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
57
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() A_ : Any = logging.get_logger(__name__) A_ : Any = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def snake_case (UpperCAmelCase__ ) -> List[str]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCamelCase_: str = k.replace(UpperCAmelCase__ , UpperCAmelCase__ ) if k.startswith('encoder' ): UpperCamelCase_: int = k.replace('.attn' , '.self_attn' ) UpperCamelCase_: Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCamelCase_: Dict = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): UpperCamelCase_: str = k.replace('norm1' , 'self_attn_layer_norm' ) UpperCamelCase_: List[Any] = k.replace('norm2' , 'encoder_attn_layer_norm' ) UpperCamelCase_: List[str] = k.replace('norm3' , 'final_layer_norm' ) return k def snake_case (UpperCAmelCase__ ) -> Any: UpperCamelCase_: List[Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: UpperCamelCase_: List[str] = sd.pop(UpperCAmelCase__ ) UpperCamelCase_: Dict = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd UpperCamelCase_: List[str] = v A_ : List[str] = ['START'] @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' ) UpperCamelCase_: str = model['model'] UpperCamelCase_: List[str] = BlenderbotConfig.from_json_file(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = BlenderbotForConditionalGeneration(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = m.model.state_dict().keys() UpperCamelCase_: List[Any] = [] UpperCamelCase_: Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCamelCase_: Optional[Any] = rename_state_dict_key(UpperCAmelCase__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCamelCase_: Optional[int] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase__ ) m.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) m.half() m.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) A_ : Any = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
57
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : str =OpenAIGPTTokenizer a : Union[str, Any] =OpenAIGPTTokenizerFast a : Union[str, Any] =True a : Tuple =False def _a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCamelCase_: Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: List[str] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] UpperCamelCase_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , _lowerCamelCase ): return "lower newer", "lower newer" def _a ( self ): UpperCamelCase_: Tuple = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_: Optional[Any] = 'lower' UpperCamelCase_: int = ['low', 'er</w>'] UpperCamelCase_: int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokens + ['<unk>'] UpperCamelCase_: Optional[int] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self , _lowerCamelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input UpperCamelCase_: Union[str, Any] = 'This is a simple input' UpperCamelCase_: Optional[int] = ['This is a simple input 1', 'This is a simple input 2'] UpperCamelCase_: Any = ('This is a simple input', 'This is a pair') UpperCamelCase_: List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def _a ( self ): pass @require_ftfy @require_spacy @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" pass
57
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase_: Tuple = test_metrics @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ): self.test_metrics.main() @require_multi_gpu def _a ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
57
1
def snake_case (UpperCAmelCase__ ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCAmelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
57
import math class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = 0.0 UpperCamelCase_: Tuple = 0.0 for i in range(len(_lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for i in range(len(_lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def snake_case () -> None: # Training Examples ( m, n ) UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCamelCase_: Dict = SelfOrganizingMap() UpperCamelCase_: List[Any] = 3 UpperCamelCase_: List[str] = 0.5 for _ in range(UpperCAmelCase__ ): for j in range(len(UpperCAmelCase__ ) ): # training sample UpperCamelCase_: int = training_samples[j] # Compute the winning vector UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # Update the winning vector UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # classify test sample UpperCamelCase_: Dict = [0, 0, 0, 1] UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
57
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowerCAmelCase: """simple docstring""" a : List[str] =BlenderbotConfig a : Union[str, Any] ={} a : Any ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=2_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: int = batch_size UpperCamelCase_: Optional[int] = seq_length UpperCamelCase_: Any = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Tuple = num_hidden_layers UpperCamelCase_: List[str] = num_attention_heads UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: List[str] = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Optional[Any] = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: Optional[Any] = bos_token_id def _a ( self ): UpperCamelCase_: List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[int] = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = TFBlenderbotModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Any = inputs_dict['input_ids'] UpperCamelCase_: Dict = input_ids[:1, :] UpperCamelCase_: Dict = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[Any] = inputs_dict['head_mask'] UpperCamelCase_: List[Any] = 1 # first forward pass UpperCamelCase_: Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> List[Any]: if attention_mask is None: UpperCamelCase_: List[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () a : List[str] =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () a : Optional[Any] =( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : Optional[int] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Any = TFBlenderbotModelTester(self ) UpperCamelCase_: int = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Union[str, Any] =['''My friends are cool but they eat too many carbs.'''] a : Union[str, Any] ='''facebook/blenderbot-400M-distill''' @cached_property def _a ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _a ( self ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCamelCase_: List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCamelCase_: List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
57
from collections import namedtuple A_ : Tuple = namedtuple('from_to', 'from_ to') A_ : int = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
57
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =XLMTokenizer a : int =False def _a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCamelCase_: str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: Union[str, Any] = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] UpperCamelCase_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = 'lower newer' UpperCamelCase_: str = 'lower newer' return input_text, output_text def _a ( self ): UpperCamelCase_: str = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_: List[Any] = 'lower' UpperCamelCase_: Any = ['low', 'er</w>'] UpperCamelCase_: Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: int = tokens + ['<unk>'] UpperCamelCase_: Tuple = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: Union[str, Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) UpperCamelCase_: Optional[int] = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: List[str] = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) UpperCamelCase_: Dict = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
57
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
57
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: List[str] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase_: Optional[int] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) UpperCamelCase_: Tuple = model.state_dict() def to_tf_var_name(UpperCAmelCase__ ): for patt, repl in iter(UpperCAmelCase__ ): UpperCamelCase_: Tuple = name.replace(UpperCAmelCase__ , UpperCAmelCase__ ) return F'''bert/{name}''' def create_tf_var(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: int = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase_: Optional[int] = tf.get_variable(dtype=UpperCAmelCase__ , shape=tensor.shape , name=UpperCAmelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase_: Tuple = to_tf_var_name(UpperCAmelCase__ ) UpperCamelCase_: str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase_: str = torch_tensor.T UpperCamelCase_: Optional[int] = create_tf_var(tensor=UpperCAmelCase__ , name=UpperCAmelCase__ , session=UpperCAmelCase__ ) tf.keras.backend.set_value(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[str] = session.run(UpperCAmelCase__ ) print(F'''Successfully created {tf_name}: {np.allclose(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) UpperCamelCase_: Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def snake_case (UpperCAmelCase__=None ) -> List[Any]: UpperCamelCase_: int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Directory in which to save tensorflow model' ) UpperCamelCase_: Union[str, Any] = parser.parse_args(UpperCAmelCase__ ) UpperCamelCase_: int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
57
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Optional[int] = 256 class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =['''melgan'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() # From MELGAN UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples UpperCamelCase_: Tuple = 1_2_8 self.register_modules( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range if clip: UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Dict = input_range UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs # Scale to [0, 1]. UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = input_tokens > 0 UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder( encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder( encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = noise_time if not torch.is_tensor(_lowerCamelCase ): UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0: UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase_: Any = self.decoder( encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase ) return logits @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_lowerCamelCase )}.''' ) UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowerCamelCase ): if i == 0: UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase_: Any = ones UpperCamelCase_: str = self.scale_features( _lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase_: List[str] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase_: int = self.decode( encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] ) UpperCamelCase_: Any = mel[:1] UpperCamelCase_: List[str] = mel.cpu().float().numpy() UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase ) logger.info('Generated segment' , _lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase_: int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowerCamelCase )
57
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) A_ : Optional[Any] = ['names', 'prefix'] A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[Any] = ['date_format'] @dataclass class _lowerCAmelCase( datasets.BuilderConfig ): """simple docstring""" a : str ="," a : Optional[str] =None a : Optional[Union[int, List[int], str]] ="infer" a : Optional[List[str]] =None a : Optional[List[str]] =None a : Optional[Union[int, str, List[int], List[str]]] =None a : Optional[Union[List[int], List[str]]] =None a : Optional[str] =None a : bool =True a : Optional[Literal["c", "python", "pyarrow"]] =None a : Dict[Union[int, str], Callable[[Any], Any]] =None a : Optional[list] =None a : Optional[list] =None a : bool =False a : Optional[Union[int, List[int]]] =None a : Optional[int] =None a : Optional[Union[str, List[str]]] =None a : bool =True a : bool =True a : bool =False a : bool =True a : Optional[str] =None a : str ="." a : Optional[str] =None a : str ='"' a : int =0 a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : bool =True a : bool =True a : int =0 a : bool =True a : bool =False a : Optional[str] =None a : int =10000 a : Optional[datasets.Features] =None a : Optional[str] ="strict" a : Literal["error", "warn", "skip"] ="error" a : Optional[str] =None def _a ( self ): if self.delimiter is not None: UpperCamelCase_: Optional[Any] = self.delimiter if self.column_names is not None: UpperCamelCase_: int = self.column_names @property def _a ( self ): UpperCamelCase_: Any = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase( datasets.ArrowBasedBuilder ): """simple docstring""" a : Dict =CsvConfig def _a ( self ): return datasets.DatasetInfo(features=self.config.features ) def _a ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = [files] UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_: Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = [files] UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _a ( self , _lowerCamelCase ): if self.config.features is not None: UpperCamelCase_: List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase ) return pa_table def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_: Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''open-llama''' def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[Any] = rms_norm_eps UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Dict = kwargs.pop( 'use_memorry_efficient_attention' , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_dropout_prob UpperCamelCase_: int = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase ) UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
57
1
from __future__ import annotations from typing import Any class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase = 6 ): UpperCamelCase_: Node | None = None UpperCamelCase_: Node | None = None self.create_linked_list(_lowerCamelCase ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[Any] = Node() UpperCamelCase_: Optional[Any] = current_node UpperCamelCase_: str = current_node UpperCamelCase_: Optional[int] = current_node for _ in range(1 , _lowerCamelCase ): UpperCamelCase_: List[str] = Node() UpperCamelCase_: Dict = current_node UpperCamelCase_: Optional[int] = previous_node UpperCamelCase_: int = current_node UpperCamelCase_: Optional[int] = self.front UpperCamelCase_: Dict = previous_node def _a ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _a ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def _a ( self , _lowerCamelCase ): if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCamelCase_: Tuple = self.rear.next if self.rear: UpperCamelCase_: List[Any] = data def _a ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCamelCase_: Union[str, Any] = self.front.data UpperCamelCase_: Any = None return data UpperCamelCase_: Dict = self.front UpperCamelCase_: Union[str, Any] = old_front.next UpperCamelCase_: Optional[int] = old_front.data UpperCamelCase_: Union[str, Any] = None return data def _a ( self ): if self.is_empty(): raise Exception('Empty Queue' ) def _a ( self ): if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class _lowerCAmelCase: """simple docstring""" def __init__( self ): UpperCamelCase_: Any | None = None UpperCamelCase_: Node | None = None UpperCamelCase_: Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
57
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[Any] = hidden_sizes UpperCamelCase_: List[str] = depths UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = window_size UpperCamelCase_: Tuple = mlp_ratio UpperCamelCase_: Dict = qkv_bias UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: int = drop_path_rate UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[str] = use_absolute_embeddings UpperCamelCase_: Dict = patch_norm UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: List[Any] = is_training UpperCamelCase_: Optional[int] = scope UpperCamelCase_: str = use_labels UpperCamelCase_: List[str] = type_sequence_label_size UpperCamelCase_: Union[str, Any] = encoder_stride UpperCamelCase_: Dict = out_features UpperCamelCase_: str = out_indices def _a ( self ): UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: int = model(_lowerCamelCase ) UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase_: int = None UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = self.type_sequence_label_size UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a : Any =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) a : Dict =False a : Union[str, Any] =False a : Tuple =False a : Optional[int] =False a : Union[str, Any] =False def _a ( self ): UpperCamelCase_: str = FocalNetModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: List[Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Any = [*signature.parameters.keys()] UpperCamelCase_: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = outputs.hidden_states UpperCamelCase_: Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length UpperCamelCase_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase_: Dict = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape UpperCamelCase_: List[str] = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: str = 3 UpperCamelCase_: Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_: int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def _a ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.default_image_processor UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else () a : List[str] =FocalNetConfig a : List[str] =False def _a ( self ): UpperCamelCase_: Any = FocalNetModelTester(self )
57
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case (UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_ ,UpperCamelCase_: str = emb.weight.shape UpperCamelCase_: int = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) UpperCamelCase_: Any = emb.weight.data return lin_layer def snake_case (UpperCAmelCase__ , UpperCAmelCase__=None ) -> Union[str, Any]: UpperCamelCase_: Union[str, Any] = {} for old_key in state_dict.keys(): UpperCamelCase_: Union[str, Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCamelCase_: str = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: UpperCamelCase_: List[Any] = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: UpperCamelCase_: str = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: UpperCamelCase_: Optional[int] = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: UpperCamelCase_: List[Any] = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: UpperCamelCase_: Optional[Any] = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: UpperCamelCase_: Union[str, Any] = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: UpperCamelCase_: str = key.replace('final_layer_norm' , 'ff_layer_norm' ) UpperCamelCase_: Union[str, Any] = state_dict[old_key] return new_dict def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = WEIGHTS_NAME ) -> Any: UpperCamelCase_: Tuple = [] UpperCamelCase_: Any = 0 os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) for expert in range(UpperCAmelCase__ ): UpperCamelCase_: Optional[Any] = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(UpperCAmelCase__ ): UpperCamelCase_: Optional[Any] = torch.load(UpperCAmelCase__ )['model'] remove_ignore_keys_(UpperCAmelCase__ ) UpperCamelCase_: int = rename_fairseq_keys(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join( UpperCAmelCase__ , weights_name.replace('.bin' , F'''-{len(UpperCAmelCase__ )+1:05d}-of-???.bin''' ) ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(UpperCAmelCase__ )[0]].dtype ) # Add the last block UpperCamelCase_: Optional[int] = os.path.join(UpperCAmelCase__ , weights_name.replace('.bin' , F'''-{len(UpperCAmelCase__ )+1:05d}-of-???.bin''' ) ) UpperCamelCase_: Dict = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(UpperCAmelCase__ ) UpperCamelCase_: Any = rename_fairseq_keys(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(UpperCAmelCase__ ) == 1: UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) # Otherwise, let's build the index UpperCamelCase_: Dict = {} for idx, shard in enumerate(UpperCAmelCase__ ): UpperCamelCase_: str = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(UpperCAmelCase__ ):05d}.bin''' ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) for key in shard: UpperCamelCase_: Dict = shard_file # Add the metadata UpperCamelCase_: Dict = {'total_size': total_size} UpperCamelCase_: str = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , 'w' , encoding='utf-8' ) as f: UpperCamelCase_: Tuple = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__ ) + '\n' f.write(UpperCAmelCase__ ) return metadata, index if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) A_ : Optional[int] = parser.parse_args() A_ , A_ : str = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) A_ : str = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) A_ : Dict = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
57
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =StableDiffusionInstructPixaPixPipeline a : List[str] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} a : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS a : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) UpperCamelCase_: List[Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) UpperCamelCase_: int = CLIPTextModel(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_: Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): UpperCamelCase_: str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCamelCase_: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ) if str(_lowerCamelCase ).startswith('mps' ): UpperCamelCase_: List[Any] = torch.manual_seed(_lowerCamelCase ) else: UpperCamelCase_: Tuple = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _a ( self ): UpperCamelCase_: List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: str = self.get_dummy_components() UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: int = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: int = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = sd_pipe(**_lowerCamelCase ).images UpperCamelCase_: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Optional[int] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: str = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: int = self.get_dummy_components() UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Any = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Dict = 'french fries' UpperCamelCase_: Optional[int] = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) UpperCamelCase_: List[str] = output.images UpperCamelCase_: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Dict = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Tuple = self.get_dummy_components() UpperCamelCase_: Any = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: List[Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: List[Any] = [inputs['prompt']] * 2 UpperCamelCase_: Optional[Any] = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 UpperCamelCase_: Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) UpperCamelCase_: Tuple = image / 2 + 0.5 UpperCamelCase_: int = image.permute(0 , 3 , 1 , 2 ) UpperCamelCase_: int = image.repeat(2 , 1 , 1 , 1 ) UpperCamelCase_: List[Any] = sd_pipe(**_lowerCamelCase ).images UpperCamelCase_: List[str] = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) UpperCamelCase_: Optional[int] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: str = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Optional[int] = sd_pipe(**_lowerCamelCase ).images UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Tuple = [round(_lowerCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(_lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Tuple = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _a ( self ): UpperCamelCase_: int = self.get_dummy_components() UpperCamelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) UpperCamelCase_: str = VaeImageProcessor(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = pipe(**self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type='pt' ) )[0] UpperCamelCase_: Union[str, Any] = components['vae'] UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCamelCase_: str = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCamelCase_: Dict = pipe(**_lowerCamelCase )[0] UpperCamelCase_: str = np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCamelCase , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase=0 ): UpperCamelCase_: int = torch.manual_seed(_lowerCamelCase ) UpperCamelCase_: int = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) UpperCamelCase_: Union[str, Any] = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def _a ( self ): UpperCamelCase_: Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: List[str] = self.get_inputs() UpperCamelCase_: Optional[int] = pipe(**_lowerCamelCase ).images UpperCamelCase_: Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: Optional[Any] = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase ) UpperCamelCase_: List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: Union[str, Any] = self.get_inputs() UpperCamelCase_: Optional[Any] = pipe(**_lowerCamelCase ).images UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: Any = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase ) UpperCamelCase_: Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: int = self.get_inputs() UpperCamelCase_: Any = pipe(**_lowerCamelCase ).images UpperCamelCase_: str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: str = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: Optional[Any] = 0 def callback_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None: UpperCamelCase_: List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCamelCase_: List[str] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) UpperCamelCase_: Optional[Any] = latents[0, -3:, -3:, -1] UpperCamelCase_: Tuple = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCamelCase_: str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) UpperCamelCase_: Optional[int] = latents[0, -3:, -3:, -1] UpperCamelCase_: Any = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCamelCase_: Tuple = False UpperCamelCase_: Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) UpperCamelCase_: Tuple = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: Optional[Any] = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase_: List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) UpperCamelCase_: Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCamelCase_: Union[str, Any] = self.get_inputs() UpperCamelCase_: Optional[Any] = pipe(**_lowerCamelCase ) UpperCamelCase_: str = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _a ( self ): UpperCamelCase_: Tuple = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCamelCase_: Dict = inputs['image'].resize((5_0_4, 5_0_4) ) UpperCamelCase_: int = 'timbrooks/instruct-pix2pix' UpperCamelCase_: Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() UpperCamelCase_: Tuple = pipe(**_lowerCamelCase ) UpperCamelCase_: Optional[int] = output.images[0] UpperCamelCase_: List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) UpperCamelCase_: Union[str, Any] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
57
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A_ : Optional[int] = logging.get_logger(__name__) A_ : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A_ : Dict = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } A_ : Optional[Any] = {'allegro/herbert-base-cased': 514} A_ : Dict = {} class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =HerbertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase="</s>" , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sep_token=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: List[str] = [self.cls_token_id] UpperCamelCase_: List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Any = [self.sep_token_id] UpperCamelCase_: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=[1, 1, 2] , _lowerCamelCase=1 , _lowerCamelCase=3_2 , _lowerCamelCase=4 , _lowerCamelCase=8 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=5_1_2 , _lowerCamelCase=3 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=False , ): UpperCamelCase_: int = parent UpperCamelCase_: int = batch_size UpperCamelCase_: int = seq_length UpperCamelCase_: int = is_training UpperCamelCase_: int = use_input_mask UpperCamelCase_: int = use_token_type_ids UpperCamelCase_: Union[str, Any] = use_labels UpperCamelCase_: int = vocab_size UpperCamelCase_: List[str] = block_sizes UpperCamelCase_: Tuple = num_decoder_layers UpperCamelCase_: int = d_model UpperCamelCase_: Optional[Any] = n_head UpperCamelCase_: Tuple = d_head UpperCamelCase_: Any = d_inner UpperCamelCase_: Any = hidden_act UpperCamelCase_: List[Any] = hidden_dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: int = activation_dropout UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: List[str] = type_vocab_size UpperCamelCase_: Optional[Any] = 2 UpperCamelCase_: List[str] = num_labels UpperCamelCase_: Optional[int] = num_choices UpperCamelCase_: List[Any] = scope UpperCamelCase_: List[Any] = initializer_std # Used in the tests to check the size of the first attention layer UpperCamelCase_: Optional[Any] = n_head # Used in the tests to check the size of the first hidden state UpperCamelCase_: int = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCamelCase_: str = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCamelCase_: List[str] = self.num_hidden_layers + 2 def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: int = None if self.use_input_mask: UpperCamelCase_: Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: Any = None if self.use_token_type_ids: UpperCamelCase_: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: Optional[Any] = None UpperCamelCase_: List[Any] = None UpperCamelCase_: Optional[int] = None if self.use_labels: UpperCamelCase_: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: str = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: int = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: List[Any] = TFFunnelModel(config=_lowerCamelCase ) UpperCamelCase_: Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ) UpperCamelCase_: str = [input_ids, input_mask] UpperCamelCase_: str = model(_lowerCamelCase ) UpperCamelCase_: Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCamelCase_: str = False UpperCamelCase_: List[str] = TFFunnelModel(config=_lowerCamelCase ) UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCamelCase_: str = False UpperCamelCase_: List[str] = TFFunnelModel(config=_lowerCamelCase ) UpperCamelCase_: int = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: int = TFFunnelBaseModel(config=_lowerCamelCase ) UpperCamelCase_: int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: str = model(_lowerCamelCase ) UpperCamelCase_: List[Any] = [input_ids, input_mask] UpperCamelCase_: str = model(_lowerCamelCase ) UpperCamelCase_: str = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) UpperCamelCase_: str = False UpperCamelCase_: List[Any] = TFFunnelBaseModel(config=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) UpperCamelCase_: List[Any] = False UpperCamelCase_: int = TFFunnelBaseModel(config=_lowerCamelCase ) UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Any = TFFunnelForPreTraining(config=_lowerCamelCase ) UpperCamelCase_: Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: Tuple = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Dict = TFFunnelForMaskedLM(config=_lowerCamelCase ) UpperCamelCase_: Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: Tuple = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Union[str, Any] = self.num_labels UpperCamelCase_: Union[str, Any] = TFFunnelForSequenceClassification(config=_lowerCamelCase ) UpperCamelCase_: List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Tuple = self.num_choices UpperCamelCase_: Dict = TFFunnelForMultipleChoice(config=_lowerCamelCase ) UpperCamelCase_: Optional[int] = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_: List[Any] = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_: Union[str, Any] = tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_: Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: int = self.num_labels UpperCamelCase_: Tuple = TFFunnelForTokenClassification(config=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: List[str] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Optional[Any] = TFFunnelForQuestionAnswering(config=_lowerCamelCase ) UpperCamelCase_: Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Union[str, Any] = config_and_inputs UpperCamelCase_: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a : Optional[Any] =( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a : Union[str, Any] =False a : Optional[Any] =False def _a ( self ): UpperCamelCase_: Optional[Any] = TFFunnelModelTester(self ) UpperCamelCase_: Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @require_tf class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[Any] =( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a : List[str] =False a : Optional[Any] =False def _a ( self ): UpperCamelCase_: Union[str, Any] = TFFunnelModelTester(self , base=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase )
57
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A_ : Dict = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A_ : int = logging.getLogger() def snake_case () -> Optional[int]: UpperCamelCase_: Optional[int] = argparse.ArgumentParser() parser.add_argument('-f' ) UpperCamelCase_: Tuple = parser.parse_args() return args.f def snake_case (UpperCAmelCase__ , UpperCAmelCase__="eval" ) -> List[Any]: UpperCamelCase_: Optional[int] = os.path.join(UpperCAmelCase__ , F'''{split}_results.json''' ) if os.path.exists(UpperCAmelCase__ ): with open(UpperCAmelCase__ , 'r' ) as f: return json.load(UpperCAmelCase__ ) raise ValueError(F'''can\'t find {path}''' ) A_ : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self ): UpperCamelCase_: int = self.get_auto_remove_tmp_dir() UpperCamelCase_: str = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_flax_glue.main() UpperCamelCase_: str = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) @slow def _a ( self ): UpperCamelCase_: List[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Tuple = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_clm_flax.main() UpperCamelCase_: Tuple = get_results(_lowerCamelCase ) self.assertLess(result['eval_perplexity'] , 1_0_0 ) @slow def _a ( self ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: List[str] = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_summarization_flax.main() UpperCamelCase_: int = get_results(_lowerCamelCase , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 1_0 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def _a ( self ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_mlm_flax.main() UpperCamelCase_: Union[str, Any] = get_results(_lowerCamelCase ) self.assertLess(result['eval_perplexity'] , 4_2 ) @slow def _a ( self ): UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Union[str, Any] = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_ta_mlm_flax.main() UpperCamelCase_: List[str] = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.4_2 ) @slow def _a ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu UpperCamelCase_: Any = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_: Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Optional[Any] = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_flax_ner.main() UpperCamelCase_: str = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def _a ( self ): UpperCamelCase_: Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase_: Dict = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_qa.main() UpperCamelCase_: Tuple = get_results(_lowerCamelCase ) self.assertGreaterEqual(result['eval_f1'] , 3_0 ) self.assertGreaterEqual(result['eval_exact'] , 3_0 )
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=9_9 , _lowerCamelCase=0 , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase="last" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=0 , ): UpperCamelCase_: Union[str, Any] = parent UpperCamelCase_: str = batch_size UpperCamelCase_: Tuple = seq_length UpperCamelCase_: List[Any] = is_training UpperCamelCase_: Optional[int] = use_input_lengths UpperCamelCase_: List[Any] = use_token_type_ids UpperCamelCase_: List[str] = use_labels UpperCamelCase_: List[str] = gelu_activation UpperCamelCase_: Dict = sinusoidal_embeddings UpperCamelCase_: Optional[int] = causal UpperCamelCase_: Any = asm UpperCamelCase_: Optional[int] = n_langs UpperCamelCase_: List[Any] = vocab_size UpperCamelCase_: int = n_special UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Any = hidden_dropout_prob UpperCamelCase_: str = attention_probs_dropout_prob UpperCamelCase_: Tuple = max_position_embeddings UpperCamelCase_: Any = type_sequence_label_size UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: Any = num_labels UpperCamelCase_: List[Any] = num_choices UpperCamelCase_: Optional[Any] = summary_type UpperCamelCase_: str = use_proj UpperCamelCase_: int = scope UpperCamelCase_: Optional[int] = bos_token_id def _a ( self ): UpperCamelCase_: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: Union[str, Any] = None if self.use_input_lengths: UpperCamelCase_: List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase_: Tuple = None if self.use_token_type_ids: UpperCamelCase_: Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase_: Optional[Any] = None UpperCamelCase_: Tuple = None UpperCamelCase_: Optional[int] = None if self.use_labels: UpperCamelCase_: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Union[str, Any] = XLMModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[str] = model(_lowerCamelCase , lengths=_lowerCamelCase , langs=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model(_lowerCamelCase , langs=_lowerCamelCase ) UpperCamelCase_: List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Any = XLMWithLMHeadModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Tuple = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: List[Any] = XLMForQuestionAnsweringSimple(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) UpperCamelCase_: Optional[int] = model(_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Tuple = XLMForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model( _lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , cls_index=_lowerCamelCase , is_impossible=_lowerCamelCase , p_mask=_lowerCamelCase , ) UpperCamelCase_: List[str] = model( _lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , cls_index=_lowerCamelCase , is_impossible=_lowerCamelCase , ) ((UpperCamelCase_) ,): Optional[Any] = result_with_labels.to_tuple() UpperCamelCase_: int = model(_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) ((UpperCamelCase_) ,): str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: List[str] = XLMForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = model(_lowerCamelCase ) UpperCamelCase_: List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: Optional[Any] = self.num_labels UpperCamelCase_: Dict = XLMForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): UpperCamelCase_: int = self.num_choices UpperCamelCase_: str = XLMForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Tuple = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ): UpperCamelCase_: int = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Optional[int] = config_and_inputs UpperCamelCase_: List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) a : Union[str, Any] =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a : List[str] =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): UpperCamelCase_: int = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase_: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) UpperCamelCase_: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def _a ( self ): UpperCamelCase_: str = XLMModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , emb_dim=3_7 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1 ): self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual( [isinstance(_lowerCamelCase , _lowerCamelCase ) for iter_attentions in attentions] , [True] * len(_lowerCamelCase ) ) self.assertEqual(len(_lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowerCamelCase ): # adds PAD dummy token UpperCamelCase_: int = min_length + idx + 1 UpperCamelCase_: Union[str, Any] = min_length + idx + 1 UpperCamelCase_: List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowerCamelCase ) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1 ): self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual( [isinstance(_lowerCamelCase , _lowerCamelCase ) for iter_hidden_states in hidden_states] , [True] * len(_lowerCamelCase ) , ) self.assertEqual(len(_lowerCamelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowerCamelCase ): # adds PAD dummy token UpperCamelCase_: Optional[Any] = min_length + idx + 1 UpperCamelCase_: int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowerCamelCase ) , ) pass @slow def _a ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[str] = XLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Tuple = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_lowerCamelCase ) UpperCamelCase_: int = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=_lowerCamelCase ) # the president UpperCamelCase_: List[Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase_: List[Any] = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowerCamelCase )
57
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
1
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_0_0 , _lowerCamelCase=1_3 , _lowerCamelCase=3_0 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1_0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , ): UpperCamelCase_: int = parent UpperCamelCase_: Any = vocab_size UpperCamelCase_: Any = batch_size UpperCamelCase_: Union[str, Any] = image_size UpperCamelCase_: Union[str, Any] = patch_size UpperCamelCase_: Union[str, Any] = num_channels UpperCamelCase_: List[str] = is_training UpperCamelCase_: Optional[int] = use_labels UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: Dict = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Dict = hidden_act UpperCamelCase_: Tuple = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: List[Any] = type_sequence_label_size UpperCamelCase_: Dict = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_: int = (image_size // patch_size) ** 2 UpperCamelCase_: Optional[Any] = num_patches + 1 def _a ( self ): UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: str = None if self.use_labels: UpperCamelCase_: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Tuple = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = FlaxBeitModel(config=_lowerCamelCase ) UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = FlaxBeitForMaskedImageModeling(config=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = self.type_sequence_label_size UpperCamelCase_: List[str] = FlaxBeitForImageClassification(config=_lowerCamelCase ) UpperCamelCase_: Tuple = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: Optional[Any] = FlaxBeitForImageClassification(_lowerCamelCase ) UpperCamelCase_: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = model(_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): Optional[int] = config_and_inputs UpperCamelCase_: List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _a ( self ): UpperCamelCase_: List[Any] = FlaxBeitModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=3_7 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) UpperCamelCase_: List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Tuple = [*signature.parameters.keys()] UpperCamelCase_: int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase_: Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: str = model_class(_lowerCamelCase ) @jax.jit def model_jitted(_lowerCamelCase , **_lowerCamelCase ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest('JIT Enabled' ): UpperCamelCase_: int = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase_: List[str] = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self ): for model_class_name in self.all_model_classes: UpperCamelCase_: List[Any] = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase_: Union[str, Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(_lowerCamelCase ) def snake_case () -> Optional[Any]: UpperCamelCase_: Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: Optional[Any] = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) UpperCamelCase_: Tuple = self.default_image_processor UpperCamelCase_: Tuple = prepare_img() UpperCamelCase_: Optional[int] = image_processor(images=_lowerCamelCase , return_tensors='np' ).pixel_values # prepare bool_masked_pos UpperCamelCase_: Union[str, Any] = np.ones((1, 1_9_6) , dtype=_lowerCamelCase ) # forward pass UpperCamelCase_: str = model(pixel_values=_lowerCamelCase , bool_masked_pos=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = outputs.logits # verify the logits UpperCamelCase_: Tuple = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_: str = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , _lowerCamelCase , atol=1e-2 ) ) @slow def _a ( self ): UpperCamelCase_: Tuple = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) UpperCamelCase_: List[str] = self.default_image_processor UpperCamelCase_: Tuple = prepare_img() UpperCamelCase_: List[Any] = image_processor(images=_lowerCamelCase , return_tensors='np' ) # forward pass UpperCamelCase_: List[str] = model(**_lowerCamelCase ) UpperCamelCase_: int = outputs.logits # verify the logits UpperCamelCase_: Tuple = (1, 1_0_0_0) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_: List[str] = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) UpperCamelCase_: List[Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: Dict = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) UpperCamelCase_: Union[str, Any] = self.default_image_processor UpperCamelCase_: List[str] = prepare_img() UpperCamelCase_: Dict = image_processor(images=_lowerCamelCase , return_tensors='np' ) # forward pass UpperCamelCase_: Dict = model(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = outputs.logits # verify the logits UpperCamelCase_: List[str] = (1, 2_1_8_4_1) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) UpperCamelCase_: Union[str, Any] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , _lowerCamelCase )
57
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : int =JukeboxTokenizer a : Optional[Any] ={ '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _a ( self ): import torch UpperCamelCase_: List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) UpperCamelCase_: Optional[Any] = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase_: Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _a ( self ): import torch UpperCamelCase_: Tuple = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) UpperCamelCase_: Any = tokenizer(**self.metas )['input_ids'] # fmt: off UpperCamelCase_: Any = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
57
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ ) UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ ) UpperCamelCase_: str = 'MLukeTokenizer' with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: Union[str, Any] = state_dict[bias_name] UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: str = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias'] UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase_: Union[str, Any] = state_dict[key] else: UpperCamelCase_: Dict = state_dict[key] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' ) UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase_: Optional[int] = (0, 9) UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: str = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = 'Tokyo is the capital of <mask>.' UpperCamelCase_: Dict = (2_4, 3_0) UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist() UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] UpperCamelCase_: Tuple = {} for entry in data: UpperCamelCase_: Optional[int] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: Union[str, Any] = entity_id break UpperCamelCase_: Dict = F'''{language}:{entity_name}''' UpperCamelCase_: Optional[int] = entity_id return new_mapping if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
from collections import defaultdict def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: str = True for v in tree[start]: if v not in visited: ret += dfs(UpperCAmelCase__ ) if ret % 2 == 0: cuts.append(UpperCAmelCase__ ) return ret def snake_case () -> Union[str, Any]: dfs(1 ) if __name__ == "__main__": A_ , A_ : List[str] = 10, 9 A_ : List[str] = defaultdict(list) A_ : dict[int, bool] = {} A_ : list[int] = [] A_ : str = 0 A_ : List[str] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
57
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) A_ : Optional[Any] = ['names', 'prefix'] A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[Any] = ['date_format'] @dataclass class _lowerCAmelCase( datasets.BuilderConfig ): """simple docstring""" a : str ="," a : Optional[str] =None a : Optional[Union[int, List[int], str]] ="infer" a : Optional[List[str]] =None a : Optional[List[str]] =None a : Optional[Union[int, str, List[int], List[str]]] =None a : Optional[Union[List[int], List[str]]] =None a : Optional[str] =None a : bool =True a : Optional[Literal["c", "python", "pyarrow"]] =None a : Dict[Union[int, str], Callable[[Any], Any]] =None a : Optional[list] =None a : Optional[list] =None a : bool =False a : Optional[Union[int, List[int]]] =None a : Optional[int] =None a : Optional[Union[str, List[str]]] =None a : bool =True a : bool =True a : bool =False a : bool =True a : Optional[str] =None a : str ="." a : Optional[str] =None a : str ='"' a : int =0 a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : bool =True a : bool =True a : int =0 a : bool =True a : bool =False a : Optional[str] =None a : int =10000 a : Optional[datasets.Features] =None a : Optional[str] ="strict" a : Literal["error", "warn", "skip"] ="error" a : Optional[str] =None def _a ( self ): if self.delimiter is not None: UpperCamelCase_: Optional[Any] = self.delimiter if self.column_names is not None: UpperCamelCase_: int = self.column_names @property def _a ( self ): UpperCamelCase_: Any = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase( datasets.ArrowBasedBuilder ): """simple docstring""" a : Dict =CsvConfig def _a ( self ): return datasets.DatasetInfo(features=self.config.features ) def _a ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = [files] UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_: Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = [files] UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _a ( self , _lowerCamelCase ): if self.config.features is not None: UpperCamelCase_: List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase ) return pa_table def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_: Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCAmelCase: """simple docstring""" a : Optional[int] =XGLMConfig a : str ={} a : Any ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_4 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=0.0_2 , ): UpperCamelCase_: Dict = parent UpperCamelCase_: str = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: Tuple = is_training UpperCamelCase_: Optional[Any] = use_input_mask UpperCamelCase_: Any = use_labels UpperCamelCase_: List[Any] = vocab_size UpperCamelCase_: Optional[Any] = d_model UpperCamelCase_: List[str] = num_hidden_layers UpperCamelCase_: List[str] = num_attention_heads UpperCamelCase_: List[str] = ffn_dim UpperCamelCase_: str = activation_function UpperCamelCase_: Union[str, Any] = activation_dropout UpperCamelCase_: str = attention_dropout UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: str = None UpperCamelCase_: List[Any] = 0 UpperCamelCase_: str = 2 UpperCamelCase_: Tuple = 1 def _a ( self ): return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def _a ( self ): UpperCamelCase_: List[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase_: Dict = None if self.use_input_mask: UpperCamelCase_: Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: Optional[int] = self.get_config() UpperCamelCase_: Union[str, Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _a ( self ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_lowerCamelCase , ) def _a ( self ): UpperCamelCase_: int = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) ,( UpperCamelCase_ ) , ): List[str] = config_and_inputs UpperCamelCase_: Any = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : str =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () a : int =(TFXGLMForCausalLM,) if is_tf_available() else () a : str =( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) a : Optional[int] =False a : Any =False a : Optional[int] =False def _a ( self ): UpperCamelCase_: Dict = TFXGLMModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase , n_embd=3_7 ) def _a ( self ): self.config_tester.run_common_tests() @slow def _a ( self ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Union[str, Any] = TFXGLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def _a ( self ): super().test_resize_token_embeddings() @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self , _lowerCamelCase=True ): UpperCamelCase_: Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: int = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase_: List[Any] = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on UpperCamelCase_: int = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: str = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) UpperCamelCase_: str = tokenizer('Today is a nice day and' , return_tensors='tf' ) UpperCamelCase_: int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): UpperCamelCase_: str = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase , seed=[7, 0] ) UpperCamelCase_: Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: Dict = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: List[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: List[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) UpperCamelCase_: Optional[int] = 'left' # use different length sentences to test batching UpperCamelCase_: str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] UpperCamelCase_: List[str] = tokenizer(_lowerCamelCase , return_tensors='tf' , padding=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inputs['input_ids'] UpperCamelCase_: Optional[Any] = model.generate(input_ids=_lowerCamelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) UpperCamelCase_: Dict = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase_: int = model.generate(input_ids=_lowerCamelCase , max_new_tokens=1_2 ) UpperCamelCase_: Tuple = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase_: str = model.generate(input_ids=_lowerCamelCase , max_new_tokens=1_2 ) UpperCamelCase_: Tuple = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: int = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCamelCase ) UpperCamelCase_: Dict = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [non_padded_sentence, padded_sentence] )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import requests from bsa import BeautifulSoup def snake_case (UpperCAmelCase__ = "AAPL" ) -> str: UpperCamelCase_: List[Any] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' UpperCamelCase_: List[Any] = BeautifulSoup(requests.get(UpperCAmelCase__ ).text , 'html.parser' ) UpperCamelCase_: List[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
57
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
57
1
from __future__ import annotations def snake_case (UpperCAmelCase__ ) -> float: if not nums: raise ValueError('List is empty' ) return sum(UpperCAmelCase__ ) / len(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
57
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase_: Tuple = test_metrics @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ): self.test_metrics.main() @require_multi_gpu def _a ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
57
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Dict = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import math class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = 0.0 UpperCamelCase_: Tuple = 0.0 for i in range(len(_lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for i in range(len(_lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def snake_case () -> None: # Training Examples ( m, n ) UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCamelCase_: Dict = SelfOrganizingMap() UpperCamelCase_: List[Any] = 3 UpperCamelCase_: List[str] = 0.5 for _ in range(UpperCAmelCase__ ): for j in range(len(UpperCAmelCase__ ) ): # training sample UpperCamelCase_: int = training_samples[j] # Compute the winning vector UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # Update the winning vector UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # classify test sample UpperCamelCase_: Dict = [0, 0, 0, 1] UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
57
1
def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Dict = 1 UpperCamelCase_: List[Any] = 2 while i * i <= n: UpperCamelCase_: Dict = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def snake_case () -> List[Any]: UpperCamelCase_: Any = 1 UpperCamelCase_: str = 1 while True: i += 1 t_num += i if count_divisors(UpperCAmelCase__ ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
57
from collections import namedtuple A_ : Tuple = namedtuple('from_to', 'from_ to') A_ : int = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
57
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Any = mock.Mock() UpperCamelCase_: Optional[int] = 5_0_0 UpperCamelCase_: Optional[int] = {} UpperCamelCase_: List[str] = HTTPError UpperCamelCase_: str = {} # Download this model to make sure it's in the cache. UpperCamelCase_: int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: Dict = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Tuple = mock.Mock() UpperCamelCase_: Union[str, Any] = 5_0_0 UpperCamelCase_: Optional[int] = {} UpperCamelCase_: str = HTTPError UpperCamelCase_: str = {} # Download this model to make sure it's in the cache. UpperCamelCase_: Dict = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self ): # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase_: Optional[int] = tempfile.mktemp() with open(_lowerCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , _lowerCamelCase ) UpperCamelCase_: Tuple = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _a ( self ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase_: str = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _a ( cls ): UpperCamelCase_: Optional[int] = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Union[str, Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Union[str, Any] = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Union[str, Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='test-tokenizer' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: Optional[Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: int = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Dict = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase_: Optional[int] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: Optional[int] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _a ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Tuple = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Optional[int] = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: str = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: str = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) UpperCamelCase_: Any = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Dict = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase_: str = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: str = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _a ( self ): UpperCamelCase_: Optional[int] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def _a ( self ): UpperCamelCase_: int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def _a ( self ): UpperCamelCase_: Union[str, Any] = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: Tuple = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: List[Any] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def _a ( self ): UpperCamelCase_: Dict = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def _a ( self ): # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase_: Tuple = Trie() UpperCamelCase_: Optional[int] = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['AB', 'C'] )
57
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
57
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" a : str =[r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 5_0_2_5_7 , _lowerCamelCase = 1_0_2_4 , _lowerCamelCase = 7_6_8 , _lowerCamelCase = 1_2 , _lowerCamelCase = 1_2 , _lowerCamelCase = None , _lowerCamelCase = "gelu_new" , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 1e-5 , _lowerCamelCase = 0.0_2 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = False , ): super().__init__() UpperCamelCase_: int = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) UpperCamelCase_: Optional[int] = prefix_inner_dim UpperCamelCase_: str = prefix_hidden_dim UpperCamelCase_: Optional[int] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase_: int = ( nn.Linear(self.prefix_hidden_dim , _lowerCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCamelCase_: List[Any] = GPTaConfig( vocab_size=_lowerCamelCase , n_positions=_lowerCamelCase , n_embd=_lowerCamelCase , n_layer=_lowerCamelCase , n_head=_lowerCamelCase , n_inner=_lowerCamelCase , activation_function=_lowerCamelCase , resid_pdrop=_lowerCamelCase , embd_pdrop=_lowerCamelCase , attn_pdrop=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , initializer_range=_lowerCamelCase , scale_attn_weights=_lowerCamelCase , use_cache=_lowerCamelCase , scale_attn_by_inverse_layer_idx=_lowerCamelCase , reorder_and_upcast_attn=_lowerCamelCase , ) UpperCamelCase_: Optional[Any] = GPTaLMHeadModel(_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ): UpperCamelCase_: List[str] = self.transformer.transformer.wte(_lowerCamelCase ) UpperCamelCase_: Any = self.encode_prefix(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.decode_prefix(_lowerCamelCase ) UpperCamelCase_: str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCamelCase_: Tuple = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCamelCase_: List[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCamelCase_: Optional[Any] = self.transformer(inputs_embeds=_lowerCamelCase , labels=_lowerCamelCase , attention_mask=_lowerCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _a ( self , _lowerCamelCase , _lowerCamelCase ): return torch.zeros(_lowerCamelCase , self.prefix_length , dtype=torch.intaa , device=_lowerCamelCase ) def _a ( self , _lowerCamelCase ): return self.encode_prefix(_lowerCamelCase ) @torch.no_grad() def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = torch.split(_lowerCamelCase , 1 , dim=0 ) UpperCamelCase_: Optional[Any] = [] UpperCamelCase_: Optional[Any] = [] for feature in features: UpperCamelCase_: Any = self.decode_prefix(feature.to(_lowerCamelCase ) ) # back to the clip feature # Only support beam search for now UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.generate_beam( input_embeds=_lowerCamelCase , device=_lowerCamelCase , eos_token_id=_lowerCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCamelCase_: Optional[Any] = torch.stack(_lowerCamelCase ) UpperCamelCase_: str = torch.stack(_lowerCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _a ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = 5 , _lowerCamelCase = 6_7 , _lowerCamelCase = 1.0 , _lowerCamelCase = None , ): UpperCamelCase_: Tuple = eos_token_id UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Tuple = torch.ones(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.int ) UpperCamelCase_: Optional[int] = torch.zeros(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.bool ) if input_embeds is not None: UpperCamelCase_: List[Any] = input_embeds else: UpperCamelCase_: int = self.transformer.transformer.wte(_lowerCamelCase ) for i in range(_lowerCamelCase ): UpperCamelCase_: int = self.transformer(inputs_embeds=_lowerCamelCase ) UpperCamelCase_: int = outputs.logits UpperCamelCase_: str = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCamelCase_: str = logits.softmax(-1 ).log() if scores is None: UpperCamelCase_ ,UpperCamelCase_: str = logits.topk(_lowerCamelCase , -1 ) UpperCamelCase_: Optional[Any] = generated.expand(_lowerCamelCase , *generated.shape[1:] ) UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCamelCase_: Optional[int] = next_tokens else: UpperCamelCase_: Union[str, Any] = tokens.expand(_lowerCamelCase , *tokens.shape[1:] ) UpperCamelCase_: Any = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCamelCase_: Union[str, Any] = -float(np.inf ) UpperCamelCase_: Optional[Any] = 0 UpperCamelCase_: List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCamelCase_: int = scores_sum / seq_lengths[:, None] UpperCamelCase_ ,UpperCamelCase_: Dict = scores_sum_average.view(-1 ).topk(_lowerCamelCase , -1 ) UpperCamelCase_: List[Any] = next_tokens // scores_sum.shape[1] UpperCamelCase_: int = seq_lengths[next_tokens_source] UpperCamelCase_: Union[str, Any] = next_tokens % scores_sum.shape[1] UpperCamelCase_: Tuple = next_tokens.unsqueeze(1 ) UpperCamelCase_: List[str] = tokens[next_tokens_source] UpperCamelCase_: Dict = torch.cat((tokens, next_tokens) , dim=1 ) UpperCamelCase_: Tuple = generated[next_tokens_source] UpperCamelCase_: List[str] = scores_sum_average * seq_lengths UpperCamelCase_: List[str] = is_stopped[next_tokens_source] UpperCamelCase_: Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCamelCase_: Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) UpperCamelCase_: Dict = is_stopped + next_tokens.eq(_lowerCamelCase ).squeeze() if is_stopped.all(): break UpperCamelCase_: List[Any] = scores / seq_lengths UpperCamelCase_: List[Any] = scores.argsort(descending=_lowerCamelCase ) # tokens tensors are already padded to max_seq_length UpperCamelCase_: str = [tokens[i] for i in order] UpperCamelCase_: str = torch.stack(_lowerCamelCase , dim=0 ) UpperCamelCase_: Union[str, Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
57
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Optional[int] = 256 class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =['''melgan'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() # From MELGAN UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples UpperCamelCase_: Tuple = 1_2_8 self.register_modules( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range if clip: UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Dict = input_range UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs # Scale to [0, 1]. UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = input_tokens > 0 UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder( encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder( encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = noise_time if not torch.is_tensor(_lowerCamelCase ): UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0: UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase_: Any = self.decoder( encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase ) return logits @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_lowerCamelCase )}.''' ) UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowerCamelCase ): if i == 0: UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase_: Any = ones UpperCamelCase_: str = self.scale_features( _lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase_: List[str] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase_: int = self.decode( encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] ) UpperCamelCase_: Any = mel[:1] UpperCamelCase_: List[str] = mel.cpu().float().numpy() UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase ) logger.info('Generated segment' , _lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase_: int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowerCamelCase )
57
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A_ : Dict = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys A_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) A_ : Optional[Any] = ['names', 'prefix'] A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[Any] = ['date_format'] @dataclass class _lowerCAmelCase( datasets.BuilderConfig ): """simple docstring""" a : str ="," a : Optional[str] =None a : Optional[Union[int, List[int], str]] ="infer" a : Optional[List[str]] =None a : Optional[List[str]] =None a : Optional[Union[int, str, List[int], List[str]]] =None a : Optional[Union[List[int], List[str]]] =None a : Optional[str] =None a : bool =True a : Optional[Literal["c", "python", "pyarrow"]] =None a : Dict[Union[int, str], Callable[[Any], Any]] =None a : Optional[list] =None a : Optional[list] =None a : bool =False a : Optional[Union[int, List[int]]] =None a : Optional[int] =None a : Optional[Union[str, List[str]]] =None a : bool =True a : bool =True a : bool =False a : bool =True a : Optional[str] =None a : str ="." a : Optional[str] =None a : str ='"' a : int =0 a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : bool =True a : bool =True a : int =0 a : bool =True a : bool =False a : Optional[str] =None a : int =10000 a : Optional[datasets.Features] =None a : Optional[str] ="strict" a : Literal["error", "warn", "skip"] ="error" a : Optional[str] =None def _a ( self ): if self.delimiter is not None: UpperCamelCase_: Optional[Any] = self.delimiter if self.column_names is not None: UpperCamelCase_: int = self.column_names @property def _a ( self ): UpperCamelCase_: Any = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase( datasets.ArrowBasedBuilder ): """simple docstring""" a : Dict =CsvConfig def _a ( self ): return datasets.DatasetInfo(features=self.config.features ) def _a ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = [files] UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_: Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = [files] UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _a ( self , _lowerCamelCase ): if self.config.features is not None: UpperCamelCase_: List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase ) return pa_table def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_: Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
57
1
from math import factorial class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = real if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = [1] * rank else: UpperCamelCase_: List[str] = rank def __repr__( self ): return ( f'''{self.real}+''' f'''{'+'.join(str(_lowerCamelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _a ( self ): UpperCamelCase_: Union[str, Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCamelCase ) def __add__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): return Dual(self.real + other , self.duals ) UpperCamelCase_: List[Any] = self.duals.copy() UpperCamelCase_: Optional[int] = other.duals.copy() if len(_lowerCamelCase ) > len(_lowerCamelCase ): o_dual.extend([1] * (len(_lowerCamelCase ) - len(_lowerCamelCase )) ) elif len(_lowerCamelCase ) < len(_lowerCamelCase ): s_dual.extend([1] * (len(_lowerCamelCase ) - len(_lowerCamelCase )) ) UpperCamelCase_: List[str] = [] for i in range(len(_lowerCamelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCamelCase ) a : Union[str, Any] =__add__ def __sub__( self , _lowerCamelCase ): return self + other * -1 def __mul__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCamelCase ) UpperCamelCase_: List[Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCamelCase ) a : Optional[int] =__mul__ def __truediv__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCamelCase ) raise ValueError def __floordiv__( self , _lowerCamelCase ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCamelCase ) raise ValueError def __pow__( self , _lowerCamelCase ): if n < 0 or isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self UpperCamelCase_: List[str] = self for _ in range(n - 1 ): x *= self return x def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: if not callable(UpperCAmelCase__ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCAmelCase__ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError('differentiate() requires an int as input for order' ) UpperCamelCase_: Optional[int] = Dual(UpperCAmelCase__ , 1 ) UpperCamelCase_: Optional[Any] = func(UpperCAmelCase__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case (UpperCAmelCase__ ) -> Optional[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
57
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''open-llama''' def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[Any] = rms_norm_eps UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Dict = kwargs.pop( 'use_memorry_efficient_attention' , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_dropout_prob UpperCamelCase_: int = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase ) UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
57
1
from random import randint, random def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = 5 , ) -> list: UpperCamelCase_: List[str] = [[-1] * number_of_cells] # Create a highway without any car UpperCamelCase_: List[Any] = 0 UpperCamelCase_: Any = max(UpperCAmelCase__ , 0 ) while i < number_of_cells: UpperCamelCase_: Optional[int] = ( randint(0 , UpperCAmelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_: List[str] = 0 UpperCamelCase_: Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase__ , -1 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> list: UpperCamelCase_: Any = len(UpperCAmelCase__ ) # Beforce calculations, the highway is empty UpperCamelCase_: List[str] = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed UpperCamelCase_: int = min(highway_now[car_index] + 1 , UpperCAmelCase__ ) # Number of empty cell before the next car UpperCamelCase_: Tuple = get_distance(UpperCAmelCase__ , UpperCAmelCase__ ) - 1 # We can't have the car causing an accident UpperCamelCase_: Optional[int] = min(next_highway[car_index] , UpperCAmelCase__ ) if random() < probability: # Randomly, a driver will slow down UpperCamelCase_: Optional[int] = max(next_highway[car_index] - 1 , 0 ) return next_highway def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> list: UpperCamelCase_: Optional[int] = len(highway[0] ) for i in range(UpperCAmelCase__ ): UpperCamelCase_: Dict = update(highway[i] , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[str] = [-1] * number_of_cells for car_index in range(UpperCAmelCase__ ): UpperCamelCase_: Optional[int] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) UpperCamelCase_: str = (car_index + speed) % number_of_cells # Commit the change of position UpperCamelCase_: int = speed highway.append(UpperCAmelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
57
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[Any] = hidden_sizes UpperCamelCase_: List[str] = depths UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = window_size UpperCamelCase_: Tuple = mlp_ratio UpperCamelCase_: Dict = qkv_bias UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: int = drop_path_rate UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[str] = use_absolute_embeddings UpperCamelCase_: Dict = patch_norm UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: List[Any] = is_training UpperCamelCase_: Optional[int] = scope UpperCamelCase_: str = use_labels UpperCamelCase_: List[str] = type_sequence_label_size UpperCamelCase_: Union[str, Any] = encoder_stride UpperCamelCase_: Dict = out_features UpperCamelCase_: str = out_indices def _a ( self ): UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: int = model(_lowerCamelCase ) UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase_: int = None UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = self.type_sequence_label_size UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a : Any =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) a : Dict =False a : Union[str, Any] =False a : Tuple =False a : Optional[int] =False a : Union[str, Any] =False def _a ( self ): UpperCamelCase_: str = FocalNetModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: List[Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Any = [*signature.parameters.keys()] UpperCamelCase_: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = outputs.hidden_states UpperCamelCase_: Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length UpperCamelCase_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase_: Dict = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape UpperCamelCase_: List[str] = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: str = 3 UpperCamelCase_: Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_: int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def _a ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.default_image_processor UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else () a : List[str] =FocalNetConfig a : List[str] =False def _a ( self ): UpperCamelCase_: Any = FocalNetModelTester(self )
57
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets A_ : str = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' A_ : int = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' A_ : Tuple = r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase( datasets.Metric ): """simple docstring""" def _a ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = 0.0 for i, j in zip(_lowerCamelCase , _lowerCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_lowerCamelCase , _lowerCamelCase ) else 0.0 UpperCamelCase_: List[str] = n_correct / len(_lowerCamelCase ) return { "accuracy": accuracy, }
57
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[str] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
1
def snake_case (UpperCAmelCase__ ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence UpperCamelCase_: str = gray_code_sequence_string(UpperCAmelCase__ ) # # convert them to integers for i in range(len(UpperCAmelCase__ ) ): UpperCamelCase_: Union[str, Any] = int(sequence[i] , 2 ) return sequence def snake_case (UpperCAmelCase__ ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCamelCase_: Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCamelCase_: Union[str, Any] = gray_code_sequence_string(bit_count - 1 ) UpperCamelCase_: Tuple = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCamelCase_: Union[str, Any] = '0' + smaller_sequence[i] sequence.append(UpperCAmelCase__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCamelCase_: str = '1' + smaller_sequence[i] sequence.append(UpperCAmelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
57
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A_ : str = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) A_ : int = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } A_ : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Union[str, Any] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } A_ : Union[str, Any] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Dict = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) A_ : Tuple = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Dict = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) A_ : List[str] = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : int = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' A_ : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' A_ : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' A_ : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' A_ : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' A_ : List[str] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' A_ : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' A_ : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' A_ : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' A_ : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' A_ : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' A_ : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Union[str, Any] = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' A_ : Tuple = '' A_ : Union[str, Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' A_ : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' A_ : Optional[Any] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> str: assert ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: with pytest.raises(UpperCAmelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): UpperCamelCase_: Optional[int] = ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> str: with pytest.raises(UpperCAmelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: ReadMe.from_string(UpperCAmelCase__ , UpperCAmelCase__ , suppress_parsing_errors=UpperCAmelCase__ ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: int = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: List[str] = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) UpperCamelCase_: Tuple = expected_error.format(path=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ , match=re.escape(UpperCAmelCase__ ) ): UpperCamelCase_: str = ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[int] = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) UpperCamelCase_: List[str] = expected_error.format(path=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ , match=re.escape(UpperCAmelCase__ ) ): ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def snake_case (UpperCAmelCase__ ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[int] = Path(UpperCAmelCase__ ) / 'README.md' with open(UpperCAmelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCAmelCase__ ) ReadMe.from_readme(UpperCAmelCase__ , UpperCAmelCase__ , suppress_parsing_errors=UpperCAmelCase__ )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , ): UpperCamelCase_: Dict = size if size is not None else {'height': 1_8, 'width': 1_8} UpperCamelCase_: Union[str, Any] = parent UpperCamelCase_: Any = batch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Tuple = image_size UpperCamelCase_: List[Any] = min_resolution UpperCamelCase_: Union[str, Any] = max_resolution UpperCamelCase_: Dict = do_resize UpperCamelCase_: Any = size UpperCamelCase_: str = apply_ocr def _a ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Dict =LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ): UpperCamelCase_: int = LayoutLMvaImageProcessingTester(self ) @property def _a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): UpperCamelCase_: Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'apply_ocr' ) ) def _a ( self ): UpperCamelCase_: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) UpperCamelCase_: Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def _a ( self ): pass def _a ( self ): # Initialize image_processing UpperCamelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase_: Tuple = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _lowerCamelCase ) self.assertIsInstance(encoding.boxes , _lowerCamelCase ) # Test batched UpperCamelCase_: List[str] = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ): # Initialize image_processing UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_: Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase_: int = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ): # Initialize image_processing UpperCamelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase_: int = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ): # with apply_OCR = True UpperCamelCase_: str = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_: List[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) UpperCamelCase_: Dict = Image.open(ds[0]['file'] ).convert('RGB' ) UpperCamelCase_: Any = image_processing(_lowerCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_: int = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 UpperCamelCase_: Optional[Any] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCamelCase ) self.assertListEqual(encoding.boxes , _lowerCamelCase ) # with apply_OCR = False UpperCamelCase_: Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = image_processing(_lowerCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
57
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def snake_case (*UpperCAmelCase__ ) -> Any: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: List[Any] = list(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): UpperCamelCase_: Optional[int] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def snake_case (UpperCAmelCase__ ) -> bool: UpperCamelCase_: List[str] = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def snake_case (UpperCAmelCase__ = None , UpperCAmelCase__ = 1_2_8 ) -> Optional[int]: if function is None: return functools.partial(UpperCAmelCase__ , starting_batch_size=UpperCAmelCase__ ) UpperCamelCase_: List[Any] = starting_batch_size def decorator(*UpperCAmelCase__ , **UpperCAmelCase__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCamelCase_: Optional[int] = list(inspect.signature(UpperCAmelCase__ ).parameters.keys() ) # Guard against user error if len(UpperCAmelCase__ ) < (len(UpperCAmelCase__ ) + 1): UpperCamelCase_: Union[str, Any] = ', '.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__ ) except Exception as e: if should_reduce_batch_size(UpperCAmelCase__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : int = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''vit_mae''' def __init__( self , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=2_2_4 , _lowerCamelCase=1_6 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=1_6 , _lowerCamelCase=5_1_2 , _lowerCamelCase=8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.7_5 , _lowerCamelCase=False , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Any = hidden_size UpperCamelCase_: Any = num_hidden_layers UpperCamelCase_: Tuple = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Dict = hidden_act UpperCamelCase_: Any = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: Any = initializer_range UpperCamelCase_: List[str] = layer_norm_eps UpperCamelCase_: Union[str, Any] = image_size UpperCamelCase_: Any = patch_size UpperCamelCase_: Any = num_channels UpperCamelCase_: str = qkv_bias UpperCamelCase_: str = decoder_num_attention_heads UpperCamelCase_: Dict = decoder_hidden_size UpperCamelCase_: Dict = decoder_num_hidden_layers UpperCamelCase_: Optional[Any] = decoder_intermediate_size UpperCamelCase_: List[str] = mask_ratio UpperCamelCase_: Tuple = norm_pix_loss
57
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
1
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
1
# using dfs for finding eulerian path traversal def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ) -> Dict: UpperCamelCase_: str = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: UpperCamelCase_ ,UpperCamelCase_: Any = True, True UpperCamelCase_: List[str] = dfs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return path def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: UpperCamelCase_: int = 0 UpperCamelCase_: Optional[int] = -1 for i in range(UpperCAmelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 UpperCamelCase_: Union[str, Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = check_circuit_or_path(UpperCAmelCase__ , UpperCAmelCase__ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return UpperCamelCase_: str = 1 if check == 2: UpperCamelCase_: Optional[int] = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) UpperCamelCase_: str = dfs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) print(UpperCAmelCase__ ) def snake_case () -> Optional[int]: UpperCamelCase_: List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} UpperCamelCase_: Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} UpperCamelCase_: Dict = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} UpperCamelCase_: str = {1: [2, 3], 2: [1, 3], 3: [1, 2]} UpperCamelCase_: str = { 1: [], 2: [] # all degree is zero } UpperCamelCase_: Optional[Any] = 1_0 check_euler(UpperCAmelCase__ , UpperCAmelCase__ ) check_euler(UpperCAmelCase__ , UpperCAmelCase__ ) check_euler(UpperCAmelCase__ , UpperCAmelCase__ ) check_euler(UpperCAmelCase__ , UpperCAmelCase__ ) check_euler(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
57
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ ) UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ ) UpperCamelCase_: str = 'MLukeTokenizer' with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: Union[str, Any] = state_dict[bias_name] UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: str = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias'] UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase_: Union[str, Any] = state_dict[key] else: UpperCamelCase_: Dict = state_dict[key] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' ) UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase_: Optional[int] = (0, 9) UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: str = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = 'Tokyo is the capital of <mask>.' UpperCamelCase_: Dict = (2_4, 3_0) UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist() UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] UpperCamelCase_: Tuple = {} for entry in data: UpperCamelCase_: Optional[int] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: Union[str, Any] = entity_id break UpperCamelCase_: Dict = F'''{language}:{entity_name}''' UpperCamelCase_: Optional[int] = entity_id return new_mapping if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : List[Any] = '▁' A_ : Tuple = {'vocab_file': 'sentencepiece.bpe.model'} A_ : str = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } A_ : List[Any] = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict =['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_: Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token UpperCamelCase_: List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCamelCase_: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase_: List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase_: int = 1 UpperCamelCase_: Any = len(self.sp_model ) + self.fairseq_offset UpperCamelCase_: Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCamelCase_: int = self.__dict__.copy() UpperCamelCase_: int = None UpperCamelCase_: int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ): UpperCamelCase_: Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCamelCase_: Any = {} UpperCamelCase_: int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_: List[Any] = [self.cls_token_id] UpperCamelCase_: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: List[str] = [self.sep_token_id] UpperCamelCase_: Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _a ( self ): UpperCamelCase_: Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _a ( self , _lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase_: Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self , _lowerCamelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: int = ''.join(_lowerCamelCase ).replace(_lowerCamelCase , ' ' ).strip() return out_string def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_: Union[str, Any] = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , 'wb' ) as fi: UpperCamelCase_: Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
57
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _lowerCAmelCase: """simple docstring""" a : int a : Node | None =None a : Node | None =None def snake_case () -> Node | None: UpperCamelCase_: int = Node(1 ) UpperCamelCase_: Any = Node(2 ) UpperCamelCase_: Any = Node(3 ) UpperCamelCase_: List[str] = Node(4 ) UpperCamelCase_: List[Any] = Node(5 ) return tree def snake_case (UpperCAmelCase__ ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def snake_case (UpperCAmelCase__ ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def snake_case (UpperCAmelCase__ ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def snake_case (UpperCAmelCase__ ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def snake_case (UpperCAmelCase__ ) -> Sequence[Node | None]: UpperCamelCase_: list[Any] = [] if root is None: return output UpperCamelCase_: List[str] = deque([root] ) while process_queue: UpperCamelCase_: Dict = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Sequence[Node | None]: UpperCamelCase_: list[Any] = [] def populate_output(UpperCAmelCase__ , UpperCAmelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCAmelCase__ , UpperCAmelCase__ ) return output def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Sequence[Node | None]: UpperCamelCase_: list[Any] = [] def populate_output(UpperCAmelCase__ , UpperCAmelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCAmelCase__ , UpperCAmelCase__ ) return output def snake_case (UpperCAmelCase__ ) -> Sequence[Node | None] | list[Any]: if root is None: return [] UpperCamelCase_: list[Sequence[Node | None]] = [] UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Optional[Any] = height(UpperCAmelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCAmelCase__ , UpperCAmelCase__ ) ) UpperCamelCase_: List[Any] = 1 else: output.append(get_nodes_from_right_to_left(UpperCAmelCase__ , UpperCAmelCase__ ) ) UpperCamelCase_: str = 0 return output def snake_case () -> None: # Main function for testing. UpperCamelCase_: Union[str, Any] = make_tree() print(F'''In-order Traversal: {inorder(UpperCAmelCase__ )}''' ) print(F'''Pre-order Traversal: {preorder(UpperCAmelCase__ )}''' ) print(F'''Post-order Traversal: {postorder(UpperCAmelCase__ )}''' , '\n' ) print(F'''Height of Tree: {height(UpperCAmelCase__ )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(UpperCAmelCase__ ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(UpperCAmelCase__ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(UpperCAmelCase__ , level=UpperCAmelCase__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A_ : Tuple = logging.get_logger(__name__) def snake_case () -> Optional[Any]: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase_: Optional[Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase_: List[str] = json.loads(UpperCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase_: Any = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase_: Tuple = json.loads(UpperCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' , UpperCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _a ( self ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _lowerCamelCase , ) @cached_property def _a ( self ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: UpperCamelCase_: str = torch.device('cpu' ) UpperCamelCase_: Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase_: Optional[int] = smp.local_rank() UpperCamelCase_: Any = torch.device('cuda' , _lowerCamelCase ) UpperCamelCase_: int = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[int] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) UpperCamelCase_: Dict = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase_: Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase_: Any = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[Any] = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def _a ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self ): return not is_sagemaker_model_parallel_available() @property def _a ( self ): return False
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
from datetime import datetime import requests def snake_case (UpperCAmelCase__ ) -> bytes: UpperCamelCase_: Any = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' UpperCamelCase_: int = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(UpperCAmelCase__ ).content if __name__ == "__main__": A_ : Union[str, Any] = input('Enter Video/IGTV url: ').strip() A_ : int = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
57
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
57
1
from __future__ import annotations def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: # noqa: E741 while r - l > 1: UpperCamelCase_: str = (l + r) // 2 if v[m] >= key: UpperCamelCase_: Any = m else: UpperCamelCase_: int = m # noqa: E741 return r def snake_case (UpperCAmelCase__ ) -> int: if len(UpperCAmelCase__ ) == 0: return 0 UpperCamelCase_: Optional[Any] = [0] * len(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: Any = v[0] for i in range(1 , len(UpperCAmelCase__ ) ): if v[i] < tail[0]: UpperCamelCase_: Optional[int] = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_: Any = v[i] length += 1 else: UpperCamelCase_: Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
57
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case (UpperCAmelCase__ ) -> Dict: UpperCamelCase_: Optional[Any] = os.path.join(args.tf_model_dir , 'parameters.json' ) UpperCamelCase_: int = json.loads(open(UpperCAmelCase__ ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('.pt' ): UpperCamelCase_: Union[str, Any] = args.output + '.pt' UpperCamelCase_: Optional[Any] = OrderedDict() with tf.device('/CPU:0' ): UpperCamelCase_: Optional[int] = tf.train.load_checkpoint(args.tf_model_dir ) UpperCamelCase_: str = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCamelCase_: Tuple = reader.get_tensor(UpperCAmelCase__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): UpperCamelCase_: Tuple = int(key_name[9] ) elif key_name.startswith('pasts/out' ): UpperCamelCase_: Any = 8 UpperCamelCase_: int = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCamelCase_: Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: List[str] = torch.tensor(UpperCAmelCase__ ) elif key_name.startswith('model/moe' ): UpperCamelCase_: Dict = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): UpperCamelCase_: str = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player UpperCamelCase_: List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Tuple = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/softmlp/kernel' ): UpperCamelCase_: Optional[int] = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player UpperCamelCase_: int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Optional[Any] = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): UpperCamelCase_: Tuple = key_name[-9:-7] for i in range(1_6 ): UpperCamelCase_: str = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) UpperCamelCase_: Dict = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCamelCase_: Any = torch.tensor(UpperCAmelCase__ ) elif key_name.startswith('model/mlp' ): UpperCamelCase_: Tuple = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): UpperCamelCase_: List[Any] = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player UpperCamelCase_: Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Tuple = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/p1/bias' ): UpperCamelCase_: List[str] = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player UpperCamelCase_: List[str] = vnp.copy() # same because it is one dimensional UpperCamelCase_: Optional[Any] = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/p2/kernel' ): UpperCamelCase_: Optional[Any] = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player UpperCamelCase_: List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Optional[Any] = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/p2/bias' ): UpperCamelCase_: List[Any] = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player UpperCamelCase_: Dict = vnp.copy() # same because it is one dimensional UpperCamelCase_: str = torch.tensor(UpperCAmelCase__ ) elif key_name.startswith('model/ln' ): UpperCamelCase_: Optional[Any] = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): UpperCamelCase_: Optional[Any] = 'model.blocks.%d.feed_forward.norm.bias' % player UpperCamelCase_: Optional[Any] = vnp.copy() # same because it is one dimensional UpperCamelCase_: List[str] = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/g' ): UpperCamelCase_: Optional[Any] = 'model.blocks.%d.feed_forward.norm.weight' % player UpperCamelCase_: Tuple = vnp.copy() # same because it is one dimensional UpperCamelCase_: str = torch.tensor(UpperCAmelCase__ ) elif key_name.startswith('model/att' ): UpperCamelCase_: Dict = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): UpperCamelCase_: Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCamelCase_: List[Any] = state[:, 0, :, :] UpperCamelCase_: Any = state[:, 1, :, :] UpperCamelCase_: Optional[int] = state[:, 2, :, :] UpperCamelCase_: Optional[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Optional[int] = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player UpperCamelCase_: List[Any] = torch.tensor(UpperCAmelCase__ ) UpperCamelCase_: str = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player UpperCamelCase_: Any = torch.tensor(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player UpperCamelCase_: List[Any] = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/o/kernel' ): UpperCamelCase_: Optional[int] = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player UpperCamelCase_: Optional[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: Union[str, Any] = torch.tensor(UpperCAmelCase__ ) elif key_name.startswith('model/an' ): UpperCamelCase_: Union[str, Any] = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): UpperCamelCase_: Optional[int] = 'model.blocks.%d.self_attn.norm.bias' % player UpperCamelCase_: int = vnp.copy() # same because it is one dimensional UpperCamelCase_: List[str] = torch.tensor(UpperCAmelCase__ ) elif key_name.endswith('/g' ): UpperCamelCase_: str = 'model.blocks.%d.self_attn.norm.weight' % player UpperCamelCase_: Optional[Any] = vnp.copy() # same because it is one dimensional UpperCamelCase_: List[str] = torch.tensor(UpperCAmelCase__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): UpperCamelCase_: int = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] UpperCamelCase_: int = 'model.%s.weight' % nlayer UpperCamelCase_: Dict = vnp.copy() # same in embedded UpperCamelCase_: Dict = torch.tensor(UpperCAmelCase__ ) if key_name.startswith('model/wte' ): UpperCamelCase_: Dict = 'lm_head.weight' UpperCamelCase_: List[str] = vnp.copy() # same in embedded UpperCamelCase_: int = torch.tensor(UpperCAmelCase__ ) elif key_name.startswith('model/wob' ): UpperCamelCase_: List[Any] = 'final_logits_bias' UpperCamelCase_: str = vnp.copy() # same in embedded UpperCamelCase_: Union[str, Any] = state.reshape((1, -1) ) UpperCamelCase_: Optional[Any] = torch.tensor(UpperCAmelCase__ ) elif key_name == "model/dense/kernel": UpperCamelCase_: Any = 'model.last_project.weight' UpperCamelCase_: Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCamelCase_: str = torch.tensor(UpperCAmelCase__ ) elif key_name == "model/dense_1/bias": UpperCamelCase_: List[Any] = 'model.last_project.bias' UpperCamelCase_: Any = vnp.copy() # same because it is one dimensional UpperCamelCase_: str = torch.tensor(UpperCAmelCase__ ) torch.save(UpperCAmelCase__ , args.output ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') A_ : int = parser.parse_args() convert_tf_gptsan_to_pt(args)
57
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase_: Tuple = test_metrics @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ): self.test_metrics.main() @require_multi_gpu def _a ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
57
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def snake_case (UpperCAmelCase__ ) -> int: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase_: Union[str, Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase__ , id=UpperCAmelCase__ )
57
import math class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = 0.0 UpperCamelCase_: Tuple = 0.0 for i in range(len(_lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for i in range(len(_lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def snake_case () -> None: # Training Examples ( m, n ) UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCamelCase_: Dict = SelfOrganizingMap() UpperCamelCase_: List[Any] = 3 UpperCamelCase_: List[str] = 0.5 for _ in range(UpperCAmelCase__ ): for j in range(len(UpperCAmelCase__ ) ): # training sample UpperCamelCase_: int = training_samples[j] # Compute the winning vector UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # Update the winning vector UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # classify test sample UpperCamelCase_: Dict = [0, 0, 0, 1] UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
57
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase = "cpu" , _lowerCamelCase = "openai/clip-vit-large-patch14" ): UpperCamelCase_: Dict = device UpperCamelCase_: Optional[int] = CLIPTokenizerFast.from_pretrained(_lowerCamelCase ) UpperCamelCase_: List[str] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCamelCase_: Any = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCamelCase_: Optional[int] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCamelCase_: List[str] = torchvision.transforms.Resize(2_2_4 ) UpperCamelCase_: List[Any] = torchvision.transforms.CenterCrop(2_2_4 ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Optional[int] = self.resize(_lowerCamelCase ) UpperCamelCase_: Optional[int] = self.center_crop(_lowerCamelCase ) UpperCamelCase_: Any = self.normalize(_lowerCamelCase ) return images def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_: Dict = self.tokenizer(text=_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Any = self.preprocess_img(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _lowerCAmelCase( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase=1_0 , _lowerCamelCase=0.0_1 , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase="image" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , ): super().__init__() UpperCamelCase_: List[Any] = None UpperCamelCase_: Tuple = device if device else get_device() if vqgan: UpperCamelCase_: Tuple = vqgan else: UpperCamelCase_: List[str] = load_vqgan(self.device , conf_path=_lowerCamelCase , ckpt_path=_lowerCamelCase ) self.vqgan.eval() if clip: UpperCamelCase_: Optional[Any] = clip else: UpperCamelCase_: List[Any] = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCamelCase_: Any = ProcessorGradientFlow(device=self.device ) UpperCamelCase_: Any = iterations UpperCamelCase_: int = lr UpperCamelCase_: List[str] = log UpperCamelCase_: Optional[Any] = make_grid UpperCamelCase_: Any = return_val UpperCamelCase_: Tuple = quantize UpperCamelCase_: str = self.vqgan.decoder.z_shape def _a ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=5 , _lowerCamelCase=True ): UpperCamelCase_: Dict = [] if output_path is None: UpperCamelCase_: Union[str, Any] = './animation.gif' if input_path is None: UpperCamelCase_: List[str] = self.save_path UpperCamelCase_: Dict = sorted(glob(input_path + '/*' ) ) if not len(_lowerCamelCase ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(_lowerCamelCase ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCamelCase_: Tuple = total_duration / len(_lowerCamelCase ) UpperCamelCase_: List[str] = [frame_duration] * len(_lowerCamelCase ) if extend_frames: UpperCamelCase_: int = 1.5 UpperCamelCase_: List[str] = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(_lowerCamelCase ) ) imageio.mimsave(_lowerCamelCase , _lowerCamelCase , duration=_lowerCamelCase ) print(f'''gif saved to {output_path}''' ) def _a ( self , _lowerCamelCase=None , _lowerCamelCase=None ): if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCamelCase_: str = preprocess(Image.open(_lowerCamelCase ) , target_image_size=2_5_6 ).to(self.device ) UpperCamelCase_: Dict = preprocess_vqgan(_lowerCamelCase ) UpperCamelCase_ ,*UpperCamelCase_: List[Any] = self.vqgan.encode(_lowerCamelCase ) return z def _a ( self , _lowerCamelCase ): UpperCamelCase_: Tuple = self.latent.detach().requires_grad_() UpperCamelCase_: Dict = base_latent + transform_vector if self.quantize: UpperCamelCase_ ,*UpperCamelCase_: int = self.vqgan.quantize(_lowerCamelCase ) else: UpperCamelCase_: Any = trans_latent return self.vqgan.decode(_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): UpperCamelCase_: Any = self.clip_preprocessor(text=_lowerCamelCase , images=_lowerCamelCase , return_tensors='pt' , padding=_lowerCamelCase ) UpperCamelCase_: Any = self.clip(**_lowerCamelCase ) UpperCamelCase_: str = clip_outputs.logits_per_image if weights is not None: UpperCamelCase_: List[str] = similarity_logits * weights return similarity_logits.sum() def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = self._get_clip_similarity(pos_prompts['prompts'] , _lowerCamelCase , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCamelCase_: Dict = self._get_clip_similarity(neg_prompts['prompts'] , _lowerCamelCase , weights=neg_prompts['weights'] ) else: UpperCamelCase_: int = torch.tensor([1] , device=self.device ) UpperCamelCase_: Optional[Any] = -torch.log(_lowerCamelCase ) + torch.log(_lowerCamelCase ) return loss def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[Any] = torch.randn_like(self.latent , requires_grad=_lowerCamelCase , device=self.device ) UpperCamelCase_: Optional[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase_: Tuple = self._add_vector(_lowerCamelCase ) UpperCamelCase_: Tuple = loop_post_process(_lowerCamelCase ) UpperCamelCase_: List[str] = self._get_CLIP_loss(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print('CLIP loss' , _lowerCamelCase ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=_lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): wandb.init(reinit=_lowerCamelCase , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCamelCase_: Optional[int] = Image.open(_lowerCamelCase ) UpperCamelCase_: List[str] = image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(_lowerCamelCase ) ) def _a ( self , _lowerCamelCase ): if not prompts: return [] UpperCamelCase_: Tuple = [] UpperCamelCase_: Optional[int] = [] if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(_lowerCamelCase , (tuple, list) ): UpperCamelCase_: Union[str, Any] = prompt[0] UpperCamelCase_: Dict = float(prompt[1] ) elif ":" in prompt: UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = prompt.split(':' ) UpperCamelCase_: int = float(_lowerCamelCase ) else: UpperCamelCase_: int = prompt UpperCamelCase_: List[Any] = 1.0 processed_prompts.append(_lowerCamelCase ) weights.append(_lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(_lowerCamelCase , device=self.device ), } def _a ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , ): if image_path: UpperCamelCase_: Optional[int] = self._get_latent(_lowerCamelCase ) else: UpperCamelCase_: Optional[int] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase_: Any = self.process_prompts(_lowerCamelCase ) UpperCamelCase_: Dict = self.process_prompts(_lowerCamelCase ) if save_final and save_path is None: UpperCamelCase_: Dict = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) else: UpperCamelCase_: str = save_path + '_' + get_timestamp() os.makedirs(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = save_path UpperCamelCase_: Union[str, Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(_lowerCamelCase ) ) UpperCamelCase_: Optional[int] = loop_post_process(_lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ): if show_intermediate: show_pil(_lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'Image': wandb.Image(_lowerCamelCase )} ) if show_final: show_pil(_lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
57
from collections import namedtuple A_ : Tuple = namedtuple('from_to', 'from_ to') A_ : int = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
57
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[str] =ConsistencyModelPipeline a : Union[str, Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS a : List[str] =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a : List[str] =frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _a ( self ): UpperCamelCase_: List[str] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _a ( self ): UpperCamelCase_: Any = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _a ( self , _lowerCamelCase=False ): if class_cond: UpperCamelCase_: str = self.dummy_cond_unet else: UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet # Default to CM multistep sampler UpperCamelCase_: Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) UpperCamelCase_: Optional[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith('mps' ): UpperCamelCase_: List[Any] = torch.manual_seed(_lowerCamelCase ) else: UpperCamelCase_: Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [2_2, 0], 'generator': generator, 'output_type': 'np', } return inputs def _a ( self ): UpperCamelCase_: Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Union[str, Any] = self.get_dummy_components() UpperCamelCase_: List[str] = ConsistencyModelPipeline(**_lowerCamelCase ) UpperCamelCase_: List[str] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Any = pipe(**_lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: int = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: int = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: List[Any] = self.get_dummy_components(class_cond=_lowerCamelCase ) UpperCamelCase_: Tuple = ConsistencyModelPipeline(**_lowerCamelCase ) UpperCamelCase_: Any = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Optional[int] = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: Union[str, Any] = pipe(**_lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_: int = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components() UpperCamelCase_: Dict = ConsistencyModelPipeline(**_lowerCamelCase ) UpperCamelCase_: Any = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: int = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: List[str] = 1 UpperCamelCase_: List[str] = None UpperCamelCase_: Optional[int] = pipe(**_lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: str = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_: Any = self.get_dummy_components(class_cond=_lowerCamelCase ) UpperCamelCase_: Any = ConsistencyModelPipeline(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_dummy_inputs(_lowerCamelCase ) UpperCamelCase_: Tuple = 1 UpperCamelCase_: List[str] = None UpperCamelCase_: Tuple = 0 UpperCamelCase_: Dict = pipe(**_lowerCamelCase ).images assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase_: Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Dict = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase=0 , _lowerCamelCase=False , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=(1, 3, 6_4, 6_4) ): UpperCamelCase_: Dict = torch.manual_seed(_lowerCamelCase ) UpperCamelCase_: Dict = { 'num_inference_steps': None, 'timesteps': [2_2, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: UpperCamelCase_: Any = self.get_fixed_latents(seed=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase , shape=_lowerCamelCase ) UpperCamelCase_: List[Any] = latents return inputs def _a ( self , _lowerCamelCase=0 , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=(1, 3, 6_4, 6_4) ): if type(_lowerCamelCase ) == str: UpperCamelCase_: List[Any] = torch.device(_lowerCamelCase ) UpperCamelCase_: List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_: Optional[int] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) return latents def _a ( self ): UpperCamelCase_: List[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) UpperCamelCase_: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) UpperCamelCase_: Optional[int] = ConsistencyModelPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pipe.to(torch_device=_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_inputs() UpperCamelCase_: int = pipe(**_lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_: int = image[0, -3:, -3:, -1] UpperCamelCase_: Any = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _a ( self ): UpperCamelCase_: str = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) UpperCamelCase_: Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) UpperCamelCase_: List[str] = ConsistencyModelPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pipe.to(torch_device=_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: str = self.get_inputs() UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = None UpperCamelCase_: Optional[Any] = pipe(**_lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_: Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[Any] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _a ( self ): UpperCamelCase_: Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) UpperCamelCase_: Dict = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) UpperCamelCase_: List[str] = ConsistencyModelPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pipe.to(torch_device=_lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.get_inputs(get_fixed_latents=_lowerCamelCase , device=_lowerCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_lowerCamelCase , enable_math=_lowerCamelCase , enable_mem_efficient=_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pipe(**_lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Any = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _a ( self ): UpperCamelCase_: Any = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) UpperCamelCase_: Tuple = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) UpperCamelCase_: List[Any] = ConsistencyModelPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pipe.to(torch_device=_lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Any = self.get_inputs(get_fixed_latents=_lowerCamelCase , device=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: List[str] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_lowerCamelCase , enable_math=_lowerCamelCase , enable_mem_efficient=_lowerCamelCase ): UpperCamelCase_: Optional[Any] = pipe(**_lowerCamelCase ).images assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_: Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Tuple = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
57
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
57
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder A_ : str = datasets.utils.logging.get_logger(__name__) class _lowerCAmelCase( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" a : bool =None a : bool =None class _lowerCAmelCase( folder_based_builder.FolderBasedBuilder ): """simple docstring""" a : str =datasets.Audio() a : List[Any] ='''audio''' a : Optional[Any] =AudioFolderConfig a : List[str] # definition at the bottom of the script a : str =AudioClassification(audio_column='''audio''' , label_column='''label''' ) A_ : Optional[Any] = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] A_ : Tuple = AUDIO_EXTENSIONS
57
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Optional[int] = 256 class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =['''melgan'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() # From MELGAN UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples UpperCamelCase_: Tuple = 1_2_8 self.register_modules( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range if clip: UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Dict = input_range UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs # Scale to [0, 1]. UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = input_tokens > 0 UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder( encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder( encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = noise_time if not torch.is_tensor(_lowerCamelCase ): UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0: UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase_: Any = self.decoder( encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase ) return logits @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_lowerCamelCase )}.''' ) UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowerCamelCase ): if i == 0: UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase_: Any = ones UpperCamelCase_: str = self.scale_features( _lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase_: List[str] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase_: int = self.decode( encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] ) UpperCamelCase_: Any = mel[:1] UpperCamelCase_: List[str] = mel.cpu().float().numpy() UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase ) logger.info('Generated segment' , _lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase_: int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowerCamelCase )
57
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin A_ : List[str] = random.Random() if is_torch_available(): import torch def snake_case (UpperCAmelCase__ , UpperCAmelCase__=1.0 , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: if rng is None: UpperCamelCase_: str = global_rng UpperCamelCase_: Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=4_0_0 , _lowerCamelCase=2_0_0_0 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6_0_0_0 , _lowerCamelCase=True , _lowerCamelCase=True , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: int = batch_size UpperCamelCase_: int = min_seq_length UpperCamelCase_: int = max_seq_length UpperCamelCase_: List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_: Dict = feature_size UpperCamelCase_: Optional[Any] = padding_value UpperCamelCase_: List[Any] = sampling_rate UpperCamelCase_: Optional[int] = return_attention_mask UpperCamelCase_: Optional[Any] = do_normalize def _a ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , _lowerCamelCase=False , _lowerCamelCase=False ): def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: UpperCamelCase_: List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase_: str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_: Optional[int] = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =ASTFeatureExtractor def _a ( self ): UpperCamelCase_: List[Any] = ASTFeatureExtractionTester(self ) def _a ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_: Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase_: Optional[Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase_: int = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values UpperCamelCase_: str = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched UpperCamelCase_: str = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np' ).input_values UpperCamelCase_: List[str] = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_: List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase_: int = np.asarray(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = feat_extract(_lowerCamelCase , return_tensors='np' ).input_values UpperCamelCase_: List[Any] = feat_extract(_lowerCamelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) @require_torch def _a ( self ): import torch UpperCamelCase_: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_: List[str] = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCamelCase_: int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_: Tuple = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase_: List[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _a ( self , _lowerCamelCase ): from datasets import load_dataset UpperCamelCase_: Optional[Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCamelCase_: Tuple = ds.sort('id' ).select(range(_lowerCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _a ( self ): # fmt: off UpperCamelCase_: Optional[int] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCamelCase_: Any = self._load_datasamples(1 ) UpperCamelCase_: List[Any] = ASTFeatureExtractor() UpperCamelCase_: Optional[int] = feature_extractor(_lowerCamelCase , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _lowerCamelCase , atol=1e-4 ) )
57
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) A_ : Optional[Any] = ['names', 'prefix'] A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[Any] = ['date_format'] @dataclass class _lowerCAmelCase( datasets.BuilderConfig ): """simple docstring""" a : str ="," a : Optional[str] =None a : Optional[Union[int, List[int], str]] ="infer" a : Optional[List[str]] =None a : Optional[List[str]] =None a : Optional[Union[int, str, List[int], List[str]]] =None a : Optional[Union[List[int], List[str]]] =None a : Optional[str] =None a : bool =True a : Optional[Literal["c", "python", "pyarrow"]] =None a : Dict[Union[int, str], Callable[[Any], Any]] =None a : Optional[list] =None a : Optional[list] =None a : bool =False a : Optional[Union[int, List[int]]] =None a : Optional[int] =None a : Optional[Union[str, List[str]]] =None a : bool =True a : bool =True a : bool =False a : bool =True a : Optional[str] =None a : str ="." a : Optional[str] =None a : str ='"' a : int =0 a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : bool =True a : bool =True a : int =0 a : bool =True a : bool =False a : Optional[str] =None a : int =10000 a : Optional[datasets.Features] =None a : Optional[str] ="strict" a : Literal["error", "warn", "skip"] ="error" a : Optional[str] =None def _a ( self ): if self.delimiter is not None: UpperCamelCase_: Optional[Any] = self.delimiter if self.column_names is not None: UpperCamelCase_: int = self.column_names @property def _a ( self ): UpperCamelCase_: Any = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase( datasets.ArrowBasedBuilder ): """simple docstring""" a : Dict =CsvConfig def _a ( self ): return datasets.DatasetInfo(features=self.config.features ) def _a ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = [files] UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_: Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = [files] UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _a ( self , _lowerCamelCase ): if self.config.features is not None: UpperCamelCase_: List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase ) return pa_table def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_: Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
57
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=3_2 , _lowerCamelCase=True , ): UpperCamelCase_: Any = parent UpperCamelCase_: Optional[Any] = batch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Optional[Any] = image_size UpperCamelCase_: Optional[int] = min_resolution UpperCamelCase_: List[str] = max_resolution UpperCamelCase_: Tuple = do_resize UpperCamelCase_: Union[str, Any] = size_divisor UpperCamelCase_: Optional[int] = do_rescale def _a ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : str =GLPNImageProcessor if is_vision_available() else None def _a ( self ): UpperCamelCase_: Tuple = GLPNImageProcessingTester(self ) @property def _a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size_divisor' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'resample' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_rescale' ) ) def _a ( self ): pass def _a ( self ): # Initialize image_processing UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self ): # Initialize image_processing UpperCamelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self ): # Initialize image_processing UpperCamelCase_: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase_: str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
57
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''open-llama''' def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[Any] = rms_norm_eps UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Dict = kwargs.pop( 'use_memorry_efficient_attention' , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_dropout_prob UpperCamelCase_: int = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase ) UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
57
1
from __future__ import annotations from random import random class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase = None ): UpperCamelCase_: Optional[int] = value UpperCamelCase_: Dict = random() UpperCamelCase_: Node | None = None UpperCamelCase_: Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self ): UpperCamelCase_: str = str(self.value ) + ' ' UpperCamelCase_: Tuple = str(self.left or '' ) UpperCamelCase_: List[str] = str(self.right or '' ) return value + left + right def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: UpperCamelCase_ ,UpperCamelCase_: Tuple = split(root.left , UpperCAmelCase__ ) return left, root else: UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = split(root.right , UpperCAmelCase__ ) return root, right def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: UpperCamelCase_: int = merge(left.right , UpperCAmelCase__ ) return left else: UpperCamelCase_: Any = merge(UpperCAmelCase__ , right.left ) return right def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Node | None: UpperCamelCase_: List[Any] = Node(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = split(UpperCAmelCase__ , UpperCAmelCase__ ) return merge(merge(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Node | None: UpperCamelCase_ ,UpperCamelCase_: Any = split(UpperCAmelCase__ , value - 1 ) UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = split(UpperCAmelCase__ , UpperCAmelCase__ ) return merge(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Node | None: for arg in args.split(): if arg[0] == "+": UpperCamelCase_: int = insert(UpperCAmelCase__ , int(arg[1:] ) ) elif arg[0] == "-": UpperCamelCase_: Union[str, Any] = erase(UpperCAmelCase__ , int(arg[1:] ) ) else: print('Unknown command' ) return root def snake_case () -> None: UpperCamelCase_: Union[str, Any] = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) UpperCamelCase_: Optional[Any] = input() while args != "q": UpperCamelCase_: List[str] = interact_treap(UpperCAmelCase__ , UpperCAmelCase__ ) print(UpperCAmelCase__ ) UpperCamelCase_: List[str] = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[Any] = hidden_sizes UpperCamelCase_: List[str] = depths UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = window_size UpperCamelCase_: Tuple = mlp_ratio UpperCamelCase_: Dict = qkv_bias UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: int = drop_path_rate UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[str] = use_absolute_embeddings UpperCamelCase_: Dict = patch_norm UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: List[Any] = is_training UpperCamelCase_: Optional[int] = scope UpperCamelCase_: str = use_labels UpperCamelCase_: List[str] = type_sequence_label_size UpperCamelCase_: Union[str, Any] = encoder_stride UpperCamelCase_: Dict = out_features UpperCamelCase_: str = out_indices def _a ( self ): UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: int = model(_lowerCamelCase ) UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase_: int = None UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = self.type_sequence_label_size UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a : Any =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) a : Dict =False a : Union[str, Any] =False a : Tuple =False a : Optional[int] =False a : Union[str, Any] =False def _a ( self ): UpperCamelCase_: str = FocalNetModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: List[Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Any = [*signature.parameters.keys()] UpperCamelCase_: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = outputs.hidden_states UpperCamelCase_: Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length UpperCamelCase_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase_: Dict = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape UpperCamelCase_: List[str] = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: str = 3 UpperCamelCase_: Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_: int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def _a ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.default_image_processor UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else () a : List[str] =FocalNetConfig a : List[str] =False def _a ( self ): UpperCamelCase_: Any = FocalNetModelTester(self )
57
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : int = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int ='''umt5''' a : Optional[Any] =['''past_key_values'''] def __init__( self , _lowerCamelCase=2_5_0_1_1_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=6_4 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=1_2_8 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-6 , _lowerCamelCase=1.0 , _lowerCamelCase="gated-gelu" , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="T5Tokenizer" , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=0 , **_lowerCamelCase , ): super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: str = vocab_size UpperCamelCase_: Any = d_model UpperCamelCase_: Any = d_kv UpperCamelCase_: Optional[Any] = d_ff UpperCamelCase_: str = num_layers UpperCamelCase_: Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCamelCase_: Optional[Any] = num_heads UpperCamelCase_: List[str] = relative_attention_num_buckets UpperCamelCase_: Union[str, Any] = relative_attention_max_distance UpperCamelCase_: List[str] = dropout_rate UpperCamelCase_: str = layer_norm_epsilon UpperCamelCase_: Dict = initializer_factor UpperCamelCase_: Optional[int] = feed_forward_proj UpperCamelCase_: List[Any] = use_cache UpperCamelCase_: Dict = self.feed_forward_proj.split('-' ) UpperCamelCase_: List[str] = act_info[-1] UpperCamelCase_: str = act_info[0] == 'gated' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCamelCase_: int = 'gelu_new' @property def _a ( self ): return self.d_model @property def _a ( self ): return self.num_heads @property def _a ( self ): return self.num_layers class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): UpperCamelCase_: Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCamelCase_: Tuple = 'past_encoder_sequence + sequence' UpperCamelCase_: Any = {0: 'batch'} UpperCamelCase_: Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase_: Tuple = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase_: Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): return 1_3 @property def _a ( self ): return 5e-4
57
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
def snake_case (UpperCAmelCase__ ) -> list: if any(not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(UpperCAmelCase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCAmelCase__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def snake_case (UpperCAmelCase__ ) -> Dict: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @staticmethod def _a ( _lowerCamelCase ): UpperCamelCase_: str = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=_lowerCamelCase , default=_lowerCamelCase , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=_lowerCamelCase , help='Name of the model to download' ) download_parser.set_defaults(func=_lowerCamelCase ) def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Optional[int] = cache UpperCamelCase_: Tuple = force UpperCamelCase_: Union[str, Any] = trust_remote_code def _a ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
57
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 3_2 , _lowerCamelCase = True , _lowerCamelCase = 1 / 2_5_5 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _lowerCamelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _lowerCamelCase = True , _lowerCamelCase=7 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=3 , ): UpperCamelCase_: str = parent UpperCamelCase_: List[str] = do_resize UpperCamelCase_: Optional[int] = size if size is not None else {'shortest_edge': 2_8_8} UpperCamelCase_: Optional[Any] = size_divisor UpperCamelCase_: List[str] = do_rescale UpperCamelCase_: List[str] = rescale_factor UpperCamelCase_: Optional[int] = do_normalize UpperCamelCase_: str = do_center_crop UpperCamelCase_: str = image_mean UpperCamelCase_: str = image_std UpperCamelCase_: Any = do_pad UpperCamelCase_: Any = batch_size UpperCamelCase_: List[str] = num_channels UpperCamelCase_: Tuple = min_resolution UpperCamelCase_: Optional[Any] = max_resolution def _a ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _a ( self , _lowerCamelCase , _lowerCamelCase=False ): if not batched: UpperCamelCase_: Tuple = self.size['shortest_edge'] UpperCamelCase_: Dict = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = image.size else: UpperCamelCase_ ,UpperCamelCase_: int = image.shape[1], image.shape[2] UpperCamelCase_: List[str] = size / min(_lowerCamelCase , _lowerCamelCase ) if h < w: UpperCamelCase_ ,UpperCamelCase_: str = size, scale * w else: UpperCamelCase_ ,UpperCamelCase_: str = scale * h, size UpperCamelCase_: Dict = int((1_3_3_3 / 8_0_0) * size ) if max(_lowerCamelCase , _lowerCamelCase ) > max_size: UpperCamelCase_: int = max_size / max(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[int] = newh * scale UpperCamelCase_: Optional[int] = neww * scale UpperCamelCase_ ,UpperCamelCase_: Dict = int(newh + 0.5 ), int(neww + 0.5 ) UpperCamelCase_ ,UpperCamelCase_: int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCamelCase_: int = [] for image in image_inputs: UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_: Optional[int] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] UpperCamelCase_: Optional[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Dict =BridgeTowerImageProcessor if is_vision_available() else None def _a ( self ): UpperCamelCase_: int = BridgeTowerImageProcessingTester(self ) @property def _a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): UpperCamelCase_: Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size_divisor' ) ) def _a ( self ): pass def _a ( self ): # Initialize image processor UpperCamelCase_: int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase_: List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase_ ,UpperCamelCase_: Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_: Optional[Any] = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values UpperCamelCase_ ,UpperCamelCase_: str = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ): # Initialize image processor UpperCamelCase_: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_: int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_: Optional[int] = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ): # Initialize image processor UpperCamelCase_: Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_: List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_: Optional[int] = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values UpperCamelCase_ ,UpperCamelCase_: List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
57
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =CodeGenTokenizer a : Optional[Any] =CodeGenTokenizerFast a : Any =True a : Dict ={'''add_prefix_space''': True} a : Tuple =False def _a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] UpperCamelCase_: Dict = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase_: Optional[int] = {'unk_token': '<unk>'} UpperCamelCase_: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = 'lower newer' UpperCamelCase_: Dict = 'lower newer' return input_text, output_text def _a ( self ): UpperCamelCase_: Any = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: Dict = 'lower newer' UpperCamelCase_: int = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase_: Optional[int] = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Tuple = tokens + [tokenizer.unk_token] UpperCamelCase_: List[str] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self ): if not self.test_rust_tokenizer: return UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: int = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) UpperCamelCase_: str = 'lower newer' # Testing tokenization UpperCamelCase_: int = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids without special tokens UpperCamelCase_: str = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: int = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids with special tokens UpperCamelCase_: Optional[int] = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) UpperCamelCase_: int = tokenizer.encode(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCamelCase_: Optional[int] = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing the unknown token UpperCamelCase_: Optional[Any] = tokens + [rust_tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _a ( self , _lowerCamelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input UpperCamelCase_: List[str] = 'This is a simple input' UpperCamelCase_: Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] UpperCamelCase_: Union[str, Any] = ('This is a simple input', 'This is a pair') UpperCamelCase_: Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def _a ( self ): UpperCamelCase_: List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input UpperCamelCase_: str = 'This is a simple input' UpperCamelCase_: int = ['This is a simple input looooooooong', 'This is a simple input'] UpperCamelCase_: int = ('This is a simple input', 'This is a pair') UpperCamelCase_: Union[str, Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] UpperCamelCase_: str = tokenizer.pad_token_id UpperCamelCase_: Optional[int] = tokenizer(_lowerCamelCase , padding='max_length' , max_length=3_0 , return_tensors='np' ) UpperCamelCase_: List[str] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors='np' ) UpperCamelCase_: str = tokenizer(*_lowerCamelCase , padding='max_length' , max_length=6_0 , return_tensors='np' ) UpperCamelCase_: List[str] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _a ( self ): UpperCamelCase_: List[str] = '$$$' UpperCamelCase_: Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_lowerCamelCase , add_bos_token=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = 'This is a simple input' UpperCamelCase_: Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] UpperCamelCase_: List[Any] = tokenizer.bos_token_id UpperCamelCase_: List[Any] = tokenizer(_lowerCamelCase ) UpperCamelCase_: Optional[int] = tokenizer(_lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , _lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCamelCase_: Tuple = tokenizer.decode(out_s.input_ids ) UpperCamelCase_: Dict = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _a ( self ): UpperCamelCase_: Tuple = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) UpperCamelCase_: int = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' UpperCamelCase_: Optional[int] = '\nif len_a > len_b: result = a\nelse: result = b' UpperCamelCase_: Optional[Any] = tokenizer.encode(_lowerCamelCase ) UpperCamelCase_: int = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] UpperCamelCase_: str = tokenizer.decode(_lowerCamelCase , truncate_before_pattern=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self ): pass
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
from __future__ import annotations class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = data UpperCamelCase_: Node | None = None UpperCamelCase_: Node | None = None def snake_case (UpperCAmelCase__ ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def snake_case (UpperCAmelCase__ ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def snake_case (UpperCAmelCase__ ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def snake_case () -> None: # Main function for testing. UpperCamelCase_: str = Node(1 ) UpperCamelCase_: Dict = Node(2 ) UpperCamelCase_: Tuple = Node(3 ) UpperCamelCase_: Tuple = Node(4 ) UpperCamelCase_: Any = Node(5 ) UpperCamelCase_: Union[str, Any] = Node(6 ) UpperCamelCase_: str = Node(7 ) UpperCamelCase_: Union[str, Any] = Node(8 ) UpperCamelCase_: Dict = Node(9 ) print(is_full_binary_tree(UpperCAmelCase__ ) ) print(depth_of_tree(UpperCAmelCase__ ) ) print('Tree is: ' ) display(UpperCAmelCase__ ) if __name__ == "__main__": main()
57
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer A_ : str = logging.get_logger(__name__) A_ : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : Optional[int] = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } A_ : Union[str, Any] = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } A_ : Tuple = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : List[Any] =PRETRAINED_INIT_CONFIGURATION a : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] =RealmTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCamelCase ) != tokenize_chinese_chars ): UpperCamelCase_: Tuple = getattr(_lowerCamelCase , normalizer_state.pop('type' ) ) UpperCamelCase_: Any = do_lower_case UpperCamelCase_: Tuple = strip_accents UpperCamelCase_: Optional[Any] = tokenize_chinese_chars UpperCamelCase_: List[str] = normalizer_class(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = do_lower_case def _a ( self , _lowerCamelCase , **_lowerCamelCase ): UpperCamelCase_: Optional[Any] = PaddingStrategy.MAX_LENGTH UpperCamelCase_: Any = text UpperCamelCase_: List[Any] = kwargs.pop('text_pair' , _lowerCamelCase ) UpperCamelCase_: Optional[int] = kwargs.pop('return_tensors' , _lowerCamelCase ) UpperCamelCase_: Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_lowerCamelCase ): if batch_text_pair is not None: UpperCamelCase_: Union[str, Any] = batch_text_pair[idx] else: UpperCamelCase_: Any = None UpperCamelCase_: Any = super().__call__(_lowerCamelCase , _lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Dict = encoded_candidates.get('input_ids' ) UpperCamelCase_: str = encoded_candidates.get('attention_mask' ) UpperCamelCase_: int = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowerCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowerCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowerCamelCase ) UpperCamelCase_: Dict = {key: item for key, item in output_data.items() if len(_lowerCamelCase ) != 0} return BatchEncoding(_lowerCamelCase , tensor_type=_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase=None ): UpperCamelCase_: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Union[str, Any] = [self.sep_token_id] UpperCamelCase_: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Tuple = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
57
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A_ : Optional[Any] = False try: A_ : List[str] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase = None , _lowerCamelCase = [] ): UpperCamelCase_: List[Any] = 0 UpperCamelCase_: Optional[Any] = choices UpperCamelCase_: List[str] = prompt if sys.platform == "win32": UpperCamelCase_: Tuple = '*' else: UpperCamelCase_: Any = '➔ ' def _a ( self , _lowerCamelCase , _lowerCamelCase = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , _lowerCamelCase ) else: forceWrite(self.choices[index] , _lowerCamelCase ) def _a ( self , _lowerCamelCase ): if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(_lowerCamelCase ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def _a ( self , _lowerCamelCase , _lowerCamelCase = 1 ): UpperCamelCase_: Tuple = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowerCamelCase ) move_cursor(_lowerCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _a ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _a ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _a ( self ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _a ( self ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowerCamelCase )] for number in range(1_0 )] ) def _a ( self ): UpperCamelCase_: Dict = int(chr(self.current_selection ) ) UpperCamelCase_: Tuple = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowerCamelCase ) else: return else: return def _a ( self , _lowerCamelCase = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) UpperCamelCase_: Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowerCamelCase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: UpperCamelCase_: Tuple = int(builtins.input() ) except ValueError: UpperCamelCase_: Any = default_choice else: UpperCamelCase_: Optional[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(_lowerCamelCase , '\n' ) return choice
57
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ ) UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ ) UpperCamelCase_: str = 'MLukeTokenizer' with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: Union[str, Any] = state_dict[bias_name] UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: str = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias'] UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase_: Union[str, Any] = state_dict[key] else: UpperCamelCase_: Dict = state_dict[key] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' ) UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase_: Optional[int] = (0, 9) UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: str = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = 'Tokyo is the capital of <mask>.' UpperCamelCase_: Dict = (2_4, 3_0) UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist() UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] UpperCamelCase_: Tuple = {} for entry in data: UpperCamelCase_: Optional[int] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: Union[str, Any] = entity_id break UpperCamelCase_: Dict = F'''{language}:{entity_name}''' UpperCamelCase_: Optional[int] = entity_id return new_mapping if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="resnet50" , _lowerCamelCase=3 , _lowerCamelCase=3_2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , ): UpperCamelCase_: str = parent UpperCamelCase_: Optional[Any] = out_indices if out_indices is not None else [4] UpperCamelCase_: int = stage_names UpperCamelCase_: Tuple = out_features UpperCamelCase_: Tuple = backbone UpperCamelCase_: Union[str, Any] = batch_size UpperCamelCase_: int = image_size UpperCamelCase_: Dict = num_channels UpperCamelCase_: Optional[Any] = use_pretrained_backbone UpperCamelCase_: Optional[int] = is_training def _a ( self ): UpperCamelCase_: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: Optional[int] = self.get_config() return config, pixel_values def _a ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = TimmBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: int = model(_lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def _a ( self ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_: Optional[int] = config_and_inputs UpperCamelCase_: Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Any =(TimmBackbone,) if is_torch_available() else () a : Any ={'''feature-extraction''': TimmBackbone} if is_torch_available() else {} a : Dict =False a : Optional[int] =False a : List[Any] =False a : int =False def _a ( self ): UpperCamelCase_: int = TimmBackboneModelTester(self ) UpperCamelCase_: Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): UpperCamelCase_: str = 'resnet18' UpperCamelCase_: Union[str, Any] = 'microsoft/resnet-18' UpperCamelCase_: List[Any] = AutoBackbone.from_pretrained(_lowerCamelCase , use_timm_backbone=_lowerCamelCase ) UpperCamelCase_: Tuple = AutoBackbone.from_pretrained(_lowerCamelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCamelCase_: Any = AutoBackbone.from_pretrained(_lowerCamelCase , use_timm_backbone=_lowerCamelCase , out_indices=[1, 2, 3] ) UpperCamelCase_: Union[str, Any] = AutoBackbone.from_pretrained(_lowerCamelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def _a ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def _a ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def _a ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def _a ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def _a ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def _a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def _a ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def _a ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def _a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def _a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def _a ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def _a ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def _a ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def _a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: str = [*signature.parameters.keys()] UpperCamelCase_: int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Optional[Any] = True UpperCamelCase_: Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCamelCase_: Union[str, Any] = self.all_model_classes[0] UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Tuple = model(**_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models UpperCamelCase_: List[str] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCamelCase_: List[str] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[str] = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCamelCase_: Dict = copy.deepcopy(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCamelCase_: Union[str, Any] = copy.deepcopy(_lowerCamelCase ) UpperCamelCase_: List[Any] = False UpperCamelCase_: Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[Any] = model(**_lowerCamelCase )
57
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
1
from __future__ import annotations def snake_case (UpperCAmelCase__ = 4 ) -> list[list[int]]: UpperCamelCase_: int = abs(UpperCAmelCase__ ) or 4 return [[1 + x + y * row_size for x in range(UpperCAmelCase__ )] for y in range(UpperCAmelCase__ )] def snake_case (UpperCAmelCase__ ) -> list[list[int]]: return reverse_row(transpose(UpperCAmelCase__ ) ) # OR.. transpose(reverse_column(matrix)) def snake_case (UpperCAmelCase__ ) -> list[list[int]]: return reverse_row(reverse_column(UpperCAmelCase__ ) ) # OR.. reverse_column(reverse_row(matrix)) def snake_case (UpperCAmelCase__ ) -> list[list[int]]: return reverse_column(transpose(UpperCAmelCase__ ) ) # OR.. transpose(reverse_row(matrix)) def snake_case (UpperCAmelCase__ ) -> list[list[int]]: UpperCamelCase_: Dict = [list(UpperCAmelCase__ ) for x in zip(*UpperCAmelCase__ )] return matrix def snake_case (UpperCAmelCase__ ) -> list[list[int]]: UpperCamelCase_: int = matrix[::-1] return matrix def snake_case (UpperCAmelCase__ ) -> list[list[int]]: UpperCamelCase_: Union[str, Any] = [x[::-1] for x in matrix] return matrix def snake_case (UpperCAmelCase__ ) -> None: for i in matrix: print(*UpperCAmelCase__ ) if __name__ == "__main__": A_ : Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) A_ : Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) A_ : int = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A_ : List[str] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": A_ : int = 'hopper-medium-v2' A_ : List[Any] = gym.make(env_name) A_ : Optional[Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) A_ : List[str] = env.reset() A_ : Dict = 0 A_ : Dict = 0 A_ : Dict = 1000 A_ : Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A_ : str = pipeline(obs, planning_horizon=32) # execute action in environment A_ , A_ , A_ , A_ : List[str] = env.step(denorm_actions) A_ : Any = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) A_ : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() A_ : str = logging.get_logger(__name__) A_ : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } A_ : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: for attribute in key.split('.' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) if weight_type is not None: UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape else: UpperCamelCase_: List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: int = value elif weight_type == "weight_g": UpperCamelCase_: int = value elif weight_type == "weight_v": UpperCamelCase_: Dict = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value else: UpperCamelCase_: Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[str] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[int] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Tuple = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: str = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase_: int = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue UpperCamelCase_: List[Any] = True if "*" in mapped_key: UpperCamelCase_: Union[str, Any] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: int = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: List[str] = 'weight_v' elif "bias" in name: UpperCamelCase_: Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: List[str] = 'weight' else: UpperCamelCase_: List[str] = None set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: Optional[int] = name.split('.' ) UpperCamelCase_: Union[str, Any] = int(items[0] ) UpperCamelCase_: Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True ) -> str: if config_path is not None: UpperCamelCase_: int = UniSpeechSatConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: Tuple = UniSpeechSatConfig() UpperCamelCase_: List[str] = '' if is_finetuned: UpperCamelCase_: List[str] = UniSpeechSatForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: int = UniSpeechSatForPreTraining(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) UpperCamelCase_: Dict = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) A_ : Optional[Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
57
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
57
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Any = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''time_series_transformer''' a : Any ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "student_t" , _lowerCamelCase = "nll" , _lowerCamelCase = 1 , _lowerCamelCase = [1, 2, 3, 4, 5, 6, 7] , _lowerCamelCase = "mean" , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 3_2 , _lowerCamelCase = 3_2 , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = True , _lowerCamelCase = "gelu" , _lowerCamelCase = 6_4 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 1_0_0 , _lowerCamelCase = 0.0_2 , _lowerCamelCase=True , **_lowerCamelCase , ): # time series specific configuration UpperCamelCase_: Union[str, Any] = prediction_length UpperCamelCase_: int = context_length or prediction_length UpperCamelCase_: str = distribution_output UpperCamelCase_: List[str] = loss UpperCamelCase_: Tuple = input_size UpperCamelCase_: Dict = num_time_features UpperCamelCase_: Tuple = lags_sequence UpperCamelCase_: Any = scaling UpperCamelCase_: int = num_dynamic_real_features UpperCamelCase_: Optional[Any] = num_static_real_features UpperCamelCase_: List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCamelCase_: Tuple = cardinality else: UpperCamelCase_: Optional[int] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCamelCase_: str = embedding_dimension else: UpperCamelCase_: int = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase_: Optional[Any] = num_parallel_samples # Transformer architecture configuration UpperCamelCase_: str = input_size * len(_lowerCamelCase ) + self._number_of_features UpperCamelCase_: str = d_model UpperCamelCase_: Any = encoder_attention_heads UpperCamelCase_: int = decoder_attention_heads UpperCamelCase_: Tuple = encoder_ffn_dim UpperCamelCase_: int = decoder_ffn_dim UpperCamelCase_: Optional[Any] = encoder_layers UpperCamelCase_: List[str] = decoder_layers UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[int] = attention_dropout UpperCamelCase_: List[Any] = activation_dropout UpperCamelCase_: int = encoder_layerdrop UpperCamelCase_: List[Any] = decoder_layerdrop UpperCamelCase_: int = activation_function UpperCamelCase_: List[str] = init_std UpperCamelCase_: str = use_cache super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _a ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
57
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[int] = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : List[str] ='''rwkv''' a : int ={'''max_position_embeddings''': '''context_length'''} def __init__( self , _lowerCamelCase=5_0_2_7_7 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=3_2 , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=1e-5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=6 , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: int = context_length UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: List[str] = num_hidden_layers UpperCamelCase_: Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCamelCase_: Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCamelCase_: List[str] = layer_norm_epsilon UpperCamelCase_: Optional[Any] = rescale_every UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Optional[int] = bos_token_id UpperCamelCase_: Dict = eos_token_id super().__init__( tie_word_embeddings=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
57
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase_: Tuple = test_metrics @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ): self.test_metrics.main() @require_multi_gpu def _a ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
57
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart A_ : List[str] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } A_ : List[str] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def snake_case () -> List[Any]: UpperCamelCase_: Tuple = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCamelCase_: int = bs[:] UpperCamelCase_: Any = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase__ ) cs.append(2**8 + n ) n += 1 UpperCamelCase_: Tuple = [chr(UpperCAmelCase__ ) for n in cs] return dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) def snake_case (UpperCAmelCase__ ) -> Tuple: UpperCamelCase_: List[Any] = set() UpperCamelCase_: Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_: Tuple = char return pairs class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[int] =['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , **_lowerCamelCase , ): UpperCamelCase_: List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token UpperCamelCase_: List[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token UpperCamelCase_: List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token UpperCamelCase_: List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token UpperCamelCase_: List[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token UpperCamelCase_: Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_: Any = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='utf-8' ) as vocab_handle: UpperCamelCase_: Optional[int] = json.load(_lowerCamelCase ) UpperCamelCase_: Tuple = {v: k for k, v in self.encoder.items()} UpperCamelCase_: Dict = errors # how to handle errors in decoding UpperCamelCase_: Optional[int] = bytes_to_unicode() UpperCamelCase_: Dict = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding='utf-8' ) as merges_handle: UpperCamelCase_: Any = merges_handle.read().split('\n' )[1:-1] UpperCamelCase_: Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase_: int = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCamelCase_: str = {} UpperCamelCase_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase_: Optional[Any] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def _a ( self ): return len(self.encoder ) def _a ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self , _lowerCamelCase ): if token in self.cache: return self.cache[token] UpperCamelCase_: Union[str, Any] = tuple(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = get_pairs(_lowerCamelCase ) if not pairs: return token while True: UpperCamelCase_: str = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_ ,UpperCamelCase_: int = bigram UpperCamelCase_: List[str] = [] UpperCamelCase_: Tuple = 0 while i < len(_lowerCamelCase ): try: UpperCamelCase_: List[str] = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_: Tuple = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_: Any = tuple(_lowerCamelCase ) UpperCamelCase_: Dict = new_word if len(_lowerCamelCase ) == 1: break else: UpperCamelCase_: Optional[int] = get_pairs(_lowerCamelCase ) UpperCamelCase_: List[str] = ' '.join(_lowerCamelCase ) UpperCamelCase_: Dict = word return word def _a ( self , _lowerCamelCase ): UpperCamelCase_: Dict = [] for token in re.findall(self.pat , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(' ' ) ) return bpe_tokens def _a ( self , _lowerCamelCase ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def _a ( self , _lowerCamelCase ): return self.decoder.get(_lowerCamelCase ) def _a ( self , _lowerCamelCase ): UpperCamelCase_: Optional[int] = ''.join(_lowerCamelCase ) UpperCamelCase_: Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_: Union[str, Any] = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase_: Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '\n' ) UpperCamelCase_: str = 0 with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase_: str = token_index writer.write(' '.join(_lowerCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_: Optional[int] = [self.cls_token_id] UpperCamelCase_: Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: List[str] = [self.sep_token_id] UpperCamelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): UpperCamelCase_: str = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): UpperCamelCase_: Optional[Any] = ' ' + text return (text, kwargs)
57
import math class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = 0.0 UpperCamelCase_: Tuple = 0.0 for i in range(len(_lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for i in range(len(_lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def snake_case () -> None: # Training Examples ( m, n ) UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCamelCase_: Dict = SelfOrganizingMap() UpperCamelCase_: List[Any] = 3 UpperCamelCase_: List[str] = 0.5 for _ in range(UpperCAmelCase__ ): for j in range(len(UpperCAmelCase__ ) ): # training sample UpperCamelCase_: int = training_samples[j] # Compute the winning vector UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # Update the winning vector UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # classify test sample UpperCamelCase_: Dict = [0, 0, 0, 1] UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
57
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool A_ : int = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Optional[int] ='''facebook/nllb-200-distilled-600M''' a : str =( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) a : Any ='''translator''' a : Optional[Any] =AutoTokenizer a : Tuple =AutoModelForSeqaSeqLM a : Any =LANGUAGE_CODES a : List[str] =['''text''', '''text''', '''text'''] a : Any =['''text'''] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) UpperCamelCase_: Union[str, Any] = self.lang_to_code[src_lang] UpperCamelCase_: Optional[int] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( _lowerCamelCase , return_tensors='pt' , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase ) def _a ( self , _lowerCamelCase ): return self.model.generate(**_lowerCamelCase ) def _a ( self , _lowerCamelCase ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=_lowerCamelCase )
57
from collections import namedtuple A_ : Tuple = namedtuple('from_to', 'from_ to') A_ : int = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
57
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def snake_case (UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: int = split_dict._to_yaml_list() assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) UpperCamelCase_: Tuple = SplitDict._from_yaml_list(UpperCAmelCase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCamelCase_: Tuple = None # the split name of split_dict takes over the name of the split info object UpperCamelCase_: str = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=UpperCAmelCase__ ), SplitInfo(dataset_name='my_dataset' )] ) def snake_case (UpperCAmelCase__ ) -> Dict: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCamelCase_: Dict = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
57
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor A_ : int = logging.get_logger(__name__) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
57
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case (UpperCAmelCase__ , UpperCAmelCase__=False ) -> Optional[Any]: UpperCamelCase_: str = OmegaConf.load(UpperCAmelCase__ ) if display: print(yaml.dump(OmegaConf.to_container(UpperCAmelCase__ ) ) ) return config def snake_case (UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Dict: if conf_path is None: UpperCamelCase_: Optional[Any] = './model_checkpoints/vqgan_only.yaml' UpperCamelCase_: Tuple = load_config(UpperCAmelCase__ , display=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = VQModel(**config.model.params ) if ckpt_path is None: UpperCamelCase_: Any = './model_checkpoints/vqgan_only.pt' UpperCamelCase_: Optional[Any] = torch.load(UpperCAmelCase__ , map_location=UpperCAmelCase__ ) if ".ckpt" in ckpt_path: UpperCamelCase_: int = sd['state_dict'] model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) del sd return model def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Tuple = model.encode(UpperCAmelCase__ ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) UpperCamelCase_: int = model.decode(UpperCAmelCase__ ) return xrec def snake_case (UpperCAmelCase__ , UpperCAmelCase__=False ) -> int: UpperCamelCase_ ,UpperCamelCase_: Optional[int] = string.rsplit('.' , 1 ) if reload: UpperCamelCase_: Dict = importlib.import_module(UpperCAmelCase__ ) importlib.reload(UpperCAmelCase__ ) return getattr(importlib.import_module(UpperCAmelCase__ , package=UpperCAmelCase__ ) , cls ) def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=True , UpperCAmelCase__=True ) -> Optional[int]: UpperCamelCase_: int = instantiate_from_config(UpperCAmelCase__ ) if sd is not None: model.load_state_dict(UpperCAmelCase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: # load the specified checkpoint if ckpt: UpperCamelCase_: Optional[Any] = torch.load(UpperCAmelCase__ , map_location='cpu' ) UpperCamelCase_: Any = pl_sd['global_step'] print(F'''loaded model from global step {global_step}.''' ) else: UpperCamelCase_: int = {'state_dict': None} UpperCamelCase_: List[Any] = None UpperCamelCase_: Dict = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=UpperCAmelCase__ , eval_mode=UpperCAmelCase__ )['model'] return model, global_step
57
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A_ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Optional[int] = 256 class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =['''melgan'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() # From MELGAN UpperCamelCase_: Any = math.log(1e-5 ) # Matches MelGAN training. UpperCamelCase_: List[Any] = 4.0 # Largest value for most examples UpperCamelCase_: Tuple = 1_2_8 self.register_modules( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = output_range if clip: UpperCamelCase_: int = torch.clip(_lowerCamelCase , self.min_value , self.max_value ) # Scale to [0, 1]. UpperCamelCase_: List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _a ( self , _lowerCamelCase , _lowerCamelCase=(-1.0, 1.0) , _lowerCamelCase=False ): UpperCamelCase_ ,UpperCamelCase_: Dict = input_range UpperCamelCase_: List[str] = torch.clip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if clip else outputs # Scale to [0, 1]. UpperCamelCase_: Optional[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = input_tokens > 0 UpperCamelCase_ ,UpperCamelCase_: Tuple = self.notes_encoder( encoder_input_tokens=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Any = self.continuous_encoder( encoder_inputs=_lowerCamelCase , encoder_inputs_mask=_lowerCamelCase ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = noise_time if not torch.is_tensor(_lowerCamelCase ): UpperCamelCase_: List[str] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_lowerCamelCase ) and len(timesteps.shape ) == 0: UpperCamelCase_: Dict = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase_: Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase_: Any = self.decoder( encodings_and_masks=_lowerCamelCase , decoder_input_tokens=_lowerCamelCase , decoder_noise_time=_lowerCamelCase ) return logits @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 1_0_0 , _lowerCamelCase = True , _lowerCamelCase = "numpy" , _lowerCamelCase = None , _lowerCamelCase = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_lowerCamelCase )}.''' ) UpperCamelCase_: List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) UpperCamelCase_: str = np.zeros([1, 0, self.n_dims] , np.floataa ) UpperCamelCase_: Dict = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) for i, encoder_input_tokens in enumerate(_lowerCamelCase ): if i == 0: UpperCamelCase_: str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase_: Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_lowerCamelCase , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase_: Any = ones UpperCamelCase_: str = self.scale_features( _lowerCamelCase , output_range=[-1.0, 1.0] , clip=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_lowerCamelCase , continuous_mask=_lowerCamelCase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase_: List[str] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=_lowerCamelCase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase_: int = self.decode( encodings_and_masks=_lowerCamelCase , input_tokens=_lowerCamelCase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase_: Tuple = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample UpperCamelCase_: List[Any] = self.scale_to_features(_lowerCamelCase , input_range=[-1.0, 1.0] ) UpperCamelCase_: Any = mel[:1] UpperCamelCase_: List[str] = mel.cpu().float().numpy() UpperCamelCase_: Tuple = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase ) logger.info('Generated segment' , _lowerCamelCase ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": UpperCamelCase_: int = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase_: int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_lowerCamelCase )
57
1
from collections import namedtuple A_ : Tuple = namedtuple('from_to', 'from_ to') A_ : int = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00454, 264.172), 'cubicyard': from_to(0.76455, 1.30795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.000236588, 4226.75), } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
57
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) A_ : Optional[Any] = ['names', 'prefix'] A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[Any] = ['date_format'] @dataclass class _lowerCAmelCase( datasets.BuilderConfig ): """simple docstring""" a : str ="," a : Optional[str] =None a : Optional[Union[int, List[int], str]] ="infer" a : Optional[List[str]] =None a : Optional[List[str]] =None a : Optional[Union[int, str, List[int], List[str]]] =None a : Optional[Union[List[int], List[str]]] =None a : Optional[str] =None a : bool =True a : Optional[Literal["c", "python", "pyarrow"]] =None a : Dict[Union[int, str], Callable[[Any], Any]] =None a : Optional[list] =None a : Optional[list] =None a : bool =False a : Optional[Union[int, List[int]]] =None a : Optional[int] =None a : Optional[Union[str, List[str]]] =None a : bool =True a : bool =True a : bool =False a : bool =True a : Optional[str] =None a : str ="." a : Optional[str] =None a : str ='"' a : int =0 a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : bool =True a : bool =True a : int =0 a : bool =True a : bool =False a : Optional[str] =None a : int =10000 a : Optional[datasets.Features] =None a : Optional[str] ="strict" a : Literal["error", "warn", "skip"] ="error" a : Optional[str] =None def _a ( self ): if self.delimiter is not None: UpperCamelCase_: Optional[Any] = self.delimiter if self.column_names is not None: UpperCamelCase_: int = self.column_names @property def _a ( self ): UpperCamelCase_: Any = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase( datasets.ArrowBasedBuilder ): """simple docstring""" a : Dict =CsvConfig def _a ( self ): return datasets.DatasetInfo(features=self.config.features ) def _a ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = [files] UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_: Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = [files] UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _a ( self , _lowerCamelCase ): if self.config.features is not None: UpperCamelCase_: List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase ) return pa_table def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_: Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
57
1
from __future__ import annotations A_ : Union[str, Any] = 'Muhammad Umer Farooq' A_ : Tuple = 'MIT' A_ : int = '1.0.0' A_ : Optional[int] = 'Muhammad Umer Farooq' A_ : Dict = '[email protected]' A_ : Optional[int] = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowerCamelCase ): super().__init__() UpperCamelCase_: list[str] = [] UpperCamelCase_: List[str] = domain def _a ( self , _lowerCamelCase , _lowerCamelCase ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: UpperCamelCase_: Tuple = parse.urljoin(self.domain , _lowerCamelCase ) self.urls.append(_lowerCamelCase ) def snake_case (UpperCAmelCase__ ) -> str: return ".".join(get_sub_domain_name(UpperCAmelCase__ ).split('.' )[-2:] ) def snake_case (UpperCAmelCase__ ) -> str: return parse.urlparse(UpperCAmelCase__ ).netloc def snake_case (UpperCAmelCase__ = "https://github.com" ) -> list[str]: UpperCamelCase_: Union[str, Any] = get_domain_name(UpperCAmelCase__ ) # Initialize the parser UpperCamelCase_: Union[str, Any] = Parser(UpperCAmelCase__ ) try: # Open URL UpperCamelCase_: Dict = requests.get(UpperCAmelCase__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through UpperCamelCase_: Optional[int] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: UpperCamelCase_: Dict = requests.get(UpperCAmelCase__ ) # Get the valid email. UpperCamelCase_: Dict = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCAmelCase__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCAmelCase__ ) if __name__ == "__main__": A_ : Optional[Any] = emails_from_url('https://github.com') print(F'''{len(emails)} emails found:''') print('\n'.join(sorted(emails)))
57
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Union[str, Any] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''open-llama''' def __init__( self , _lowerCamelCase=1_0_0_0_0_0 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=1_1_0_0_8 , _lowerCamelCase=3_2 , _lowerCamelCase=3_2 , _lowerCamelCase="silu" , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-6 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCamelCase_: int = vocab_size UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = hidden_size UpperCamelCase_: Dict = intermediate_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Dict = num_attention_heads UpperCamelCase_: Union[str, Any] = hidden_act UpperCamelCase_: Union[str, Any] = initializer_range UpperCamelCase_: List[Any] = rms_norm_eps UpperCamelCase_: Union[str, Any] = use_cache UpperCamelCase_: Dict = kwargs.pop( 'use_memorry_efficient_attention' , _lowerCamelCase ) UpperCamelCase_: Union[str, Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_dropout_prob UpperCamelCase_: int = use_stable_embedding UpperCamelCase_: Tuple = shared_input_output_embedding UpperCamelCase_: str = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) UpperCamelCase_: str = self.rope_scaling.get('type' , _lowerCamelCase ) UpperCamelCase_: int = self.rope_scaling.get('factor' , _lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_lowerCamelCase , _lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
57
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: A_ : List[str] = None A_ : List[str] = logging.get_logger(__name__) A_ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A_ : Tuple = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } A_ : Any = { 'google/fnet-base': 512, 'google/fnet-large': 512, } A_ : List[str] = '▁' class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : List[Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple =['''input_ids''', '''token_type_ids'''] a : int =FNetTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="<unk>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<pad>" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCamelCase_: int = ( AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase , normalized=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token ) super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: str = do_lower_case UpperCamelCase_: Union[str, Any] = remove_space UpperCamelCase_: Tuple = keep_accents UpperCamelCase_: Any = vocab_file UpperCamelCase_: List[str] = False if not self.vocab_file else True def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: int = [self.sep_token_id] UpperCamelCase_: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Optional[int] = [self.sep_token_id] UpperCamelCase_: Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_: List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
57
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[Any] = hidden_sizes UpperCamelCase_: List[str] = depths UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = window_size UpperCamelCase_: Tuple = mlp_ratio UpperCamelCase_: Dict = qkv_bias UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: int = drop_path_rate UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[str] = use_absolute_embeddings UpperCamelCase_: Dict = patch_norm UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: List[Any] = is_training UpperCamelCase_: Optional[int] = scope UpperCamelCase_: str = use_labels UpperCamelCase_: List[str] = type_sequence_label_size UpperCamelCase_: Union[str, Any] = encoder_stride UpperCamelCase_: Dict = out_features UpperCamelCase_: str = out_indices def _a ( self ): UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: int = model(_lowerCamelCase ) UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase_: int = None UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = self.type_sequence_label_size UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a : Any =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) a : Dict =False a : Union[str, Any] =False a : Tuple =False a : Optional[int] =False a : Union[str, Any] =False def _a ( self ): UpperCamelCase_: str = FocalNetModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: List[Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Any = [*signature.parameters.keys()] UpperCamelCase_: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = outputs.hidden_states UpperCamelCase_: Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length UpperCamelCase_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase_: Dict = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape UpperCamelCase_: List[str] = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: str = 3 UpperCamelCase_: Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_: int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def _a ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.default_image_processor UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else () a : List[str] =FocalNetConfig a : List[str] =False def _a ( self ): UpperCamelCase_: Any = FocalNetModelTester(self )
57
1
from __future__ import annotations import math def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , ) def snake_case () -> None: UpperCamelCase_: Dict = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCamelCase_: Optional[int] = math.log(len(UpperCAmelCase__ ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Tuple = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self ): UpperCamelCase_: Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) ) class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3 , _lowerCamelCase=3_2 , _lowerCamelCase=0.2_5 , _lowerCamelCase=8 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=3_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="relu6" , _lowerCamelCase=1_2_8_0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=None , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: List[str] = batch_size UpperCamelCase_: int = num_channels UpperCamelCase_: Union[str, Any] = image_size UpperCamelCase_: int = depth_multiplier UpperCamelCase_: Optional[int] = depth_divisible_by UpperCamelCase_: Optional[int] = min_depth UpperCamelCase_: List[Any] = expand_ratio UpperCamelCase_: List[Any] = tf_padding UpperCamelCase_: str = output_stride UpperCamelCase_: Any = first_layer_is_expansion UpperCamelCase_: Optional[int] = finegrained_output UpperCamelCase_: Optional[int] = hidden_act UpperCamelCase_: Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase_: Optional[int] = classifier_dropout_prob UpperCamelCase_: Optional[Any] = use_labels UpperCamelCase_: Optional[Any] = is_training UpperCamelCase_: Optional[Any] = num_labels UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: Union[str, Any] = scope def _a ( self ): UpperCamelCase_: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: Optional[Any] = None UpperCamelCase_: str = None if self.use_labels: UpperCamelCase_: List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_: List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _a ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = MobileNetVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[Any] = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = self.num_labels UpperCamelCase_: Dict = MobileNetVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = self.num_labels UpperCamelCase_: Union[str, Any] = MobileNetVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_: Dict = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Any = config_and_inputs UpperCamelCase_: Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[str] =( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a : Dict =( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a : List[str] =False a : Tuple =False a : List[Any] =False a : List[str] =False def _a ( self ): UpperCamelCase_: Any = MobileNetVaModelTester(self ) UpperCamelCase_: Tuple = MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def _a ( self ): pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Any = model_class(_lowerCamelCase ) UpperCamelCase_: List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: str = [*signature.parameters.keys()] UpperCamelCase_: Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Tuple = outputs.hidden_states UpperCamelCase_: Union[str, Any] = 1_6 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def _a ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: int = MobileNetVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case () -> List[str]: UpperCamelCase_: int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def _a ( self ): UpperCamelCase_: Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase ) UpperCamelCase_: Any = self.default_image_processor UpperCamelCase_: Optional[int] = prepare_img() UpperCamelCase_: int = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: Tuple = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Any = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Dict = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow def _a ( self ): UpperCamelCase_: Optional[Any] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_: List[Any] = model.to(_lowerCamelCase ) UpperCamelCase_: int = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_: List[Any] = prepare_img() UpperCamelCase_: Dict = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: Dict = model(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = outputs.logits # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_: int = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
57
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @property def _a ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self ): UpperCamelCase_: Optional[int] = ort.SessionOptions() UpperCamelCase_: int = False return options def _a ( self ): UpperCamelCase_: Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase_: Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase_: Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Optional[int] = 'A red cat sitting on a park bench' UpperCamelCase_: Any = np.random.RandomState(0 ) UpperCamelCase_: Tuple = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowerCamelCase , output_type='np' , ) UpperCamelCase_: List[Any] = output.images UpperCamelCase_: List[str] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: Union[str, Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self ): UpperCamelCase_: List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) UpperCamelCase_: List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) UpperCamelCase_: Tuple = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) UpperCamelCase_: str = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Tuple = 'A red cat sitting on a park bench' UpperCamelCase_: Optional[int] = np.random.RandomState(0 ) UpperCamelCase_: str = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowerCamelCase , output_type='np' , ) UpperCamelCase_: Optional[Any] = output.images UpperCamelCase_: int = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase_: Union[str, Any] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
57
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
1
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: UpperCamelCase_: str = '' for i in table: res += inp[i - 1] return res def snake_case (UpperCAmelCase__ ) -> Dict: return data[1:] + data[0] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> str: UpperCamelCase_: Any = '' for i in range(len(UpperCAmelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: Tuple = int('0b' + data[0] + data[-1] , 2 ) UpperCamelCase_: Dict = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: UpperCamelCase_: List[str] = message[:4] UpperCamelCase_: Union[str, Any] = message[4:] UpperCamelCase_: Tuple = apply_table(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = xor(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: int = apply_sbox(UpperCAmelCase__ , temp[:4] ) # noqa: E741 UpperCamelCase_: List[str] = apply_sbox(UpperCAmelCase__ , temp[4:] ) UpperCamelCase_: Tuple = '0' * (2 - len(UpperCAmelCase__ )) + l # noqa: E741 UpperCamelCase_: Tuple = '0' * (2 - len(UpperCAmelCase__ )) + r UpperCamelCase_: Optional[Any] = apply_table(l + r , UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = xor(UpperCAmelCase__ , UpperCAmelCase__ ) return temp + right if __name__ == "__main__": A_ : List[str] = input('Enter 10 bit key: ') A_ : List[str] = input('Enter 8 bit message: ') A_ : Any = [6, 3, 7, 4, 8, 5, 10, 9] A_ : Dict = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A_ : Union[str, Any] = [2, 4, 3, 1] A_ : Tuple = [2, 6, 3, 1, 4, 8, 5, 7] A_ : Union[str, Any] = [4, 1, 3, 5, 7, 2, 8, 6] A_ : int = [4, 1, 2, 3, 2, 3, 4, 1] A_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A_ : Union[str, Any] = apply_table(key, paa_table) A_ : Any = temp[:5] A_ : str = temp[5:] A_ : Any = left_shift(left) A_ : Any = left_shift(right) A_ : Dict = apply_table(left + right, pa_table) A_ : Any = left_shift(left) A_ : Dict = left_shift(right) A_ : str = left_shift(left) A_ : List[str] = left_shift(right) A_ : Dict = apply_table(left + right, pa_table) # encryption A_ : List[str] = apply_table(message, IP) A_ : Optional[Any] = function(expansion, sa, sa, keya, temp) A_ : List[Any] = temp[4:] + temp[:4] A_ : Optional[int] = function(expansion, sa, sa, keya, temp) A_ : Optional[int] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption A_ : List[Any] = apply_table(CT, IP) A_ : str = function(expansion, sa, sa, keya, temp) A_ : str = temp[4:] + temp[:4] A_ : Union[str, Any] = function(expansion, sa, sa, keya, temp) A_ : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[Any] = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: # Initialise PyTorch model UpperCamelCase_: Dict = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: int = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) A_ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
57
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case (UpperCAmelCase__ ) -> int: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): pass def _a ( self ): pass def _a ( self ): pass def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = np.abs((a - b) ).max() self.assertLessEqual(_lowerCamelCase , _lowerCamelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_: str = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Any = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: Optional[int] = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[str] = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_: List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[int] = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_: Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) UpperCamelCase_: Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) UpperCamelCase_: Any = model(input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase ) UpperCamelCase_: int = after_output[0] UpperCamelCase_: Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-3 ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.get_vision_text_model(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: List[Any] = {'vision_model': vision_model, 'text_model': text_model} UpperCamelCase_: Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCamelCase ) UpperCamelCase_: List[str] = model( input_ids=_lowerCamelCase , pixel_values=_lowerCamelCase , attention_mask=_lowerCamelCase , output_attentions=_lowerCamelCase ) UpperCamelCase_: List[str] = output.vision_model_output.attentions self.assertEqual(len(_lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_: Any = to_atuple(vision_model.config.image_size ) UpperCamelCase_: Union[str, Any] = to_atuple(vision_model.config.patch_size ) UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase_: Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase_: str = output.text_model_output.attentions self.assertEqual(len(_lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): pt_model.to(_lowerCamelCase ) pt_model.eval() # prepare inputs UpperCamelCase_: Optional[Any] = inputs_dict UpperCamelCase_: Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase_: Union[str, Any] = pt_model(**_lowerCamelCase ).to_tuple() UpperCamelCase_: List[Any] = fx_model(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCamelCase ) UpperCamelCase_: int = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase , from_pt=_lowerCamelCase ) UpperCamelCase_: List[Any] = fx_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_lowerCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCamelCase ) UpperCamelCase_: Any = VisionTextDualEncoderModel.from_pretrained(_lowerCamelCase , from_flax=_lowerCamelCase ) pt_model_loaded.to(_lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase_: int = pt_model_loaded(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_lowerCamelCase , pt_output_loaded.numpy() , 4e-2 ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: int = VisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: str = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCamelCase ) UpperCamelCase_: List[str] = fx_state self.check_pt_flax_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Tuple = VisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: str = FlaxVisionTextDualEncoderModel(_lowerCamelCase ) UpperCamelCase_: List[Any] = load_flax_weights_in_pytorch_model(_lowerCamelCase , fx_model.params ) self.check_pt_flax_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: str = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCamelCase ) def _a ( self ): UpperCamelCase_: int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**_lowerCamelCase ) def _a ( self ): UpperCamelCase_: int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCamelCase ) @is_pt_flax_cross_test def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_: str = config_inputs_dict.pop('vision_config' ) UpperCamelCase_: Dict = config_inputs_dict.pop('text_config' ) UpperCamelCase_: int = config_inputs_dict self.check_equivalence_pt_to_flax(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.check_equivalence_flax_to_pt(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: int = self.get_pretrained_model_and_inputs() UpperCamelCase_: Optional[Any] = model_a(**_lowerCamelCase ) UpperCamelCase_: Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCamelCase ) UpperCamelCase_: str = FlaxVisionTextDualEncoderModel.from_pretrained(_lowerCamelCase ) UpperCamelCase_: str = model_a(**_lowerCamelCase ) UpperCamelCase_: str = after_outputs[0] UpperCamelCase_: Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-5 ) @require_flax class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCamelCase , text_from_pt=_lowerCamelCase , ) UpperCamelCase_: List[Any] = 1_3 UpperCamelCase_: Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_: Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_: str = random_attention_mask([batch_size, 4] ) UpperCamelCase_: Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Any = FlaxViTModel(_lowerCamelCase ) UpperCamelCase_: Dict = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _a ( self ): UpperCamelCase_: Union[str, Any] = FlaxViTModelTester(self ) UpperCamelCase_: Dict = FlaxBertModelTester(self ) UpperCamelCase_: Tuple = vit_model_tester.prepare_config_and_inputs() UpperCamelCase_: Optional[int] = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_: Tuple = vision_config_and_inputs UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=_lowerCamelCase , text_from_pt=_lowerCamelCase , ) UpperCamelCase_: Union[str, Any] = 1_3 UpperCamelCase_: Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase_: Optional[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase_: Any = random_attention_mask([batch_size, 4] ) UpperCamelCase_: List[str] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = FlaxCLIPVisionModel(_lowerCamelCase ) UpperCamelCase_: int = FlaxBertModel(_lowerCamelCase ) return vision_model, text_model def _a ( self ): UpperCamelCase_: int = FlaxCLIPVisionModelTester(self ) UpperCamelCase_: Tuple = FlaxBertModelTester(self ) UpperCamelCase_: List[str] = clip_model_tester.prepare_config_and_inputs() UpperCamelCase_: int = bert_model_tester.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_: Optional[int] = vision_config_and_inputs UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) UpperCamelCase_: Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) UpperCamelCase_: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=_lowerCamelCase , padding=_lowerCamelCase , return_tensors='np' ) UpperCamelCase_: Union[str, Any] = model(**_lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase_: str = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _lowerCamelCase , atol=1e-3 ) )
57
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: UpperCamelCase_: Tuple = json.load(UpperCAmelCase__ ) UpperCamelCase_: List[str] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase_: Optional[int] = torch.load(UpperCAmelCase__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase_: Any = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] UpperCamelCase_: List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase_: Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase_: Any = AddedToken('<ent>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = AddedToken('<ent2>' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase_: Union[str, Any] = json.load(UpperCAmelCase__ ) UpperCamelCase_: str = 'MLukeTokenizer' with open(os.path.join(UpperCAmelCase__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens UpperCamelCase_: Any = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase_: List[str] = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase_: Tuple = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase_: int = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase_: str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase_: Union[str, Any] = state_dict[bias_name] UpperCamelCase_: Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase_: Any = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase_: Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase_: List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' UpperCamelCase_: str = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] UpperCamelCase_: Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase_: List[str] = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase_: int = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase_: Optional[Any] = state_dict['entity_predictions.bias'] UpperCamelCase_: List[str] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase_: List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase_: List[Any] = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase_: Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase_: Union[str, Any] = state_dict[key] else: UpperCamelCase_: Dict = state_dict[key] UpperCamelCase_ ,UpperCamelCase_: Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase_: Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task='entity_classification' ) UpperCamelCase_: Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase_: Optional[int] = (0, 9) UpperCamelCase_: Union[str, Any] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: str = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: int = torch.Size((1, 3_3, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase_: Dict = torch.Size((1, 1, 7_6_8) ) UpperCamelCase_: Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase_: str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = 'Tokyo is the capital of <mask>.' UpperCamelCase_: Dict = (2_4, 3_0) UpperCamelCase_: int = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = encoding['input_ids'][0].tolist() UpperCamelCase_: List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase_: Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = outputs.entity_logits[0][0].argmax().item() UpperCamelCase_: Optional[Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> int: UpperCamelCase_: Optional[Any] = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase_: Any = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] UpperCamelCase_: Tuple = {} for entry in data: UpperCamelCase_: Optional[int] = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase_: Union[str, Any] = entity_id break UpperCamelCase_: Dict = F'''{language}:{entity_name}''' UpperCamelCase_: Optional[int] = entity_id return new_mapping if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) A_ : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: # Initialise PyTorch model UpperCamelCase_: Union[str, Any] = BigBirdConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: UpperCamelCase_: List[Any] = BigBirdForQuestionAnswering(UpperCAmelCase__ ) else: UpperCamelCase_: str = BigBirdForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCAmelCase__ , UpperCAmelCase__ , is_trivia_qa=UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) A_ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
57
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
1
from __future__ import annotations def snake_case (UpperCAmelCase__ ) -> float: UpperCamelCase_: Optional[Any] = 0.00 UpperCamelCase_: List[Any] = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase_: Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(UpperCAmelCase__ ) first_sum += 1 / float(UpperCAmelCase__ ) index += 1 return 1 / first_sum def snake_case (UpperCAmelCase__ ) -> float: UpperCamelCase_: Tuple = 0.00 UpperCamelCase_: Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase_: Optional[int] = F'''Resistor at index {index} has a negative value!''' raise ValueError(UpperCAmelCase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import logging from transformers import PretrainedConfig A_ : int = logging.getLogger(__name__) A_ : Union[str, Any] = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Optional[Any] ='''bertabs''' def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=6 , _lowerCamelCase=5_1_2 , _lowerCamelCase=8 , _lowerCamelCase=5_1_2 , _lowerCamelCase=0.2 , _lowerCamelCase=6 , _lowerCamelCase=7_6_8 , _lowerCamelCase=8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=0.2 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Union[str, Any] = max_pos UpperCamelCase_: str = enc_layers UpperCamelCase_: int = enc_hidden_size UpperCamelCase_: str = enc_heads UpperCamelCase_: Any = enc_ff_size UpperCamelCase_: Optional[int] = enc_dropout UpperCamelCase_: List[Any] = dec_layers UpperCamelCase_: Union[str, Any] = dec_hidden_size UpperCamelCase_: Optional[Any] = dec_heads UpperCamelCase_: Union[str, Any] = dec_ff_size UpperCamelCase_: str = dec_dropout
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : List[str] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =KandinskyVaaControlnetImgaImgPipeline a : List[Any] =['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] a : List[str] =['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] a : Union[str, Any] =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a : List[Any] =False @property def _a ( self ): return 3_2 @property def _a ( self ): return 3_2 @property def _a ( self ): return self.time_input_dim @property def _a ( self ): return self.time_input_dim * 4 @property def _a ( self ): return 1_0_0 @property def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Dict = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCamelCase_: str = UNetaDConditionModel(**_lowerCamelCase ) return model @property def _a ( self ): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _a ( self ): torch.manual_seed(0 ) UpperCamelCase_: Tuple = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self ): UpperCamelCase_: Union[str, Any] = self.dummy_unet UpperCamelCase_: List[Any] = self.dummy_movq UpperCamelCase_: Optional[int] = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCamelCase_: Tuple = DDIMScheduler(**_lowerCamelCase ) UpperCamelCase_: Tuple = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): UpperCamelCase_: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCamelCase_: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image UpperCamelCase_: Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCamelCase_: Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_: Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint UpperCamelCase_: Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('mps' ): UpperCamelCase_: Tuple = torch.manual_seed(_lowerCamelCase ) else: UpperCamelCase_: int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_: str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _a ( self ): UpperCamelCase_: Union[str, Any] = 'cpu' UpperCamelCase_: str = self.get_dummy_components() UpperCamelCase_: str = self.pipeline_class(**_lowerCamelCase ) UpperCamelCase_: Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = output.images UpperCamelCase_: str = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] UpperCamelCase_: Tuple = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase_: int = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): UpperCamelCase_: Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) UpperCamelCase_: List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCamelCase_: List[str] = init_image.resize((5_1_2, 5_1_2) ) UpperCamelCase_: str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) UpperCamelCase_: Optional[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 UpperCamelCase_: Optional[int] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCamelCase_: Union[str, Any] = 'A robot, 4k photo' UpperCamelCase_: int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) UpperCamelCase_: str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='' , ).to_tuple() UpperCamelCase_: Tuple = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) UpperCamelCase_: Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
57
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
57
1
import inspect import unittest class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): try: import diffusers # noqa: F401 except ImportError: assert False def _a ( self ): import diffusers from diffusers.dependency_versions_table import deps UpperCamelCase_: Tuple = inspect.getmembers(_lowerCamelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": UpperCamelCase_: Any = 'k-diffusion' elif backend == "invisible_watermark": UpperCamelCase_: Tuple = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
57
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Tuple = logging.get_logger(__name__) A_ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } A_ : int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def snake_case (UpperCAmelCase__ ) -> str: UpperCamelCase_: Tuple = {} with open(UpperCAmelCase__ , 'r' ) as file: for line_number, line in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[Any] = line.strip() if line: UpperCamelCase_: List[Any] = line.split() UpperCamelCase_: Optional[Any] = line_number UpperCamelCase_: Any = words[0] UpperCamelCase_: List[Any] = value return result def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: for attribute in key.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Any = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: Dict = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: Optional[Any] = getattr(UpperCAmelCase__ , UpperCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_: Optional[Any] = hf_pointer for attribute in hf_param_name.split('.' ): UpperCamelCase_: str = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Tuple = shape_pointer.shape # let's reduce dimension UpperCamelCase_: int = value[0] else: UpperCamelCase_: Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_: Optional[int] = value elif weight_type == "weight_g": UpperCamelCase_: Any = value elif weight_type == "weight_v": UpperCamelCase_: Union[str, Any] = value elif weight_type == "bias": UpperCamelCase_: Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): UpperCamelCase_: Dict = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = value else: UpperCamelCase_: int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase__ ): UpperCamelCase_: Dict = PARAM_MAPPING[full_name.split('.' )[-1]] UpperCamelCase_: List[Any] = 'param' if weight_type is not None and weight_type != "param": UpperCamelCase_: List[Any] = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_: Any = '.'.join([key, hf_param_name] ) else: UpperCamelCase_: Union[str, Any] = key UpperCamelCase_: Any = value if 'lm_head' in full_key else value[0] A_ : str = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None ) -> Any: UpperCamelCase_: Optional[int] = False for key, mapped_key in MAPPING.items(): UpperCamelCase_: Tuple = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase_: Optional[Any] = True if "*" in mapped_key: UpperCamelCase_: Optional[int] = name.split(UpperCAmelCase__ )[0].split('.' )[-2] UpperCamelCase_: Any = mapped_key.replace('*' , UpperCAmelCase__ ) if "weight_g" in name: UpperCamelCase_: Union[str, Any] = 'weight_g' elif "weight_v" in name: UpperCamelCase_: Dict = 'weight_v' elif "bias" in name: UpperCamelCase_: int = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_: str = 'weight' else: UpperCamelCase_: Union[str, Any] = None if hf_dict is not None: rename_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: set_recursively(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return is_used return is_used def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: UpperCamelCase_: List[Any] = [] UpperCamelCase_: Dict = fairseq_model.state_dict() UpperCamelCase_: Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_: Union[str, Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_: List[Any] = True else: UpperCamelCase_: Tuple = load_wavaveca_layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: UpperCamelCase_: Any = full_name.split('conv_layers.' )[-1] UpperCamelCase_: int = name.split('.' ) UpperCamelCase_: int = int(items[0] ) UpperCamelCase_: Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_: int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_: Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_: List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False ) -> Dict: if config_path is not None: UpperCamelCase_: Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCamelCase_: List[str] = WavaVecaConfig() if is_seq_class: UpperCamelCase_: int = read_txt_into_dict(UpperCAmelCase__ ) UpperCamelCase_: Tuple = idalabel UpperCamelCase_: str = WavaVecaForSequenceClassification(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) feature_extractor.save_pretrained(UpperCAmelCase__ ) elif is_finetuned: if dict_path: UpperCamelCase_: List[Any] = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_: Dict = target_dict.pad_index UpperCamelCase_: Tuple = target_dict.bos_index UpperCamelCase_: Optional[Any] = target_dict.eos_index UpperCamelCase_: Union[str, Any] = len(target_dict.symbols ) UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCAmelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) UpperCamelCase_: str = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_: List[str] = 0 UpperCamelCase_: List[Any] = 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = WavaVecaCTCTokenizer( UpperCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCAmelCase__ , ) UpperCamelCase_: Any = True if config.feat_extract_norm == 'layer' else False UpperCamelCase_: Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) UpperCamelCase_: Dict = WavaVecaProcessor(feature_extractor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Any = WavaVecaForCTC(UpperCAmelCase__ ) else: UpperCamelCase_: Any = WavaVecaForPreTraining(UpperCAmelCase__ ) if is_finetuned or is_seq_class: UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase_: List[str] = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase_: Any = fairseq.tasks.setup_task(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase__ ) UpperCamelCase_: str = model[0].eval() recursively_load_weights(UpperCAmelCase__ , UpperCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) A_ : int = parser.parse_args() A_ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
57
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Dict = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) UpperCamelCase_: int = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase_: Dict = model(_lowerCamelCase )['last_hidden_state'] UpperCamelCase_: int = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice. UpperCamelCase_: str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
57
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase_: Tuple = test_metrics @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ): self.test_metrics.main() @require_multi_gpu def _a ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
57
1
import pytest A_ : Tuple = '__dummy_dataset1__' A_ : Union[str, Any] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def snake_case () -> Union[str, Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def snake_case () -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> str: UpperCamelCase_: int = dataset_loading_script_name UpperCamelCase_: Optional[Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=UpperCAmelCase__ ) UpperCamelCase_: List[Any] = script_dir / F'''{script_name}.py''' with open(UpperCAmelCase__ , 'w' ) as f: f.write(UpperCAmelCase__ ) return str(UpperCAmelCase__ )
57
import math class _lowerCAmelCase: """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = 0.0 UpperCamelCase_: Tuple = 0.0 for i in range(len(_lowerCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): for i in range(len(_lowerCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def snake_case () -> None: # Training Examples ( m, n ) UpperCamelCase_: List[str] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCamelCase_: List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCamelCase_: Dict = SelfOrganizingMap() UpperCamelCase_: List[Any] = 3 UpperCamelCase_: List[str] = 0.5 for _ in range(UpperCAmelCase__ ): for j in range(len(UpperCAmelCase__ ) ): # training sample UpperCamelCase_: int = training_samples[j] # Compute the winning vector UpperCamelCase_: Tuple = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # Update the winning vector UpperCamelCase_: Union[str, Any] = self_organizing_map.update(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # classify test sample UpperCamelCase_: Dict = [0, 0, 0, 1] UpperCamelCase_: Union[str, Any] = self_organizing_map.get_winner(UpperCAmelCase__ , UpperCAmelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
57
1