code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCamelCase ( snake_case__ : list[list[int | float]] ) -> int: UpperCamelCase : Tuple = len(snake_case__ ) UpperCamelCase : Tuple = len(matrix[0] ) UpperCamelCase : Tuple = min(snake_case__ , snake_case__ ) for row in range(snake_case__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__ ): UpperCamelCase : Dict = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase : Optional[int] = True for i in range(row + 1 , snake_case__ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase : Union[str, Any] = matrix[i], matrix[row] UpperCamelCase : List[str] = False break if reduce: rank -= 1 for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) set_seed(770) lowerCAmelCase__ = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase__ = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase__ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase__ = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase__ = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def _A ( A__ , A__=False ): """simple docstring""" __lowercase = model_type if use_small: key += "_small" return os.path.join(A__ , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def _A ( A__ , A__ ): """simple docstring""" os.makedirs(A__ , exist_ok=A__ ) hf_hub_download(repo_id=A__ , filename=A__ , local_dir=A__ ) def _A ( A__ , A__ , A__=False , A__="text" ): """simple docstring""" if model_type == "text": __lowercase = BarkSemanticModel __lowercase = BarkSemanticConfig __lowercase = BarkSemanticGenerationConfig elif model_type == "coarse": __lowercase = BarkCoarseModel __lowercase = BarkCoarseConfig __lowercase = BarkCoarseGenerationConfig elif model_type == "fine": __lowercase = BarkFineModel __lowercase = BarkFineConfig __lowercase = BarkFineGenerationConfig else: raise NotImplementedError() __lowercase = F"{model_type}_small" if use_small else model_type __lowercase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A__ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) __lowercase = torch.load(A__ , map_location=A__ ) # this is a hack __lowercase = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __lowercase = model_args['''vocab_size'''] __lowercase = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowercase = model_args.pop('''n_head''' ) __lowercase = model_args.pop('''n_embd''' ) __lowercase = model_args.pop('''n_layer''' ) __lowercase = ConfigClass(**checkpoint['''model_args'''] ) __lowercase = ModelClass(config=A__ ) __lowercase = GenerationConfigClass() __lowercase = model_generation_config __lowercase = checkpoint['''model'''] # fixup checkpoint __lowercase = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(A__ ): # replace part of the key with corresponding layer name in HF implementation __lowercase = k[len(A__ ) :] for old_layer_name in new_layer_name_dict: __lowercase = new_k.replace(A__ , new_layer_name_dict[old_layer_name] ) __lowercase = state_dict.pop(A__ ) __lowercase = set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowercase = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} __lowercase = set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowercase = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(A__ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(A__ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(A__ , strict=A__ ) __lowercase = model.num_parameters(exclude_embeddings=A__ ) __lowercase = checkpoint['''best_val_loss'''].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(A__ , 3 )} loss" ) model.eval() model.to(A__ ) del checkpoint, state_dict return model def _A ( A__ , A__=False , A__="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowercase = '''cpu''' # do conversion on cpu __lowercase = _get_ckpt_path(A__ , use_small=A__ ) __lowercase = _load_model(A__ , A__ , model_type=A__ , use_small=A__ ) # load bark initial model __lowercase = _bark_load_model(A__ , '''cpu''' , model_type=A__ , use_small=A__ ) if model_type == "text": __lowercase = bark_model['''model'''] if model.num_parameters(exclude_embeddings=A__ ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model __lowercase = 5 __lowercase = 10 if model_type in ["text", "coarse"]: __lowercase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowercase = bark_model(A__ )[0] __lowercase = model(A__ ) # take last logits __lowercase = output_new_model_total.logits[:, [-1], :] else: __lowercase = 3 __lowercase = 8 __lowercase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowercase = model(A__ , A__ ) __lowercase = bark_model(A__ , A__ ) __lowercase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) def _A ( A__ , A__ , A__ , A__ , A__ , A__ , ): """simple docstring""" __lowercase = os.path.join(A__ , A__ ) __lowercase = BarkSemanticConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = BarkCoarseConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = BarkFineConfig.from_pretrained(os.path.join(A__ , '''config.json''' ) ) __lowercase = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) __lowercase = BarkSemanticModel.from_pretrained(A__ ) __lowercase = BarkCoarseModel.from_pretrained(A__ ) __lowercase = BarkFineModel.from_pretrained(A__ ) __lowercase = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) __lowercase = BarkConfig.from_sub_model_configs( A__ , A__ , A__ , A__ ) __lowercase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowercase = BarkModel(A__ ) __lowercase = semantic __lowercase = coarseAcoustic __lowercase = fineAcoustic __lowercase = codec __lowercase = bark_generation_config Path(A__ ).mkdir(exist_ok=A__ ) bark.save_pretrained(A__ , repo_id=A__ , push_to_hub=A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
41
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 1_00_00_00 ) -> int: lowerCamelCase_ = 1 lowerCamelCase_ = 1 lowerCamelCase_ = {1: 1} for inputa in range(2 ,__UpperCamelCase ): lowerCamelCase_ = 0 lowerCamelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase_ = counter if counter > pre_counter: lowerCamelCase_ = inputa lowerCamelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
42
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
0
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase_ : int = False class UpperCAmelCase__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : int = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion",torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _lowerCamelCase : int = torch.manual_seed(0 ) _lowerCamelCase : List[Any] = pipe.dual_guided( prompt="first prompt",image=__A,text_to_image_strength=0.75,generator=__A,guidance_scale=7.5,num_inference_steps=2,output_type="numpy",).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__A ) _lowerCamelCase : Dict = VersatileDiffusionPipeline.from_pretrained(__A,torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Tuple = generator.manual_seed(0 ) _lowerCamelCase : Optional[Any] = pipe.dual_guided( prompt="first prompt",image=__A,text_to_image_strength=0.75,generator=__A,guidance_scale=7.5,num_inference_steps=2,output_type="numpy",).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : str ): _lowerCamelCase : Dict = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion",torch_dtype=torch.floataa ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowerCamelCase : Tuple = "cyberpunk 2077" _lowerCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : Tuple = pipe.dual_guided( prompt=__A,image=__A,text_to_image_strength=0.75,generator=__A,guidance_scale=7.5,num_inference_steps=5_0,output_type="numpy",).images _lowerCamelCase : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Union[str, Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _lowerCamelCase : List[str] = "A painting of a squirrel eating a burger " _lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) _lowerCamelCase : Any = pipe.text_to_image( prompt=__A,generator=__A,guidance_scale=7.5,num_inference_steps=5_0,output_type="numpy" ).images _lowerCamelCase : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Tuple = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _lowerCamelCase : int = pipe.image_variation(__A,generator=__A,output_type="numpy" ).images _lowerCamelCase : int = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCamelCase : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
0
import os from distutils.util import strtobool def A ( lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> List[str]: for e in env_keys: UpperCamelCase__ :Optional[Any] = int(os.environ.get(lowercase__ , -1 ) ) if val >= 0: return val return default def A ( lowercase__ : Optional[int] , lowercase__ : int=False ) -> Optional[int]: UpperCamelCase__ :Optional[Any] = os.environ.get(lowercase__ , str(lowercase__ ) ) return strtobool(lowercase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def A ( lowercase__ : Tuple , lowercase__ : Dict="no" ) -> List[Any]: UpperCamelCase__ :Optional[int] = os.environ.get(lowercase__ , str(lowercase__ ) ) return value
45
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' if not head: return True # split the list to two parts _lowerCamelCase, _lowerCamelCase : List[str] = head.next, head while fast and fast.next: _lowerCamelCase : Union[str, Any] = fast.next.next _lowerCamelCase : str = slow.next _lowerCamelCase : Any = slow.next _lowerCamelCase : Tuple = None # Don't forget here! But forget still works! # reverse the second part _lowerCamelCase : int = None while second: _lowerCamelCase : Union[str, Any] = second.next _lowerCamelCase : Dict = node _lowerCamelCase : List[Any] = second _lowerCamelCase : Optional[Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _lowerCamelCase : List[Any] = node.next _lowerCamelCase : Dict = head.next return True def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _lowerCamelCase : Tuple = head while fast and fast.next: _lowerCamelCase, _lowerCamelCase : str = fast.next.next, slow.next # 2. Push the second half into the stack _lowerCamelCase : Dict = [slow.val] while slow.next: _lowerCamelCase : Tuple = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _lowerCamelCase : Optional[int] = cur.next return True def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' if not head or not head.next: return True _lowerCamelCase : Dict = {} _lowerCamelCase : Optional[Any] = 0 while head: if head.val in d: d[head.val].append(_lowerCamelCase ) else: _lowerCamelCase : Any = [pos] _lowerCamelCase : Any = head.next pos += 1 _lowerCamelCase : str = pos - 1 _lowerCamelCase : Optional[int] = 0 for v in d.values(): if len(_lowerCamelCase ) % 2 != 0: middle += 1 else: _lowerCamelCase : Optional[int] = 0 for i in range(0 , len(_lowerCamelCase ) ): if v[i] + v[len(_lowerCamelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
46
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def UpperCAmelCase__ ( lowerCamelCase_ : int , lowerCamelCase_ : int ): if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
47
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
0
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ : str = logging.getLogger(__name__) UpperCAmelCase__ : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(SCREAMING_SNAKE_CASE__ )} , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case__ :bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) snake_case__ :str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case__ :bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class A : snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case__ :Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The input training data file (a text file).'} ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) snake_case__ :Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) snake_case__ :bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) snake_case__ :Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) snake_case__ :Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case__ :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) snake_case__ :bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" if self.train_file is not None: lowerCAmelCase__ = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCAmelCase__ = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : str ) -> Dict: '''simple docstring''' with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = [json.loads(UpperCamelCase_ ) for line in f.read().splitlines() if (len(UpperCamelCase_ ) > 0 and not line.isspace())] assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) lowerCAmelCase__ = {c: dataset[c] for c in dataset.column_names} lowerCAmelCase__ = refs return Dataset.from_dict(UpperCamelCase_ ) def A ( ) -> Dict: '''simple docstring''' lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) lowerCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowerCAmelCase__ = {} if data_args.train_file is not None: lowerCAmelCase__ = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase__ = data_args.validation_file lowerCAmelCase__ = data_args.train_file.split("." )[-1] if extension == "txt": lowerCAmelCase__ = "text" lowerCAmelCase__ = load_dataset(UpperCamelCase_ , data_files=UpperCamelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.config_name , **UpperCamelCase_ ) elif model_args.model_name_or_path: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: lowerCAmelCase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) lowerCAmelCase__ = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCAmelCase__ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCamelCase_ ) elif model_args.model_name_or_path: lowerCAmelCase__ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCamelCase_ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: lowerCAmelCase__ = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCAmelCase__ = AutoModelForMaskedLM.from_config(UpperCamelCase_ ) model.resize_token_embeddings(len(UpperCamelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCAmelCase__ = datasets["train"].column_names else: lowerCAmelCase__ = datasets["validation"].column_names lowerCAmelCase__ = "text" if "text" in column_names else column_names[0] lowerCAmelCase__ = "max_length" if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase_ : int ): # Remove empty lines lowerCAmelCase__ = [line for line in examples["text"] if len(UpperCamelCase_ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=data_args.max_seq_length ) lowerCAmelCase__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCAmelCase__ = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCAmelCase__ = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCAmelCase__ = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCAmelCase__ = False # Data collator # This one will take care of randomly masking the tokens. lowerCAmelCase__ = DataCollatorForWholeWordMask(tokenizer=UpperCamelCase_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase__ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase__ = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase__ = model_args.model_name_or_path else: lowerCAmelCase__ = None lowerCAmelCase__ = trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase__ = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = math.exp(eval_output["eval_loss"] ) lowerCAmelCase__ = perplexity lowerCAmelCase__ = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def A ( UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
48
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
0
"""simple docstring""" _lowercase : Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def lowercase__ ( snake_case_ :int ): __UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase : list[bool | None] = [None] * 10_00_00_00 _lowercase : List[Any] = True _lowercase : Any = False def lowercase__ ( snake_case_ :int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __UpperCAmelCase = chain(next_number(snake_case_ ) ) __UpperCAmelCase = number_chain while number < 10_000_000: __UpperCAmelCase = number_chain number *= 10 return number_chain def lowercase__ ( snake_case_ :int = 10_000_000 ): for i in range(1 , snake_case_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
49
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
0
'''simple docstring''' import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load lowerCamelCase__ = Path(__lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowerCamelCase__ = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , __lowerCAmelCase , with_cuda=__lowerCAmelCase , extra_include_paths=[str(__lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
50
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __a : int = parent __a : str = batch_size __a : List[Any] = num_channels __a : Union[str, Any] = image_size __a : List[Any] = min_resolution __a : str = max_resolution __a : List[str] = do_resize __a : Optional[int] = size if size is not None else {'''height''': 18, '''width''': 20} __a : str = do_thumbnail __a : str = do_align_axis __a : Dict = do_pad __a : Union[str, Any] = do_normalize __a : List[str] = image_mean __a : Optional[int] = image_std def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Tuple = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) def _lowerCamelCase ( self ): __a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a : int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self ): pass @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __a : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : str = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self ): # Initialize image_processing __a : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a : List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
52
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _snake_case , _snake_case : str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _snake_case : int = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _snake_case : Optional[Any] = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _snake_case : Optional[Any] = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
53
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowercase : List[Any] =datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): _snake_case =10000 _snake_case =None _snake_case =None class A ( datasets.ArrowBasedBuilder ): _snake_case =ParquetConfig def lowerCAmelCase__ ( self: Optional[int] ) -> Dict: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) UpperCAmelCase_ =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): UpperCAmelCase_ =data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase_ =[] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCAmelCase ): with open(_lowerCAmelCase , "rb" ) as f: UpperCAmelCase_ =datasets.Features.from_arrow_schema(pq.read_schema(_lowerCAmelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: pa.Table ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ =table_cast(_lowerCAmelCase , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , "rb" ) as f: UpperCAmelCase_ =pq.ParquetFile(_lowerCAmelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase_ =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(_lowerCAmelCase ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}' ) raise
54
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = botoa.client("iam" ) __A = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=a_ , AssumeRolePolicyDocument=json.dumps(a_ , indent=2 ) ) __A = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=a_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(a_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = botoa.client("iam" ) return iam_client.get_role(RoleName=a_ )["Role"]["Arn"] def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , a_ , ) __A = None if credentials_configuration == 0: __A = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) __A = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) __A = _ask_field("AWS Access Key ID: " ) __A = aws_access_key_id __A = _ask_field("AWS Secret Access Key: " ) __A = aws_secret_access_key __A = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) __A = aws_region __A = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , a_ , ) if role_management == 0: __A = _ask_field("Enter your IAM role name: " ) else: __A = "accelerate_sagemaker_execution_role" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(a_ ) __A = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = None if is_custom_docker_image: __A = _ask_field("Enter your Docker image: " , lambda a_ : str(a_ ).lower() ) __A = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = None if is_sagemaker_inputs_enabled: __A = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda a_ : str(a_ ).lower() , ) __A = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = None if is_sagemaker_metrics_enabled: __A = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda a_ : str(a_ ).lower() , ) __A = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) __A = {} __A = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) if use_dynamo: __A = "dynamo_" __A = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __A = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) if use_custom_options: __A = _ask_options( "Which mode do you want to use?" , a_ , lambda a_ : TORCH_DYNAMO_MODES[int(a_ )] , default="default" , ) __A = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , ) __A = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: __A = _ask_options( a_ , a_ , lambda a_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __A = _ask_field(a_ , lambda a_ : str(a_ ).lower() , default="ml.p3.2xlarge" ) __A = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __A = _ask_field( "How many machines do you want use? [1]: " , a_ , default=1 , ) __A = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=a_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=a_ , use_cpu=a_ , dynamo_config=a_ , eca_instance_type=a_ , profile=a_ , region=a_ , iam_role_name=a_ , mixed_precision=a_ , num_machines=a_ , sagemaker_inputs_file=a_ , sagemaker_metrics_file=a_ , )
55
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A_ : Optional[int] = logging.get_logger(__name__) A_ : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A_ : Dict = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } A_ : Optional[Any] = {'allegro/herbert-base-cased': 514} A_ : Dict = {} class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =HerbertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase="</s>" , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sep_token=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: List[str] = [self.cls_token_id] UpperCamelCase_: List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Any = [self.sep_token_id] UpperCamelCase_: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
57
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Dict = tau * frequency / samplerate snake_case_ : List[Any] = sin(__UpperCamelCase ) snake_case_ : List[str] = cos(__UpperCamelCase ) snake_case_ : List[Any] = _sin / (2 * q_factor) snake_case_ : List[Any] = (1 - _cos) / 2 snake_case_ : Any = 1 - _cos snake_case_ : Union[str, Any] = 1 + alpha snake_case_ : Tuple = -2 * _cos snake_case_ : str = 1 - alpha snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Optional[Any] = tau * frequency / samplerate snake_case_ : Dict = sin(__UpperCamelCase ) snake_case_ : Union[str, Any] = cos(__UpperCamelCase ) snake_case_ : Optional[int] = _sin / (2 * q_factor) snake_case_ : List[Any] = (1 + _cos) / 2 snake_case_ : Union[str, Any] = -1 - _cos snake_case_ : Any = 1 + alpha snake_case_ : Any = -2 * _cos snake_case_ : List[Any] = 1 - alpha snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Union[str, Any] = tau * frequency / samplerate snake_case_ : Optional[int] = sin(__UpperCamelCase ) snake_case_ : Dict = cos(__UpperCamelCase ) snake_case_ : List[Any] = _sin / (2 * q_factor) snake_case_ : str = _sin / 2 snake_case_ : Any = 0 snake_case_ : List[Any] = -ba snake_case_ : List[Any] = 1 + alpha snake_case_ : List[str] = -2 * _cos snake_case_ : Optional[int] = 1 - alpha snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Tuple = tau * frequency / samplerate snake_case_ : Union[str, Any] = sin(__UpperCamelCase ) snake_case_ : Union[str, Any] = cos(__UpperCamelCase ) snake_case_ : List[str] = _sin / (2 * q_factor) snake_case_ : str = 1 - alpha snake_case_ : Union[str, Any] = -2 * _cos snake_case_ : int = 1 + alpha snake_case_ : Tuple = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : str = tau * frequency / samplerate snake_case_ : str = sin(__UpperCamelCase ) snake_case_ : Union[str, Any] = cos(__UpperCamelCase ) snake_case_ : List[str] = _sin / (2 * q_factor) snake_case_ : Tuple = 1_0 ** (gain_db / 4_0) snake_case_ : List[Any] = 1 + alpha * big_a snake_case_ : Optional[int] = -2 * _cos snake_case_ : Dict = 1 - alpha * big_a snake_case_ : List[Any] = 1 + alpha / big_a snake_case_ : Union[str, Any] = -2 * _cos snake_case_ : Any = 1 - alpha / big_a snake_case_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : Optional[int] = tau * frequency / samplerate snake_case_ : Optional[int] = sin(__UpperCamelCase ) snake_case_ : List[str] = cos(__UpperCamelCase ) snake_case_ : Optional[Any] = _sin / (2 * q_factor) snake_case_ : Tuple = 1_0 ** (gain_db / 4_0) snake_case_ : Tuple = (big_a + 1) - (big_a - 1) * _cos snake_case_ : Any = (big_a + 1) + (big_a - 1) * _cos snake_case_ : List[str] = (big_a - 1) - (big_a + 1) * _cos snake_case_ : List[Any] = (big_a - 1) + (big_a + 1) * _cos snake_case_ : Optional[Any] = 2 * sqrt(__UpperCamelCase ) * alpha snake_case_ : Optional[int] = big_a * (pmc + aaa) snake_case_ : int = 2 * big_a * mpc snake_case_ : List[Any] = big_a * (pmc - aaa) snake_case_ : Optional[Any] = ppmc + aaa snake_case_ : List[Any] = -2 * pmpc snake_case_ : Optional[Any] = ppmc - aaa snake_case_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : List[str] = tau * frequency / samplerate snake_case_ : List[str] = sin(__UpperCamelCase ) snake_case_ : List[str] = cos(__UpperCamelCase ) snake_case_ : Any = _sin / (2 * q_factor) snake_case_ : Optional[int] = 1_0 ** (gain_db / 4_0) snake_case_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos snake_case_ : Dict = (big_a + 1) + (big_a - 1) * _cos snake_case_ : int = (big_a - 1) - (big_a + 1) * _cos snake_case_ : Tuple = (big_a - 1) + (big_a + 1) * _cos snake_case_ : str = 2 * sqrt(__UpperCamelCase ) * alpha snake_case_ : str = big_a * (ppmc + aaa) snake_case_ : List[Any] = -2 * big_a * pmpc snake_case_ : Union[str, Any] = big_a * (ppmc - aaa) snake_case_ : Any = pmc + aaa snake_case_ : Dict = 2 * mpc snake_case_ : List[Any] = pmc - aaa snake_case_ : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
58
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Any =tempfile.mkdtemp() lowerCamelCase__: Any =8 # DPR tok lowerCamelCase__: Tuple =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: int =os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) lowerCamelCase__: Any =os.path.join(UpperCAmelCase_ , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok lowerCamelCase__: str =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Tuple =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase__: Any ={"unk_token": "<unk>"} lowerCamelCase__: str =os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) lowerCamelCase__: Dict =os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: List[str] =os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_dummy_dataset() lowerCamelCase__: int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: lowerCamelCase__: int =dataset lowerCamelCase__: str =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : bool) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =self.get_dummy_dataset() lowerCamelCase__: int =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , "dataset") lowerCamelCase__: Tuple =os.path.join(self.tmpdirname , "index.faiss") dataset.get_index("embeddings").save(os.path.join(self.tmpdirname , "index.faiss")) dataset.drop_index("embeddings") dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset")) del dataset lowerCamelCase__: Dict =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCamelCase__: Tuple =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_) , ) return retriever def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], }) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT) lowerCamelCase__: Dict =os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index") dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr") pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb")) lowerCamelCase__: Dict =os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl") lowerCamelCase__: str ={sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(UpperCAmelCase_ , open(UpperCAmelCase_ , "wb")) lowerCamelCase__: Dict =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowerCamelCase__: Any =RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer()) return retriever def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =1 lowerCamelCase__: List[Any] =self.get_dummy_canonical_hf_index_retriever() lowerCamelCase__: Union[str, Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: str =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset: lowerCamelCase__: List[Any] =self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Any =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =1 lowerCamelCase__: Optional[Any] =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) lowerCamelCase__: Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: List[Any] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Any =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =1 lowerCamelCase__: Dict =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) lowerCamelCase__: str =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["id"][0] , "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: str =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =1 lowerCamelCase__: Optional[int] =self.get_dummy_legacy_index_retriever() lowerCamelCase__: Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(UpperCAmelCase_) , 2) self.assertEqual(sorted(doc_dicts[0]) , ["text", "title"]) self.assertEqual(len(doc_dicts[0]["text"]) , UpperCAmelCase_) self.assertEqual(doc_dicts[0]["text"][0] , "bar") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Optional[int] =RagRetriever.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Tuple =retriever.retrieve(UpperCAmelCase_ , n_docs=1) self.assertTrue(out is not None) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]: '''simple docstring''' import torch lowerCamelCase__: Union[str, Any] =1 lowerCamelCase__: Optional[Any] =self.get_dummy_canonical_hf_index_retriever() lowerCamelCase__: str =[[5, 7], [10, 11]] lowerCamelCase__: List[str] =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: Optional[int] =retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , np.ndarray) lowerCamelCase__: Optional[Any] =retriever( UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ , return_tensors="pt" , ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size)) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any =self.get_dpr_ctx_encoder_tokenizer() lowerCamelCase__: Dict =1 lowerCamelCase__: Tuple =self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase_) lowerCamelCase__: List[Any] =[[5, 7], [10, 11]] lowerCamelCase__: Any =np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)] , dtype=np.floataa) lowerCamelCase__: List[Any] =retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_) self.assertEqual( len(UpperCAmelCase_) , 6) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask")) , UpperCAmelCase_) # check for doc token related keys in dictionary.
59
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase_ = 3 def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" print('''Generating primitive root of p''' ) while True: snake_case_ : Any = random.randrange(3 , _UpperCamelCase ) if pow(_UpperCamelCase , 2 , _UpperCamelCase ) == 1: continue if pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) == 1: continue return g def lowerCamelCase_ ( _UpperCamelCase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) snake_case_ : Optional[int] = rabin_miller.generate_large_prime(_UpperCamelCase ) # select large prime number. snake_case_ : str = primitive_root(_UpperCamelCase ) # one primitive root on modulo p. snake_case_ : Union[str, Any] = random.randrange(3 , _UpperCamelCase ) # private_key -> have to be greater than 2 for safety. snake_case_ : Optional[int] = cryptomath.find_mod_inverse(pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase ) snake_case_ : Dict = (key_size, e_a, e_a, p) snake_case_ : Any = (key_size, d) return public_key, private_key def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> None: """simple docstring""" if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() snake_case_ , snake_case_ : str = generate_key(_UpperCamelCase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , '''w''' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , '''w''' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def lowerCamelCase_ ( ) -> None: """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2_048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
60
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "words.txt" ) lowerCAmelCase__ = "" with open(lowerCAmelCase_ ) as f: lowerCAmelCase__ = f.readline() lowerCAmelCase__ = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowerCAmelCase__ = [ word for word in [sum(ord(lowerCAmelCase_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase_ ) if __name__ == "__main__": print(solution())
61
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = emb.weight.shape SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(lowercase , lowercase , bias=lowercase ) SCREAMING_SNAKE_CASE : Any = emb.weight.data return lin_layer def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE : Optional[int] = Namespace(**checkpoint["cfg"]["model"] ) SCREAMING_SNAKE_CASE : str = checkpoint["model"] remove_ignore_keys_(lowercase ) SCREAMING_SNAKE_CASE : str = state_dict["decoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE : Any = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} SCREAMING_SNAKE_CASE : List[str] = XGLMConfig( vocab_size=lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) SCREAMING_SNAKE_CASE : Tuple = XGLMForCausalLM(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = model.load_state_dict(lowercase , strict=lowercase ) print(lowercase ) SCREAMING_SNAKE_CASE : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() snake_case = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
62
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
0
from __future__ import annotations import requests a : List[Any] = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : int = 1 , __lowerCamelCase : str = "new" , __lowerCamelCase : list | None = None ): __UpperCAmelCase : int = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__lowerCamelCase ) - valid_terms ) ): __UpperCAmelCase : List[Any] = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(__lowerCamelCase ) __UpperCAmelCase : int = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 429: raise requests.HTTPError __UpperCAmelCase : List[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__lowerCamelCase )} __UpperCAmelCase : Tuple = {} for id_ in range(__lowerCamelCase ): __UpperCAmelCase : str = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
63
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
0
def A__ ( snake_case_ : list ): if len(snake_case_ ) <= 1: return [tuple(snake_case_ )] SCREAMING_SNAKE_CASE__: str= [] def generate(snake_case_ : int , snake_case_ : list ): SCREAMING_SNAKE_CASE__: int= [0] * n res.append(tuple(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Tuple= 0 while i < n: if c[i] < i: if i % 2 == 0: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= arr[i], arr[0] else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[Any]= arr[i], arr[c[i]] res.append(tuple(snake_case_ ) ) c[i] += 1 SCREAMING_SNAKE_CASE__: Dict= 0 else: SCREAMING_SNAKE_CASE__: Any= 0 i += 1 generate(len(snake_case_ ) , snake_case_ ) return res if __name__ == "__main__": lowercase_ : Any = input('Enter numbers separated by a comma:\n').strip() lowercase_ : Optional[int] = [int(item) for item in user_input.split(',')] print(heaps(arr))
64
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class __lowercase ( __lowerCamelCase ): def __lowercase ( self : int ,A : Dict=None ,A : Optional[Any]=None ,A : Any=None ,**A : Dict ): '''simple docstring''' if tokenize_kwargs is None: UpperCAmelCase__ : List[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) UpperCAmelCase__ : List[str] = truncation UpperCAmelCase__ : Union[str, Any] = tokenize_kwargs UpperCAmelCase__ : List[Any] = {} if return_tensors is not None: UpperCAmelCase__ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def __lowercase ( self : Optional[int] ,A : str ,**A : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.framework UpperCAmelCase__ : Optional[int] = self.tokenizer(A ,return_tensors=A ,**A ) return model_inputs def __lowercase ( self : Optional[int] ,A : int ): '''simple docstring''' UpperCAmelCase__ : str = self.model(**A ) return model_outputs def __lowercase ( self : Union[str, Any] ,A : Dict ,A : Dict=False ): '''simple docstring''' # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Union[str, Any] ,*A : Tuple ,**A : Optional[int] ): '''simple docstring''' return super().__call__(*A ,**A )
65
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
0
import string import numpy def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE ) class lowerCAmelCase_ : _UpperCamelCase : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) _UpperCamelCase : Tuple = numpy.vectorize(lambda __snake_case : x % 36 ) _UpperCamelCase : Any = numpy.vectorize(__snake_case ) def __init__( self , _lowerCAmelCase ): _lowercase : str = self.modulus(_lowerCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _lowercase : int = encrypt_key.shape[0] def __a ( self , _lowerCAmelCase ): return self.key_string.index(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): return self.key_string[round(_lowerCAmelCase )] def __a ( self ): _lowercase : str = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowercase : int = det % len(self.key_string ) _lowercase : List[str] = len(self.key_string ) if greatest_common_divisor(_lowerCAmelCase , len(self.key_string ) ) != 1: _lowercase : str = ( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[Any] = [char for char in text.upper() if char in self.key_string] _lowercase : Union[str, Any] = chars[-1] while len(_lowerCAmelCase ) % self.break_key != 0: chars.append(_lowerCAmelCase ) return "".join(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.process_text(text.upper() ) _lowercase : Dict = '' for i in range(0 , len(_lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _lowercase : List[Any] = text[i : i + self.break_key] _lowercase : str = [self.replace_letters(_lowerCAmelCase ) for char in batch] _lowercase : Union[str, Any] = numpy.array([vec] ).T _lowercase : List[Any] = self.modulus(self.encrypt_key.dot(_lowerCAmelCase ) ).T.tolist()[ 0 ] _lowercase : Any = ''.join( self.replace_digits(_lowerCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __a ( self ): _lowercase : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _lowercase : Any = det % len(self.key_string ) _lowercase : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _lowercase : Union[str, Any] = i break _lowercase : List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_lowerCAmelCase ) ) def __a ( self , _lowerCAmelCase ): _lowercase : Optional[int] = self.make_decrypt_key() _lowercase : Union[str, Any] = self.process_text(text.upper() ) _lowercase : List[str] = '' for i in range(0 , len(_lowerCAmelCase ) - self.break_key + 1 , self.break_key ): _lowercase : List[Any] = text[i : i + self.break_key] _lowercase : Any = [self.replace_letters(_lowerCAmelCase ) for char in batch] _lowercase : Optional[int] = numpy.array([vec] ).T _lowercase : int = self.modulus(decrypt_key.dot(_lowerCAmelCase ) ).T.tolist()[0] _lowercase : str = ''.join( self.replace_digits(_lowerCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __magic_name__ ( ) -> None: _lowercase : Any = int(input('Enter the order of the encryption key: ' ) ) _lowercase : Any = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(SCREAMING_SNAKE_CASE ): _lowercase : Tuple = [int(SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE ) _lowercase : int = HillCipher(numpy.array(SCREAMING_SNAKE_CASE ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) _lowercase : List[str] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": _lowercase : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(SCREAMING_SNAKE_CASE ) ) elif option == "2": _lowercase : List[str] = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
66
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] , snake_case__ :List[Any] , snake_case__ :Any=[] ) -> Any: _lowercase = size[0] - overlap_pixels * 2 _lowercase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowercase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowercase = np.pad(snake_case__ , mode='linear_ramp' , pad_width=snake_case__ , end_values=0 ) if "l" in remove_borders: _lowercase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowercase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowercase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowercase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] , snake_case__ :List[str] , snake_case__ :List[str] ) -> Dict: return max(snake_case__ , min(snake_case__ , snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :[int] , snake_case__ :[int] , snake_case__ :[int] ) -> Optional[Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :[int] , snake_case__ :int , snake_case__ :[int] ) -> Dict: _lowercase = list(snake_case__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowercase = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :int , snake_case__ :Dict , snake_case__ :str ) -> Tuple: _lowercase = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(snake_case__ , (original_slice, 0) ) return result def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Tuple ) -> List[str]: _lowercase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowercase = tile.crop(snake_case__ ) return tile def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Optional[int] ) -> Tuple: _lowercase = n % d return n - divisor class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : str ,__A : AutoencoderKL ,__A : CLIPTextModel ,__A : CLIPTokenizer ,__A : UNetaDConditionModel ,__A : DDPMScheduler ,__A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,__A : int = 350 ,) -> Union[str, Any]: super().__init__( vae=__A ,text_encoder=__A ,tokenizer=__A ,unet=__A ,low_res_scheduler=__A ,scheduler=__A ,max_noise_level=__A ,) def __UpperCAmelCase ( self : Dict ,__A : Dict ,__A : Tuple ,__A : List[Any] ,__A : str ,__A : Optional[Any] ,__A : Union[str, Any] ,__A : Optional[int] ,**__A : List[Any] ) -> int: torch.manual_seed(0 ) _lowercase = ( min(image.size[0] - (tile_size + original_image_slice) ,x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) ,y * tile_size ), min(image.size[0] ,(x + 1) * tile_size ), min(image.size[1] ,(y + 1) * tile_size ), ) _lowercase = add_overlap_rect(__A ,__A ,image.size ) _lowercase = image.crop(__A ) _lowercase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowercase = translated_slice_x - (original_image_slice / 2) _lowercase = max(0 ,__A ) _lowercase = squeeze_tile(__A ,__A ,__A ,__A ) _lowercase = to_input.size _lowercase = to_input.resize((tile_size, tile_size) ,Image.BICUBIC ) _lowercase = super(__A ,self ).__call__(image=__A ,**__A ).images[0] _lowercase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) ,Image.BICUBIC ) _lowercase = unsqueeze_tile(__A ,__A ) _lowercase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) ,Image.BICUBIC ) _lowercase = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _lowercase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) ,tile_border * 4 ,remove_borders=__A ) ,mode='L' ,) final_image.paste( __A ,(crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) ,__A ) @torch.no_grad() def __call__( self : List[Any] ,__A : Union[str, List[str]] ,__A : Union[PIL.Image.Image, List[PIL.Image.Image]] ,__A : int = 75 ,__A : float = 9.0 ,__A : int = 50 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,__A : int = 128 ,__A : int = 32 ,__A : int = 32 ,) -> int: _lowercase = Image.new('RGB' ,(image.size[0] * 4, image.size[1] * 4) ) _lowercase = math.ceil(image.size[0] / tile_size ) _lowercase = math.ceil(image.size[1] / tile_size ) _lowercase = tcx * tcy _lowercase = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A ,__A ,__A ,__A ,__A ,__A ,__A ,prompt=__A ,num_inference_steps=__A ,guidance_scale=__A ,noise_level=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # Run a demo _lowercase = 'stabilityai/stable-diffusion-x4-upscaler' _lowercase = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision='fp16' , torch_dtype=torch.floataa ) _lowercase = pipe.to('cuda' ) _lowercase = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(snake_case__ :int ): print(F"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('diffusers_library_progress.jpg' ) _lowercase = pipe(image=snake_case__ , prompt='Black font, white background, vector' , noise_level=40 , callback=snake_case__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
67
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Union[str, Any] , a_ : Optional[Any] , a_ : Dict=13 , a_ : List[Any]=7 , a_ : int=True , a_ : List[str]=True , a_ : List[Any]=True , a_ : Union[str, Any]=True , a_ : Tuple=99 , a_ : List[Any]=32 , a_ : str=5 , a_ : Optional[int]=4 , a_ : int=37 , a_ : Optional[Any]="gelu" , a_ : Union[str, Any]=0.1 , a_ : List[Any]=0.1 , a_ : Dict=512 , a_ : Optional[int]=16 , a_ : Dict=2 , a_ : str=0.02 , a_ : List[Any]=False , a_ : Optional[Any]=True , a_ : Optional[Any]="None" , a_ : List[Any]=3 , a_ : Tuple=4 , a_ : int=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = relative_attention __snake_case = position_biased_input __snake_case = pos_att_type __snake_case = scope def A ( self : List[str] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : str ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A ( self : int ): """simple docstring""" __snake_case = self.get_config() __snake_case = 300 return config def A ( self : Union[str, Any] , a_ : Any ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A ( self : Union[str, Any] , a_ : Optional[int] , a_ : Optional[Any] , a_ : Tuple , a_ : List[Any] , a_ : Optional[Any] , a_ : Tuple , a_ : Optional[Any] ): """simple docstring""" __snake_case = DebertaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] __snake_case = model(a_ , token_type_ids=a_ )[0] __snake_case = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A ( self : Optional[int] , a_ : List[Any] , a_ : Tuple , a_ : Tuple , a_ : List[Any] , a_ : Optional[int] , a_ : Any , a_ : Tuple ): """simple docstring""" __snake_case = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , a_ : List[str] , a_ : int , a_ : Optional[Any] , a_ : List[Any] , a_ : Optional[Any] , a_ : List[Any] , a_ : Any ): """simple docstring""" __snake_case = self.num_labels __snake_case = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def A ( self : Optional[Any] , a_ : str , a_ : Tuple , a_ : Any , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : str , a_ : List[Any] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , a_ : str , a_ : List[str] , a_ : Tuple , a_ : str , a_ : str , a_ : List[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : List[str] ): """simple docstring""" __snake_case = DebertaModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def A ( self : List[str] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def A ( self : Optional[Any] ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" __snake_case = DebertaModel.from_pretrained("microsoft/deberta-base" ) __snake_case = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. __snake_case = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
69
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = (boundary[1] - boundary[0]) / steps lowerCamelCase_ = boundary[0] lowerCamelCase_ = boundary[1] lowerCamelCase_ = make_points(lowercase , lowercase , lowercase ) lowerCamelCase_ = 0.0 y += (h / 2.0) * f(lowercase ) for i in x_i: # print(i) y += h * f(lowercase ) y += (h / 2.0) * f(lowercase ) return y def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = a + h while x < (b - h): yield x lowerCamelCase_ = x + h def _SCREAMING_SNAKE_CASE ( lowercase : str ): # enter your function here '''simple docstring''' lowerCamelCase_ = (x - 0) * (x - 0) return y def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 0.0 # Lower bound of integration lowerCamelCase_ = 1.0 # Upper bound of integration lowerCamelCase_ = 10.0 # define number of steps or resolution lowerCamelCase_ = [a, b] # define boundary of integration lowerCamelCase_ = method_a(lowercase , lowercase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
70
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
0
'''simple docstring''' from math import sqrt def a__ ( _SCREAMING_SNAKE_CASE : int = 1_00_00_00 ) -> int: """simple docstring""" UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int = 0 UpperCAmelCase_ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
71
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def UpperCamelCase ( lowercase_ : float , lowercase_ : float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor a_ : Tuple = logging.get_logger(__name__) class _snake_case ( A__ ): def __init__( self , *a , **a) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , a , ) super().__init__(*a , **a)
73
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
0
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *_A : Union[str, Any] , **_A : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Union[str, Any] , *_A : int , **_A : int ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *_A : List[str] , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *_A : Any , **_A : Any ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Union[str, Any] , *_A : Dict , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *_A : List[str] , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *_A : int , **_A : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *_A : Tuple , **_A : Dict ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *_A : Union[str, Any] , **_A : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *_A : Dict , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Tuple , **_A : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[Any] , *_A : Any , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *_A : Optional[int] , **_A : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *_A : Tuple , **_A : List[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *_A : Dict , **_A : Tuple ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Tuple , *_A : Union[str, Any] , **_A : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Optional[Any] , **_A : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Optional[Any] , **_A : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *_A : Optional[int] , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Tuple , **_A : Optional[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *_A : Dict , **_A : int ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Union[str, Any] , *_A : List[Any] , **_A : Optional[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[Any] , *_A : Tuple , **_A : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : int , *_A : Tuple , **_A : Any ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Tuple , **_A : Tuple ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Dict , *_A : Optional[int] , **_A : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Optional[int] , *_A : int , **_A : Dict ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Any , **_A : Any ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : List[str] , *_A : Optional[Any] , **_A : int ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : Any , *_A : Optional[int] , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self : str , *_A : int , **_A : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] )
74
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
0
'''simple docstring''' from manim import * class lowerCamelCase_ ( __a ): def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : Optional[int] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Dict = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*_A ).arrange(_A , buff=0 ) UpperCAmelCase__ : Optional[int] = VGroup(*_A ).arrange(_A , buff=0 ) UpperCAmelCase__ : Optional[Any] = VGroup(_A , _A ).arrange(_A , buff=0 ) UpperCAmelCase__ : List[str] = Text('''CPU''' , font_size=24 ) UpperCAmelCase__ : Optional[int] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_A ) UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*_A ).arrange(_A , buff=0 ) UpperCAmelCase__ : Dict = Text('''GPU''' , font_size=24 ) UpperCAmelCase__ : str = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) gpu.move_to([-1, -1, 0] ) self.add(_A ) UpperCAmelCase__ : Dict = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Optional[Any] = VGroup(*_A ).arrange(_A , buff=0 ) UpperCAmelCase__ : int = Text('''Model''' , font_size=24 ) UpperCAmelCase__ : Union[str, Any] = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) model.move_to([3, -1.0, 0] ) self.add(_A ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(_A ): rect.set_stroke(_A ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : str = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(_A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_A , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_A , buff=0.0 ) self.add(_A ) cpu_targs.append(_A ) UpperCAmelCase__ : str = [mem.copy() for i in range(6 )] UpperCAmelCase__ : int = VGroup(*_A ).arrange(_A , buff=0 ) UpperCAmelCase__ : List[str] = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase__ : Optional[int] = Group(_A , _A ).arrange(_A , aligned_edge=_A , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_A , _A ) UpperCAmelCase__ : List[Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[int] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_A ) , Write(_A ) ) self.play(Write(_A , run_time=1 ) , Create(_A , run_time=1 ) ) UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Dict = [] for i, rect in enumerate(_A ): UpperCAmelCase__ : int = fill.copy().set_fill(_A , opacity=0.7 ) target.move_to(_A ) first_animations.append(GrowFromCenter(_A , run_time=1 ) ) UpperCAmelCase__ : Tuple = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_A , run_time=1.5 ) ) self.play(*_A ) self.play(*_A ) self.wait()
75
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
"""simple docstring""" import numpy as np def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): return np.where(vector > 0 , __UpperCamelCase , (alpha * (np.exp(__UpperCamelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
76
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A = logging.get_logger(__name__) A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } A = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } A = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = BertTokenizer def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Union[str, Any]="[UNK]" , UpperCamelCase_ : Union[str, Any]="[SEP]" , UpperCamelCase_ : List[Any]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : Tuple="[MASK]" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCamelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase_) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(UpperCamelCase_ , normalizer_state.pop("type")) __UpperCAmelCase : Any = do_lower_case __UpperCAmelCase : List[str] = strip_accents __UpperCAmelCase : Any = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**UpperCamelCase_) __UpperCAmelCase : List[Any] = do_lower_case def a_ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any]=None): """simple docstring""" __UpperCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a_ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_) return tuple(UpperCamelCase_)
77
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __A ( UpperCamelCase__ ): a__ : Any = """facebook/nllb-200-distilled-600M""" a__ : Union[str, Any] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) a__ : int = """translator""" a__ : Optional[Any] = AutoTokenizer a__ : Optional[Any] = AutoModelForSeqaSeqLM a__ : Dict = LANGUAGE_CODES a__ : Union[str, Any] = ["""text""", """text""", """text"""] a__ : Union[str, Any] = ["""text"""] def _lowercase (self : int , __a : int , __a : Dict , __a : int ): if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) UpperCAmelCase_ = self.lang_to_code[src_lang] UpperCAmelCase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __a , return_tensors="pt" , src_lang=__a , tgt_lang=__a ) def _lowercase (self : Optional[Any] , __a : List[str] ): return self.model.generate(**__a ) def _lowercase (self : Any , __a : Tuple ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__a )
78
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowerCamelCase ( __lowerCamelCase ) -> List[Any]: '''simple docstring''' def wrapper(*__lowerCamelCase , **__lowerCamelCase ): UpperCAmelCase__ : str = timeit.default_timer() UpperCAmelCase__ : Union[str, Any] = func(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase__ : int = timeit.default_timer() - starttime return delta UpperCAmelCase__ : Dict = func.__name__ return wrapper def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=100 , __lowerCamelCase=None ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Dict = seq_shapes or {} for i in range(__lowerCamelCase ): UpperCAmelCase__ : Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCamelCase , _ArrayXD ): UpperCAmelCase__ : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCamelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Optional[int] = """The small grey turtle was surprisingly fast when challenged.""" else: UpperCAmelCase__ : Union[str, Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCamelCase , datasets.Sequence ): while isinstance(__lowerCamelCase , datasets.Sequence ): UpperCAmelCase__ : str = v.feature UpperCAmelCase__ : str = seq_shapes[k] UpperCAmelCase__ : Any = np.random.rand(*__lowerCamelCase ).astype(v.dtype ) UpperCAmelCase__ : Any = data dummy_data.append((i, example) ) return dummy_data def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=100 , __lowerCamelCase=None ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = generate_examples(__lowerCamelCase , num_examples=__lowerCamelCase , seq_shapes=__lowerCamelCase ) with ArrowWriter(features=__lowerCamelCase , path=__lowerCamelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(__lowerCamelCase ) writer.write(__lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Any = datasets.Dataset.from_file(filename=__lowerCamelCase , info=datasets.DatasetInfo(features=__lowerCamelCase ) ) return dataset
79
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=13 , _lowerCAmelCase : Any=32 , _lowerCAmelCase : str=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Optional[int]=[10, 20, 30, 40] , _lowerCAmelCase : Optional[Any]=[2, 2, 3, 2] , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : str=["stage2", "stage3", "stage4"] , _lowerCAmelCase : Dict=[2, 3, 4] , _lowerCAmelCase : Tuple=None , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_labels __lowercase = initializer_range __lowercase = out_features __lowercase = out_indices __lowercase = scope def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : List[str] ) -> Any: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = ConvNextModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = ConvNextForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __snake_case :List[str] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) __snake_case :str = True __snake_case :Any = False __snake_case :Any = False __snake_case :Any = False __snake_case :int = False def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = ConvNextModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Any ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _a ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ConvNextModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Tuple ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase , _lowerCAmelCase ): __snake_case :Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () __snake_case :str = ConvNextConfig __snake_case :Optional[Any] = False def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = ConvNextModelTester(self )
80
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( __lowerCamelCase ): return x + 2 class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple ) -> Any: __snake_case : Optional[Any] = "x = 3" __snake_case : Any = {} __snake_case : Optional[int] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase , {"x": 3} ) __snake_case : str = "x = y" __snake_case : List[Any] = {"y": 5} __snake_case : Any = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 5, "y": 5} ) def __snake_case ( self : Any ) -> List[str]: __snake_case : int = "y = add_two(x)" __snake_case : Any = {"x": 3} __snake_case : str = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case : str = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result is None assert "tried to execute add_two" in out.out def __snake_case ( self : Dict ) -> str: __snake_case : str = "x = 3" __snake_case : List[Any] = {} __snake_case : List[Any] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase , {"x": 3} ) def __snake_case ( self : Optional[int] ) -> List[Any]: __snake_case : Union[str, Any] = "test_dict = {'x': x, 'y': add_two(x)}" __snake_case : Tuple = {"x": 3} __snake_case : List[Any] = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 5} ) self.assertDictEqual(lowerCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __snake_case ( self : Optional[int] ) -> int: __snake_case : int = "x = 3\ny = 5" __snake_case : Optional[int] = {} __snake_case : List[str] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 5} ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : List[Any] = "text = f'This is x: {x}.'" __snake_case : List[Any] = {"x": 3} __snake_case : List[str] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase , {"x": 3, "text": "This is x: 3."} ) def __snake_case ( self : Any ) -> Dict: __snake_case : List[str] = "if x <= 3:\n y = 2\nelse:\n y = 5" __snake_case : Tuple = {"x": 3} __snake_case : int = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 2} ) __snake_case : str = {"x": 8} __snake_case : List[str] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 8, "y": 5} ) def __snake_case ( self : int ) -> int: __snake_case : Tuple = "test_list = [x, add_two(x)]" __snake_case : List[str] = {"x": 3} __snake_case : Any = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) self.assertListEqual(lowerCamelCase , [3, 5] ) self.assertDictEqual(lowerCamelCase , {"x": 3, "test_list": [3, 5]} ) def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case : Optional[int] = "y = x" __snake_case : Any = {"x": 3} __snake_case : Union[str, Any] = evaluate(lowerCamelCase , {} , state=lowerCamelCase ) assert result == 3 self.assertDictEqual(lowerCamelCase , {"x": 3, "y": 3} ) def __snake_case ( self : Any ) -> Any: __snake_case : Optional[Any] = "test_list = [x, add_two(x)]\ntest_list[1]" __snake_case : str = {"x": 3} __snake_case : Optional[int] = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "test_list": [3, 5]} ) __snake_case : str = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __snake_case : Optional[Any] = {"x": 3} __snake_case : Union[str, Any] = evaluate(lowerCamelCase , {"add_two": add_two} , state=lowerCamelCase ) assert result == 5 self.assertDictEqual(lowerCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = "x = 0\nfor i in range(3):\n x = i" __snake_case : Union[str, Any] = {} __snake_case : Any = evaluate(lowerCamelCase , {"range": range} , state=lowerCamelCase ) assert result == 2 self.assertDictEqual(lowerCamelCase , {"x": 2, "i": 2} )
81
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
0
"""simple docstring""" def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 UpperCAmelCase_ = ugly_nums[ia] * 2 UpperCAmelCase_ = ugly_nums[ia] * 3 UpperCAmelCase_ = ugly_nums[ia] * 5 for _ in range(1 , lowerCAmelCase__ ): UpperCAmelCase_ = min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ugly_nums.append(lowerCAmelCase__ ) if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
82
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' return EnvironmentCommand() def snake_case_ ( A_ : List[str] ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class __snake_case ( _lowercase): @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : ArgumentParser ): """simple docstring""" _lowerCamelCase : List[str] = parser.add_parser('''env''' ) download_parser.set_defaults(func=__lowerCAmelCase ) download_parser.add_argument( '''--accelerate-config_file''' , default=__lowerCAmelCase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self : List[str] , __lowerCAmelCase : Optional[int] , *__lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = accelerate_config_file def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Dict = '''not installed''' if is_safetensors_available(): import safetensors _lowerCamelCase : List[Any] = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors _lowerCamelCase : List[Any] = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' _lowerCamelCase : Optional[Any] = '''not installed''' _lowerCamelCase : List[Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _lowerCamelCase : List[Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__lowerCAmelCase ): _lowerCamelCase : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() _lowerCamelCase : Tuple = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else f'''\t{accelerate_config}''' ) _lowerCamelCase : Dict = '''not installed''' _lowerCamelCase : Any = '''NA''' if is_torch_available(): import torch _lowerCamelCase : Union[str, Any] = torch.__version__ _lowerCamelCase : Dict = torch.cuda.is_available() _lowerCamelCase : Optional[int] = '''not installed''' _lowerCamelCase : List[str] = '''NA''' if is_tf_available(): import tensorflow as tf _lowerCamelCase : int = tf.__version__ try: # deprecated in v2.1 _lowerCamelCase : Optional[Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _lowerCamelCase : Any = bool(tf.config.list_physical_devices('''GPU''' ) ) _lowerCamelCase : Tuple = '''not installed''' _lowerCamelCase : Any = '''not installed''' _lowerCamelCase : Optional[int] = '''not installed''' _lowerCamelCase : Optional[int] = '''NA''' if is_flax_available(): import flax import jax import jaxlib _lowerCamelCase : Union[str, Any] = flax.__version__ _lowerCamelCase : Optional[int] = jax.__version__ _lowerCamelCase : Any = jaxlib.__version__ _lowerCamelCase : Any = jax.lib.xla_bridge.get_backend().platform _lowerCamelCase : str = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'''{safetensors_version}''', '''Accelerate version''': f'''{accelerate_version}''', '''Accelerate config''': f'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''', '''Jax version''': f'''{jax_version}''', '''JaxLib version''': f'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(__lowerCAmelCase ) ) return info @staticmethod def SCREAMING_SNAKE_CASE ( __lowerCAmelCase : Dict ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
83
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Any = LDMTextToImagePipeline _UpperCamelCase : Any = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } _UpperCamelCase : List[str] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = False def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase = CLIPTextModel(snake_case ) lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=0 ): if str(snake_case ).startswith('mps' ): lowercase = torch.manual_seed(snake_case ) else: lowercase = torch.Generator(device=snake_case ).manual_seed(snake_case ) lowercase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = LDMTextToImagePipeline(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) lowercase = self.get_dummy_inputs(snake_case ) lowercase = pipe(**snake_case ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowercase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=torch.floataa , snake_case=0 ): lowercase = torch.manual_seed(snake_case ) lowercase = np.random.RandomState(snake_case ).standard_normal((1, 4, 32, 32) ) lowercase = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) lowercase = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) lowercase = self.get_inputs(snake_case ) lowercase = pipe(**snake_case ).images lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowercase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) lowercase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case=torch.floataa , snake_case=0 ): lowercase = torch.manual_seed(snake_case ) lowercase = np.random.RandomState(snake_case ).standard_normal((1, 4, 32, 32) ) lowercase = torch.from_numpy(snake_case ).to(device=snake_case , dtype=snake_case ) lowercase = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) lowercase = self.get_inputs(snake_case ) lowercase = pipe(**snake_case ).images[0] lowercase = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) lowercase = np.abs(expected_image - image ).max() assert max_diff < 1E-3
84
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
0
def _a ( lowercase__ : int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _a ( lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Any = number while duplicate > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = divmod(lowercase__ , 10 ) fact_sum += factorial(lowercase__ ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") SCREAMING_SNAKE_CASE__ : List[Any] = int(input("Enter number: ").strip()) print( F"""{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.""" )
85
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Any=13 , UpperCAmelCase : Any=30 , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=True , UpperCAmelCase : Dict=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : str=37 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=2 , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = scope A_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self : Union[str, Any] ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self : Optional[Any] ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = ViTModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ): A_ = ViTForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A_ = 1 A_ = ViTForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Any ): A_ = self.type_sequence_label_size A_ = ViTForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = ViTForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Optional[Any] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _lowerCamelCase : Optional[Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : List[Any] = True _lowerCamelCase : List[str] = False _lowerCamelCase : str = False _lowerCamelCase : Tuple = False def __A ( self : Optional[Any] ): A_ = ViTModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def __A ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __A ( self : Tuple ): pass def __A ( self : int ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __A ( self : Tuple ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def __A ( self : str ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def __A ( self : Tuple ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : str ): A_ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(UpperCAmelCase ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Any ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. A_ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(UpperCAmelCase ) A_ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ) A_ = inputs.pixel_values.to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(UpperCAmelCase , interpolate_pos_encoding=UpperCAmelCase ) # verify the logits A_ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) A_ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __A ( self : Optional[int] ): A_ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ) A_ = inputs.pixel_values.to(UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A_ = model(UpperCAmelCase )
86
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
0
import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> np.ndarray: """simple docstring""" return np.where(vector > 0 , lowercase_ , (alpha * (np.exp(lowercase_ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
87
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
0
"""simple docstring""" import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase__ : @staticmethod def UpperCamelCase_ ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> Union[str, Any]: pass def _snake_case ( __snake_case : Image ): """simple docstring""" _lowerCamelCase : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase__ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Optional[Any]: _lowerCamelCase : int = DepthEstimationPipeline(model=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""") self.assertEqual({"""predicted_depth""": ANY(torch.Tensor), """depth""": ANY(Image.Image)} , SCREAMING_SNAKE_CASE) import datasets _lowerCamelCase : str = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""") _lowerCamelCase : int = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png"""), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ]) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor), """depth""": ANY(Image.Image)}, {"""predicted_depth""": ANY(torch.Tensor), """depth""": ANY(Image.Image)}, {"""predicted_depth""": ANY(torch.Tensor), """depth""": ANY(Image.Image)}, {"""predicted_depth""": ANY(torch.Tensor), """depth""": ANY(Image.Image)}, {"""predicted_depth""": ANY(torch.Tensor), """depth""": ANY(Image.Image)}, ] , SCREAMING_SNAKE_CASE , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""") def UpperCamelCase_ ( self) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Dict = """Intel/dpt-large""" _lowerCamelCase : str = pipeline("""depth-estimation""" , model=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""") _lowerCamelCase : Any = hashimage(outputs["""depth"""]) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item()) , 29.3_04) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item()) , 2.6_62) @require_torch def UpperCamelCase_ ( self) -> List[Any]: # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""")
88
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel SCREAMING_SNAKE_CASE : Optional[Any] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=False ) -> Any: _lowercase , _lowercase : Dict = create_model( 'HTSAT-tiny' , 'roberta' , lowerCamelCase_ , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=lowerCamelCase_ , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Tuple = {} _lowercase : Optional[Any] = R'.*sequential.(\d+).*' _lowercase : Union[str, Any] = R'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowercase : str = key.replace(lowerCamelCase_ , lowerCamelCase_ ) if re.match(lowerCamelCase_ , lowerCamelCase_ ): # replace sequential layers with list _lowercase : Dict = re.match(lowerCamelCase_ , lowerCamelCase_ ).group(1 ) _lowercase : List[Any] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(lowerCamelCase_ )//3}.linear.''' ) elif re.match(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : List[Any] = int(re.match(lowerCamelCase_ , lowerCamelCase_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowercase : str = 1 if projecton_layer == 0 else 2 _lowercase : str = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value _lowercase : Union[str, Any] = value _lowercase : Union[str, Any] = mixed_qkv.size(0 ) // 3 _lowercase : Any = mixed_qkv[:qkv_dim] _lowercase : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] _lowercase : str = mixed_qkv[qkv_dim * 2 :] _lowercase : Optional[Any] = query_layer _lowercase : Optional[Any] = key_layer _lowercase : int = value_layer else: _lowercase : Optional[Any] = value return model_state_dict def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> Optional[int]: _lowercase , _lowercase : Tuple = init_clap(lowerCamelCase_ , enable_fusion=lowerCamelCase_ ) clap_model.eval() _lowercase : Optional[int] = clap_model.state_dict() _lowercase : Dict = rename_state_dict(lowerCamelCase_ ) _lowercase : Optional[int] = ClapConfig() _lowercase : Tuple = enable_fusion _lowercase : int = ClapModel(lowerCamelCase_ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) transformers_config.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
0
'''simple docstring''' from collections.abc import Sequence def _snake_case ( A , A ) -> float: return sum(c * (x**i) for i, c in enumerate(A ) ) def _snake_case ( A , A ) -> float: lowerCAmelCase__ = 0.0 for coeff in reversed(A ): lowerCAmelCase__ = result * x + coeff return result if __name__ == "__main__": __UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
90
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: List[str] _lowerCamelCase: Optional[List[str]] @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: List[int] _lowerCamelCase: List[int] _lowerCamelCase: Optional[List[int]] = None _lowerCamelCase: Optional[List[int]] = None class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''train''' _lowerCamelCase: Any = '''dev''' _lowerCamelCase: Optional[Any] = '''test''' class lowerCAmelCase_ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Dict ,A_ : Union[Split, str] ) -> List[InputExample]: raise NotImplementedError @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : str ) -> List[str]: raise NotImplementedError @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : List[InputExample] ,A_ : List[str] ,A_ : int ,A_ : PreTrainedTokenizer ,A_ : Optional[int]=False ,A_ : Any="[CLS]" ,A_ : Optional[Any]=1 ,A_ : List[Any]="[SEP]" ,A_ : List[str]=False ,A_ : Union[str, Any]=False ,A_ : List[Any]=0 ,A_ : Optional[Any]=0 ,A_ : str=-100 ,A_ : Union[str, Any]=0 ,A_ : int=True ,) -> List[InputFeatures]: A = {label: i for i, label in enumerate(A_ )} A = [] for ex_index, example in enumerate(A_ ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' ,A_ ,len(A_ ) ) A = [] A = [] for word, label in zip(example.words ,example.labels ): A = tokenizer.tokenize(A_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A_ ) > 0: tokens.extend(A_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. A = tokenizer.num_special_tokens_to_add() if len(A_ ) > max_seq_length - special_tokens_count: A = tokens[: (max_seq_length - special_tokens_count)] A = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] A = [sequence_a_segment_id] * len(A_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: A = [cls_token] + tokens A = [pad_token_label_id] + label_ids A = [cls_token_segment_id] + segment_ids A = tokenizer.convert_tokens_to_ids(A_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. A = [1 if mask_padding_with_zero else 0] * len(A_ ) # Zero-pad up to the sequence length. A = max_seq_length - len(A_ ) if pad_on_left: A = ([pad_token] * padding_length) + input_ids A = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask A = ([pad_token_segment_id] * padding_length) + segment_ids A = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' ,example.guid ) logger.info('tokens: %s' ,' '.join([str(A_ ) for x in tokens] ) ) logger.info('input_ids: %s' ,' '.join([str(A_ ) for x in input_ids] ) ) logger.info('input_mask: %s' ,' '.join([str(A_ ) for x in input_mask] ) ) logger.info('segment_ids: %s' ,' '.join([str(A_ ) for x in segment_ids] ) ) logger.info('label_ids: %s' ,' '.join([str(A_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: A = None features.append( InputFeatures( input_ids=A_ ,attention_mask=A_ ,token_type_ids=A_ ,label_ids=A_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[InputFeatures] _lowerCamelCase: int = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple ,A_ : TokenClassificationTask ,A_ : str ,A_ : PreTrainedTokenizer ,A_ : List[str] ,A_ : str ,A_ : Optional[int] = None ,A_ : Optional[Any]=False ,A_ : Split = Split.train ,) -> Union[str, Any]: # Load data features from cache or dataset file A = os.path.join( A_ ,'cached_{}_{}_{}'.format(mode.value ,tokenizer.__class__.__name__ ,str(A_ ) ) ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(A_ ): if os.path.exists(A_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) A = torch.load(A_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) A = token_classification_task.read_examples_from_file(A_ ,A_ ) # TODO clean up all this to leverage built-in features of tokenizers A = token_classification_task.convert_examples_to_features( A_ ,A_ ,A_ ,A_ ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=A_ ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) logger.info(F'Saving features into cached file {cached_features_file}' ) torch.save(self.features ,A_ ) def __len__( self : List[str] ) -> str: return len(self.features ) def __getitem__( self : List[str] ,A_ : int ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: List[InputFeatures] _lowerCamelCase: int = -100 def __init__( self : List[Any] ,A_ : TokenClassificationTask ,A_ : str ,A_ : PreTrainedTokenizer ,A_ : List[str] ,A_ : str ,A_ : Optional[int] = None ,A_ : Union[str, Any]=False ,A_ : Split = Split.train ,) -> Union[str, Any]: A = token_classification_task.read_examples_from_file(A_ ,A_ ) # TODO clean up all this to leverage built-in features of tokenizers A = token_classification_task.convert_examples_to_features( A_ ,A_ ,A_ ,A_ ,cls_token_at_end=bool(model_type in ['xlnet'] ) ,cls_token=tokenizer.cls_token ,cls_token_segment_id=2 if model_type in ['xlnet'] else 0 ,sep_token=tokenizer.sep_token ,sep_token_extra=A_ ,pad_on_left=bool(tokenizer.padding_side == 'left' ) ,pad_token=tokenizer.pad_token_id ,pad_token_segment_id=tokenizer.pad_token_type_id ,pad_token_label_id=self.pad_token_label_id ,) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: A = tf.data.Dataset.from_generator( A_ ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) ,( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) ,) else: A = tf.data.Dataset.from_generator( A_ ,({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) ,( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: A = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Optional[Any] ,A_ : Union[str, Any] ) -> InputFeatures: return self.features[i]
91
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = StableDiffusionControlNetImgaImgPipeline lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowerCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowercase : Any =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowercase : Optional[Any] =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowercase : str =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : Union[str, Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase : Tuple =CLIPTextModel(UpperCAmelCase__ ) lowercase : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : List[Any] ={ '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=0 ): '''simple docstring''' if str(UpperCAmelCase__ ).startswith('''mps''' ): lowercase : List[str] =torch.manual_seed(UpperCAmelCase__ ) else: lowercase : List[str] =torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowercase : Optional[Any] =2 lowercase : Optional[int] =randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__ ) , ) lowercase : int =floats_tensor(control_image.shape , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Tuple =Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) lowercase : Optional[int] ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase_ ( self : int ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = StableDiffusionControlNetImgaImgPipeline lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase : Optional[int] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase : Optional[int] =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase__ ) torch.manual_seed(0 ) lowercase : Dict =ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase__ ) torch.manual_seed(0 ) lowercase : Optional[int] =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowercase : List[str] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : int =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase : Tuple =CLIPTextModel(UpperCAmelCase__ ) lowercase : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : str =MultiControlNetModel([controlneta, controlneta] ) lowercase : Tuple ={ '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict=0 ): '''simple docstring''' if str(UpperCAmelCase__ ).startswith('''mps''' ): lowercase : Optional[int] =torch.manual_seed(UpperCAmelCase__ ) else: lowercase : Optional[Any] =torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowercase : List[Any] =2 lowercase : Dict =[ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__ ) , ), ] lowercase : List[str] =floats_tensor(control_image[0].shape , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Optional[Any] =Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) lowercase : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Union[str, Any] =self.get_dummy_components() lowercase : Optional[int] =self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) lowercase : Dict =10.0 lowercase : str =4 lowercase : Dict =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : Any =steps lowercase : Dict =scale lowercase : Optional[Any] =pipe(**UpperCAmelCase__ )[0] lowercase : Tuple =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : int =steps lowercase : Union[str, Any] =scale lowercase : int =pipe(**UpperCAmelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowercase : Optional[int] =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : int =steps lowercase : str =scale lowercase : Tuple =pipe(**UpperCAmelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowercase : Optional[int] =self.get_dummy_inputs(UpperCAmelCase__ ) lowercase : Optional[Any] =steps lowercase : int =scale lowercase : Optional[Any] =pipe(**UpperCAmelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Dict =self.get_dummy_components() lowercase : List[str] =self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCAmelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Any =ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase : List[Any] =StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCAmelCase__ , controlnet=UpperCAmelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : Union[str, Any] =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase : List[Any] ='''evil space-punk bird''' lowercase : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase : Any =load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase : Union[str, Any] =pipe( UpperCAmelCase__ , UpperCAmelCase__ , control_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) lowercase : Optional[Any] =output.images[0] assert image.shape == (512, 512, 3) lowercase : Optional[Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
92
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
0
"""simple docstring""" from PIL import Image def __A (_SCREAMING_SNAKE_CASE ) ->Image: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Dict = image.size lowerCAmelCase__ :Dict = 0 lowerCAmelCase__ :Tuple = image.load() for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[int] = pixels[j, i] mean += pixel mean //= width * height for j in range(_SCREAMING_SNAKE_CASE ): for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Dict = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __A = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
93
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = '''naver-clova-ix/donut-base-finetuned-docvqa''' UpperCamelCase_ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) UpperCamelCase_ = '''document_qa''' UpperCamelCase_ = AutoProcessor UpperCamelCase_ = VisionEncoderDecoderModel UpperCamelCase_ = ['''image''', '''text'''] UpperCamelCase_ = ['''text'''] def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ) -> str: '''simple docstring''' if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : int , UpperCAmelCase : "Image" , UpperCAmelCase : str ) -> int: '''simple docstring''' lowercase : int ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase : Tuple =task_prompt.replace('''{user_input}''' , UpperCAmelCase ) lowercase : str =self.pre_processor.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors='''pt''' ).input_ids lowercase : str =self.pre_processor(UpperCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def A__ ( self : Union[str, Any] , UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCAmelCase , ).sequences def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' lowercase : List[Any] =self.pre_processor.batch_decode(UpperCAmelCase )[0] lowercase : Dict =sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowercase : List[str] =sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowercase : Union[str, Any] =re.sub(R'''<.*?>''' , '''''' , UpperCAmelCase , count=1 ).strip() # remove first task start token lowercase : Optional[Any] =self.pre_processor.tokenajson(UpperCAmelCase ) return sequence["answer"]
94
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
0
"""simple docstring""" import requests lowerCamelCase_ = '''YOUR API KEY''' def snake_case ( A__ ,A__ = giphy_api_key ): UpperCAmelCase_ : str = "+".join(query.split() ) UpperCAmelCase_ : Any = F"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" UpperCAmelCase_ : str = requests.get(A__ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('''\n'''.join(get_gifs('''space ship''')))
95
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def a ( __UpperCAmelCase : int ) -> Optional[int]: config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def a ( __UpperCAmelCase : Tuple ) -> Any: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def a ( __UpperCAmelCase : str ) -> Optional[Any]: from transformers.testing_utils import pytest_terminal_summary_main __magic_name__: Optional[int] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase , id=__UpperCAmelCase ) def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Optional[int]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __magic_name__: Union[str, Any] = 0 # Doctest custom flag to ignore output. __lowerCamelCase = doctest.register_optionflag('IGNORE_RESULT') __lowerCamelCase = doctest.OutputChecker class __A ( SCREAMING_SNAKE_CASE_ ): def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Tuple ) -> str: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __snake_case , __snake_case , __snake_case ) __lowerCamelCase = CustomOutputChecker __lowerCamelCase = HfDoctestModule __lowerCamelCase = HfDocTestParser
96
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase__( datasets.BuilderConfig ): """simple docstring""" a :Optional[datasets.Features] = None a :str = "utf-8" a :Optional[str] = None a :Optional[str] = None a :bool = True # deprecated a :Optional[int] = None # deprecated a :int = 10 << 20 # 10MB a :Optional[bool] = None class lowercase__( datasets.ArrowBasedBuilder ): """simple docstring""" a :Any = JsonConfig def _lowercase ( self : Dict ) -> Optional[int]: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase_ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): lowercase_ = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase_ = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase_ = self.config.features.arrow_schema.field(SCREAMING_SNAKE_CASE_ ).type lowercase_ = pa_table.append_column(SCREAMING_SNAKE_CASE_ , pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=SCREAMING_SNAKE_CASE_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase_ = table_cast(SCREAMING_SNAKE_CASE_ , self.config.features.arrow_schema ) return pa_table def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(SCREAMING_SNAKE_CASE_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) # We keep only the field we are interested in lowercase_ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): lowercase_ = set().union(*[row.keys() for row in dataset] ) lowercase_ = {col: [row.get(SCREAMING_SNAKE_CASE_ ) for row in dataset] for col in keys} else: lowercase_ = dataset lowercase_ = pa.Table.from_pydict(SCREAMING_SNAKE_CASE_ ) yield file_idx, self._cast_table(SCREAMING_SNAKE_CASE_ ) # If the file has one json object per line else: with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: lowercase_ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase_ = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) lowercase_ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase_ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(SCREAMING_SNAKE_CASE_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase_ = batch.decode(self.config.encoding , errors=SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) try: while True: try: lowercase_ = paj.read_json( io.BytesIO(SCREAMING_SNAKE_CASE_ ) , read_options=paj.ReadOptions(block_size=SCREAMING_SNAKE_CASE_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(SCREAMING_SNAKE_CASE_ , pa.ArrowInvalid ) and "straddling" not in str(SCREAMING_SNAKE_CASE_ ) or block_size > len(SCREAMING_SNAKE_CASE_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(SCREAMING_SNAKE_CASE_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( SCREAMING_SNAKE_CASE_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase_ = json.load(SCREAMING_SNAKE_CASE_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # list is the only sequence type supported in JSON try: lowercase_ = set().union(*[row.keys() for row in dataset] ) lowercase_ = {col: [row.get(SCREAMING_SNAKE_CASE_ ) for row in dataset] for col in keys} lowercase_ = pa.Table.from_pydict(SCREAMING_SNAKE_CASE_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(SCREAMING_SNAKE_CASE_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) batch_idx += 1
97
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : List[str]=30 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : List[str]=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Any=0.6 , lowerCAmelCase__ : Optional[Any]=None , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = mask_ratio _UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self : List[Any] ) -> List[str]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFViTMAEModel(config=lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFViTMAEForPreTraining(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected sequence length = num_patches _UpperCamelCase = (self.image_size // self.patch_size) ** 2 _UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = TFViTMAEForPreTraining(lowerCAmelCase__ ) _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) _UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def snake_case__ ( self : str ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _snake_case : int = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} _snake_case : Any = False _snake_case : Dict = False _snake_case : Any = False _snake_case : List[Any] = False def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFViTMAEModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Layer ) ) def snake_case__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = outputs_dict[0].numpy() _UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCAmelCase__ : Optional[Any] ): _UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCAmelCase__ ): _UpperCamelCase = v.numpy() else: _UpperCamelCase = np.array(lowerCAmelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = prepare_numpy_arrays(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCamelCase = tf.constant(lowerCAmelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCAmelCase__ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowerCAmelCase__ , lowerCAmelCase__ ),) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCAmelCase__ , '''_keras_serializable''' , lowerCAmelCase__ ) } _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _UpperCamelCase = tf.convert_to_tensor(lowerCAmelCase__ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: _UpperCamelCase = main_layer_class(lowerCAmelCase__ ) _UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } _UpperCamelCase = tf.keras.Model(lowerCAmelCase__ , outputs=main_layer(lowerCAmelCase__ ) ) _UpperCamelCase = model(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = os.path.join(lowerCAmelCase__ , '''keras_model.h5''' ) model.save(lowerCAmelCase__ ) _UpperCamelCase = tf.keras.models.load_model( lowerCAmelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCAmelCase__ , tf.keras.Model ) _UpperCamelCase = model(lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": _UpperCamelCase = outputs.last_hidden_state.numpy() _UpperCamelCase = 0 else: _UpperCamelCase = outputs.logits.numpy() _UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ , saved_model=lowerCAmelCase__ ) _UpperCamelCase = model_class.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) if model_class.__name__ == "TFViTMAEModel": _UpperCamelCase = after_outputs['''last_hidden_state'''].numpy() _UpperCamelCase = 0 else: _UpperCamelCase = after_outputs['''logits'''].numpy() _UpperCamelCase = 0 _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) _UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCAmelCase__ ) _UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config _UpperCamelCase = model_class.from_config(model.config ) _UpperCamelCase = new_model(lowerCAmelCase__ ) # Build model new_model.set_weights(model.get_weights() ) _UpperCamelCase = new_model(lowerCAmelCase__ , noise=lowerCAmelCase__ ) self.assert_outputs_same(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @slow def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : int ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' np.random.seed(2 ) _UpperCamelCase = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _UpperCamelCase = ViTMAEConfig() _UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass _UpperCamelCase = model(**lowerCAmelCase__ , noise=lowerCAmelCase__ ) # verify the logits _UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
98
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
0
from __future__ import annotations def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
99
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
0
import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
100
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=2 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_6 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=1_0_0_0 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = parent SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : int = patch_size SCREAMING_SNAKE_CASE_ : int = text_seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = coordinate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = shape_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : int = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE_ : List[Any] = text_seq_length SCREAMING_SNAKE_CASE_ : List[Any] = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE_ : int = self.text_seq_length + self.image_seq_length def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : List[Any] = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : Dict = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : str = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : Optional[Any] = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : int = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : Optional[int] = t SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : int = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = LayoutLMvaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # text + image SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowerCAmelCase__ , pixel_values=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = model(lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE_ : str = model(pixel_values=lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.num_labels SCREAMING_SNAKE_CASE_ : Any = LayoutLMvaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Any = LayoutLMvaForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = LayoutLMvaForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" return True def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE_ : Any = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = copy.deepcopy(lowerCAmelCase__ ) if model_class in get_values(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) elif model_class in get_values(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) elif model_class in [ *get_values(lowerCAmelCase__ ), ]: SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) elif model_class in [ *get_values(lowerCAmelCase__ ), ]: SCREAMING_SNAKE_CASE_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) return inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : int = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = LayoutLMvaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : Dict = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( input_ids=input_ids.to(lowerCAmelCase__ ) , bbox=bbox.to(lowerCAmelCase__ ) , pixel_values=pixel_values.to(lowerCAmelCase__ ) , ) # verify the logits SCREAMING_SNAKE_CASE_ : str = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
101
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : List[Any] = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __magic_name__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
0
"""simple docstring""" from collections.abc import Callable import numpy as np def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> np.array: _snake_case = int(np.ceil((x_end - xa) / step_size ) ) _snake_case = np.zeros((n + 1,) ) _snake_case = ya _snake_case = xa for k in range(lowerCAmelCase_ ): _snake_case = y[k] + step_size * ode_func(lowerCAmelCase_ , y[k] ) _snake_case = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase_ , y[k] ) + ode_func(x + step_size , lowerCAmelCase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
103
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = IFInpaintingPipeline A__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} A__ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case__ ( self ) -> str: return self._get_dummy_components() def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> Tuple: if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): A__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: A__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case__ ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case__ ( self ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def snake_case__ ( self ) -> List[str]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case__ ( self ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case__ ( self ) -> Any: self._test_save_load_local() def snake_case__ ( self ) -> Optional[int]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
104
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = IFPipeline __a : str = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __a : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case ( self ): return self._get_dummy_components() def snake_case ( self ,snake_case__ ,snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' ,reason='float16 requires CUDA' ) def snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self ): self._test_save_load_local() def snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): # if SCREAMING_SNAKE_CASE_ : str = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' ,variant='fp16' ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : Any = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' ,variant='fp16' ,torch_dtype=torch.floataa ,text_encoder=snake_case__ ,tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = pipe_a.encode_prompt('anime turtle' ,device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE_ : Tuple = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE_ : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE_ : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE_ : Tuple = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : int = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe_a( prompt_embeds=snake_case__ ,negative_prompt_embeds=snake_case__ ,num_inference_steps=2 ,generator=snake_case__ ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(snake_case__ ,snake_case__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe_a( prompt_embeds=snake_case__ ,negative_prompt_embeds=snake_case__ ,image=snake_case__ ,generator=snake_case__ ,num_inference_steps=2 ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : int = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe_a( prompt_embeds=snake_case__ ,negative_prompt_embeds=snake_case__ ,image=snake_case__ ,num_inference_steps=2 ,generator=snake_case__ ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : str = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(snake_case__ ,snake_case__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : str = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, 3, 256, 256) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe_a( prompt_embeds=snake_case__ ,negative_prompt_embeds=snake_case__ ,image=snake_case__ ,original_image=snake_case__ ,generator=snake_case__ ,num_inference_steps=2 ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): # pipeline 1 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, 3, 64, 64) ,rng=random.Random(1 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = pipe_a( prompt_embeds=snake_case__ ,negative_prompt_embeds=snake_case__ ,image=snake_case__ ,mask_image=snake_case__ ,num_inference_steps=2 ,generator=snake_case__ ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(snake_case__ ,snake_case__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor((1, 3, 256, 256) ,rng=random.Random(0 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = floats_tensor((1, 3, 256, 256) ,rng=random.Random(1 ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe_a( prompt_embeds=snake_case__ ,negative_prompt_embeds=snake_case__ ,image=snake_case__ ,mask_image=snake_case__ ,original_image=snake_case__ ,generator=snake_case__ ,num_inference_steps=2 ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : Tuple = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(snake_case__ ,snake_case__ ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
105
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCAmelCase__ : def __init__( self : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple=13 , __UpperCamelCase : int=7 , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : int=99 , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : str=5 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Tuple=512 , __UpperCamelCase : Dict=16 , __UpperCamelCase : str=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : int=4 , __UpperCamelCase : List[Any]=None , ) -> List[str]: A = parent A = batch_size A = seq_length A = is_training A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope A = self.vocab_size - 1 def __UpperCamelCase ( self : List[str] ) -> Optional[int]: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , *__UpperCamelCase : Optional[Any] ) -> str: A = OpenAIGPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , head_mask=__UpperCamelCase ) A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) A = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , *__UpperCamelCase : Tuple ) -> List[str]: A = OpenAIGPTLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Tuple ) -> Optional[Any]: A = OpenAIGPTDoubleHeadsModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , *__UpperCamelCase : str ) -> str: A = self.num_labels A = OpenAIGPTForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): A_ : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A_ : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A_ : Any = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> int: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any]=False ) -> int: A = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase , ) A = inputs_dict['labels'] A = inputs_dict['labels'] A = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__UpperCamelCase , ) A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __UpperCamelCase ( self : Any ) -> List[str]: A = OpenAIGPTModelTester(self ) A = ConfigTester(self , config_class=__UpperCamelCase , n_embd=37 ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__UpperCamelCase ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__UpperCamelCase ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__UpperCamelCase ) @slow def __UpperCamelCase ( self : Dict ) -> Optional[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = OpenAIGPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: A = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__UpperCamelCase ) A = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=__UpperCamelCase ) # the president is A = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A = model.generate(__UpperCamelCase , do_sample=__UpperCamelCase ) self.assertListEqual(output_ids[0].tolist() , __UpperCamelCase )
106
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _UpperCAmelCase : Dict = logging.getLogger(__name__) class lowercase_ ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = "masked_bert" def __init__( self : Dict, UpperCamelCase__ : Optional[int]=3_05_22, UpperCamelCase__ : Dict=7_68, UpperCamelCase__ : Tuple=12, UpperCamelCase__ : str=12, UpperCamelCase__ : List[str]=30_72, UpperCamelCase__ : Tuple="gelu", UpperCamelCase__ : Dict=0.1, UpperCamelCase__ : List[Any]=0.1, UpperCamelCase__ : Optional[Any]=5_12, UpperCamelCase__ : Optional[Any]=2, UpperCamelCase__ : Optional[Any]=0.02, UpperCamelCase__ : str=1e-12, UpperCamelCase__ : Dict=0, UpperCamelCase__ : Optional[Any]="topK", UpperCamelCase__ : str="constant", UpperCamelCase__ : Any=0.0, **UpperCamelCase__ : Dict, ) -> List[Any]: super().__init__(pad_token_id=UpperCamelCase__, **UpperCamelCase__ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = pruning_method _A = mask_init _A = mask_scale
107
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_encoder_blocks""" ) ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : int , lowerCamelCase : int=13 , lowerCamelCase : Any=64 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : str=4 , lowerCamelCase : List[str]=[2, 2, 2, 2] , lowerCamelCase : Tuple=[8, 4, 2, 1] , lowerCamelCase : Optional[int]=[16, 32, 64, 128] , lowerCamelCase : int=[1, 4, 8, 16] , lowerCamelCase : Optional[Any]=[1, 2, 4, 8] , lowerCamelCase : str=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : List[Any]=3 , lowerCamelCase : Tuple=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_encoder_blocks _UpperCAmelCase = sr_ratios _UpperCAmelCase = depths _UpperCAmelCase = hidden_sizes _UpperCAmelCase = downsampling_rates _UpperCAmelCase = num_attention_heads _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = scope def lowerCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : int ) -> Dict: """simple docstring""" _UpperCAmelCase = SegformerModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) _UpperCAmelCase = _UpperCAmelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCamelCase ( self : str , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : List[str] ) -> str: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = SegformerForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = SegformerForSemanticSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase ) _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCamelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = SegformerModelTester(self ) _UpperCAmelCase = SegformerConfigTester(self , config_class=lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass def lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.attentions _UpperCAmelCase = sum(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first attentions (first block, first layer) _UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _UpperCAmelCase = (self.model_tester.image_size // 32) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _UpperCAmelCase = len(lowerCamelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first attentions (first block, first layer) _UpperCAmelCase = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCamelCase ( self : str ) -> int: """simple docstring""" def check_hidden_states_output(lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[int] ): _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" if not self.model_tester.is_training: return _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ): continue _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) _UpperCAmelCase = model(**lowerCamelCase ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase ( self : Dict ) -> str: """simple docstring""" pass @slow def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SegformerModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" # only resize + normalize _UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) _UpperCAmelCase = encoded_inputs.pixel_values.to(lowerCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase ) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self : str ) -> int: """simple docstring""" # only resize + normalize _UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowerCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) _UpperCAmelCase = encoded_inputs.pixel_values.to(lowerCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase ) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase , atol=1E-1 ) ) @slow def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" # only resize + normalize _UpperCAmelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase , align=lowerCamelCase , do_random_crop=lowerCamelCase ) _UpperCAmelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ) _UpperCAmelCase = encoded_inputs.pixel_values.to(lowerCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(lowerCamelCase ) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(500, 300)] ) _UpperCAmelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) _UpperCAmelCase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
108
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __a ( unittest.TestCase ): @require_torch def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( task="""zero-shot-audio-classification""" ,model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) __SCREAMING_SNAKE_CASE = load_dataset("""ashraq/esc50""" ) __SCREAMING_SNAKE_CASE = dataset["""train"""]["""audio"""][-1]["""array"""] __SCREAMING_SNAKE_CASE = audio_classifier(lowerCamelCase ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] ,) @unittest.skip("""No models are available in TF""" ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' pass @slow @require_torch def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pipeline( task="""zero-shot-audio-classification""" ,model="""laion/clap-htsat-unfused""" ,) # This is an audio of a dog __SCREAMING_SNAKE_CASE = load_dataset("""ashraq/esc50""" ) __SCREAMING_SNAKE_CASE = dataset["""train"""]["""audio"""][-1]["""array"""] __SCREAMING_SNAKE_CASE = audio_classifier(lowerCamelCase ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] ,) __SCREAMING_SNAKE_CASE = audio_classifier([audio] * 5 ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 ,) __SCREAMING_SNAKE_CASE = audio_classifier( [audio] * 5 ,candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ,batch_size=5 ) self.assertEqual( nested_simplify(lowerCamelCase ) ,[ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 ,) @unittest.skip("""No models are available in TF""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass
109
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( lowercase , lowercase , lowercase , unittest.TestCase ): UpperCamelCase : str = AltDiffusionPipeline UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCAmelCase__ : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCAmelCase__ : Union[str, Any] = CLIPTextModel(UpperCamelCase_ ) UpperCAmelCase__ : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCAmelCase__ : Tuple = 77 UpperCAmelCase__ : Any = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __snake_case ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __snake_case ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __snake_case ( self ): UpperCAmelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[int] = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase__ : Any = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = text_encoder UpperCAmelCase__ : Optional[Any] = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCAmelCase__ : Any = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : str = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = 'A photo of an astronaut' UpperCAmelCase__ : str = alt_pipe(**UpperCamelCase_ ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Optional[int] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self ): UpperCAmelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Dict = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase__ : List[str] = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) UpperCAmelCase__ : int = text_encoder UpperCAmelCase__ : Optional[Any] = AltDiffusionPipeline(**UpperCamelCase_ ) UpperCAmelCase__ : List[str] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = alt_pipe(**UpperCamelCase_ ) UpperCAmelCase__ : str = output.images UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : List[Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Dict = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase__ : str = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Optional[int] = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self ): UpperCAmelCase__ : List[str] = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) UpperCAmelCase__ : Optional[int] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCAmelCase__ : Any = torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='numpy' ) UpperCAmelCase__ : Dict = output.images UpperCAmelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Dict = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
110
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase_ ( __lowercase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "camembert" def __init__( self , __SCREAMING_SNAKE_CASE=30522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) ->int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class lowercase_ ( __lowercase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
312
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType A__ : Union[str, Any] = False, False, False @dataclass class __snake_case : _a = None _a = True _a = True _a = None # Automatically constructed _a = "dict" _a = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _a = field(default='''Audio''' ,init=__lowercase ,repr=__lowercase ) def __call__( self : Optional[Any]): return self.pa_type def UpperCAmelCase__ ( self : int , A_ : Union[str, bytes, dict]): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return {"bytes": None, "path": value} elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase_ : List[str] = BytesIO() sf.write(SCREAMING_SNAKE_CASE_ , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase_ : Optional[Any] = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 3_2_7_6_7 else: lowerCAmelCase_ : int = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 3_2_7_6_7 lowerCAmelCase_ : Union[str, Any] = BytesIO(bytes()) sf.write(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""") def UpperCAmelCase__ ( self : Tuple , A_ : dict , A_ : Optional[Dict[str, Union[str, bool, None]]] = None): if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') lowerCAmelCase_ , lowerCAmelCase_ : Dict = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err lowerCAmelCase_ : List[str] = xsplitext(SCREAMING_SNAKE_CASE_)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: lowerCAmelCase_ : Any = token_per_repo_id or {} lowerCAmelCase_ : Optional[Any] = path.split('''::''')[-1] try: lowerCAmelCase_ : Dict = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL)['''repo_id'''] lowerCAmelCase_ : Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase_ : Tuple = None with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' , use_auth_token=SCREAMING_SNAKE_CASE_) as f: lowerCAmelCase_ , lowerCAmelCase_ : str = sf.read(SCREAMING_SNAKE_CASE_) else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = sf.read(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Optional[int] = array.T if self.mono: lowerCAmelCase_ : str = librosa.to_mono(SCREAMING_SNAKE_CASE_) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase_ : Optional[Any] = librosa.resample(SCREAMING_SNAKE_CASE_ , orig_sr=SCREAMING_SNAKE_CASE_ , target_sr=self.sampling_rate) lowerCAmelCase_ : int = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase__ ( self : str): from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def UpperCAmelCase__ ( self : Tuple , A_ : Union[pa.StringArray, pa.StructArray]): if pa.types.is_string(storage.type): lowerCAmelCase_ : Union[str, Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_) , type=pa.binary()) lowerCAmelCase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): lowerCAmelCase_ : List[str] = pa.array([None] * len(SCREAMING_SNAKE_CASE_) , type=pa.string()) lowerCAmelCase_ : List[str] = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): lowerCAmelCase_ : Optional[int] = pa.array([Audio().encode_example(SCREAMING_SNAKE_CASE_) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: lowerCAmelCase_ : List[str] = storage.field('''bytes''') else: lowerCAmelCase_ : List[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: lowerCAmelCase_ : Optional[Any] = storage.field('''path''') else: lowerCAmelCase_ : str = pa.array([None] * len(SCREAMING_SNAKE_CASE_) , type=pa.string()) lowerCAmelCase_ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type) def UpperCAmelCase__ ( self : Optional[int] , A_ : pa.StructArray): @no_op_if_value_is_null def path_to_bytes(A_ : int): with xopen(SCREAMING_SNAKE_CASE_ , '''rb''') as f: lowerCAmelCase_ : Tuple = f.read() return bytes_ lowerCAmelCase_ : List[Any] = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase_ : Optional[int] = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) lowerCAmelCase_ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type)
171
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
0
def _snake_case (_snake_case : int , _snake_case : int , _snake_case : list[list[int]]) -> int: def update_area_of_max_square(_snake_case : int , _snake_case : int) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowercase =update_area_of_max_square(lowercase__ , col + 1) _lowercase =update_area_of_max_square(row + 1 , col + 1) _lowercase =update_area_of_max_square(row + 1 , lowercase__) if mat[row][col]: _lowercase =1 + min([right, diagonal, down]) _lowercase =max(largest_square_area[0] , lowercase__) return sub_problem_sol else: return 0 _lowercase =[0] update_area_of_max_square(0 , 0) return largest_square_area[0] def _snake_case (_snake_case : int , _snake_case : int , _snake_case : list[list[int]]) -> int: def update_area_of_max_square_using_dp_array( _snake_case : int , _snake_case : int , _snake_case : list[list[int]]) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowercase =update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__) _lowercase =update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__) _lowercase =update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__) if mat[row][col]: _lowercase =1 + min([right, diagonal, down]) _lowercase =max(largest_square_area[0] , lowercase__) _lowercase =sub_problem_sol return sub_problem_sol else: return 0 _lowercase =[0] _lowercase =[[-1] * cols for _ in range(lowercase__)] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__) return largest_square_area[0] def _snake_case (_snake_case : int , _snake_case : int , _snake_case : list[list[int]]) -> int: _lowercase =[[0] * (cols + 1) for _ in range(rows + 1)] _lowercase =0 for row in range(rows - 1 , -1 , -1): for col in range(cols - 1 , -1 , -1): _lowercase =dp_array[row][col + 1] _lowercase =dp_array[row + 1][col + 1] _lowercase =dp_array[row + 1][col] if mat[row][col] == 1: _lowercase =1 + min(lowercase__ , lowercase__ , lowercase__) _lowercase =max(dp_array[row][col] , lowercase__) else: _lowercase =0 return largest_square_area def _snake_case (_snake_case : int , _snake_case : int , _snake_case : list[list[int]]) -> int: _lowercase =[0] * (cols + 1) _lowercase =[0] * (cols + 1) _lowercase =0 for row in range(rows - 1 , -1 , -1): for col in range(cols - 1 , -1 , -1): _lowercase =current_row[col + 1] _lowercase =next_row[col + 1] _lowercase =next_row[col] if mat[row][col] == 1: _lowercase =1 + min(lowercase__ , lowercase__ , lowercase__) _lowercase =max(current_row[col] , lowercase__) else: _lowercase =0 _lowercase =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
181
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase_ ( lowercase: str , lowercase: str , lowercase: Optional[str] = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path _UpperCamelCase: List[Any] = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='''dataset''' , revision=lowercase__ )
271
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowerCAmelCase ( __lowercase ): def _a ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "tf_padding" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , "depth_multiplier" ) ) class _lowerCAmelCase : def __init__( self , a_ , a_=13 , a_=3 , a_=32 , a_=0.25 , a_=8 , a_=True , a_=1024 , a_=32 , a_="relu6" , a_=0.1 , a_=0.02 , a_=True , a_=True , a_=10 , a_=None , ) -> int: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = depth_multiplier _UpperCAmelCase = min_depth _UpperCAmelCase = tf_padding _UpperCAmelCase = int(last_hidden_size * depth_multiplier ) _UpperCAmelCase = output_stride _UpperCAmelCase = hidden_act _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = use_labels _UpperCAmelCase = is_training _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = scope def _a ( self ) -> List[str]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _a ( self ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self , a_ , a_ , a_ , a_ ) -> Union[str, Any]: _UpperCAmelCase = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a ( self , a_ , a_ , a_ , a_ ) -> int: _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() _UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Dict: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): lowercase_ : Any = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase_ : str = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase_ : List[str] = False lowercase_ : Any = False lowercase_ : List[Any] = False lowercase_ : Optional[int] = False def _a ( self ) -> str: _UpperCAmelCase = MobileNetVaModelTester(self ) _UpperCAmelCase = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _a ( self ) -> Dict: pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _a ( self ) -> Dict: pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _a ( self ) -> Any: pass def _a ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[str]: def check_hidden_states_output(a_ , a_ , a_ ): _UpperCAmelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 26 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _a ( self ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( ): """simple docstring""" _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a ( self ) -> int: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _a ( self ) -> List[str]: _UpperCAmelCase = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits _UpperCAmelCase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
657
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask lowercase_ : str = logging.getLogger(__name__) class __UpperCamelCase (__lowercase ): def __init__( self , _lowerCAmelCase=-1 ) -> List[Any]: '''simple docstring''' lowercase = label_idx def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[InputExample]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase = mode.value lowercase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{mode}.txt""" ) lowercase = 1 lowercase = [] with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as f: lowercase = [] lowercase = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) ) guid_index += 1 lowercase = [] lowercase = [] else: lowercase = line.split(""" """ ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE_ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) ) return examples def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(SCREAMING_SNAKE_CASE_ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: lowercase = f.read().splitlines() if "O" not in labels: lowercase = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __UpperCamelCase (__lowercase ): def __init__( self ) -> List[str]: '''simple docstring''' super().__init__(label_idx=-2 ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: lowercase = f.read().splitlines() if "O" not in labels: lowercase = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __UpperCamelCase (__lowercase ): def _a ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[InputExample]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase = mode.value lowercase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{mode}.txt""" ) lowercase = 1 lowercase = [] with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE_ ): lowercase = [] lowercase = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) ) guid_index += 1 return examples def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE_ ): lowercase = preds_list[example_id] lowercase = """""" for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(SCREAMING_SNAKE_CASE_ ) example_id += 1 def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
588
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
0
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging a : List[Any] = logging.get_logger(__name__) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' try: with open(lowercase__, '''rb''' ) as flax_state_f: snake_case_ = from_bytes(lowercase__, flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase__ ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(lowercase__, lowercase__ ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa, lowercase__ ) ).values() if any(lowercase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) snake_case_ = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowercase__ ) snake_case_ = '''''' snake_case_ = flatten_dict(lowercase__, sep='''.''' ) snake_case_ = pt_model.state_dict() # keep track of unexpected & missing keys snake_case_ = [] snake_case_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case_ = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: snake_case_ = flax_key_tuple_array[:-1] + ['''weight'''] snake_case_ = jnp.transpose(lowercase__, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": snake_case_ = flax_key_tuple_array[:-1] + ['''weight'''] snake_case_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": snake_case_ = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase__ ): snake_case_ = ( flax_key_tuple_string.replace('''_0''', '''.0''' ) .replace('''_1''', '''.1''' ) .replace('''_2''', '''.2''' ) .replace('''_3''', '''.3''' ) .replace('''_4''', '''.4''' ) .replace('''_5''', '''.5''' ) .replace('''_6''', '''.6''' ) .replace('''_7''', '''.7''' ) .replace('''_8''', '''.8''' ) .replace('''_9''', '''.9''' ) ) snake_case_ = '''.'''.join(lowercase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict snake_case_ = np.asarray(lowercase__ ) if not isinstance(lowercase__, np.ndarray ) else flax_tensor snake_case_ = torch.from_numpy(lowercase__ ) # remove from missing keys missing_keys.remove(lowercase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase__ ) pt_model.load_state_dict(lowercase__ ) # re-transform missing_keys to list snake_case_ = list(lowercase__ ) if len(lowercase__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(lowercase__ ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ''' use it for predictions and inference.''' ) return pt_model
640
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase (__lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = AutoencoderKL _snake_case : Union[str, Any] = "sample" _snake_case : Union[str, Any] = 1e-2 @property def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : int = (3_2, 3_2) UpperCAmelCase_ : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def __UpperCAmelCase ( self ) -> List[Any]: return (3, 3_2, 3_2) @property def __UpperCAmelCase ( self ) -> int: return (3, 3_2, 3_2) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } UpperCAmelCase_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def __UpperCAmelCase ( self ) -> int: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : str = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[str] = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : str = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Dict = torch.randn_like(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Union[str, Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : Optional[int] = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : List[str] = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Optional[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) UpperCAmelCase_ : Optional[Any] = dict(model.named_parameters() ) UpperCAmelCase_ : Tuple = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Any = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) UpperCAmelCase_ : Any = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : str = torch.manual_seed(0 ) else: UpperCAmelCase_ : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[int] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase_ : str = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample UpperCAmelCase_ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : str = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: UpperCAmelCase_ : Tuple = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) @slow class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: return f"gaussian_noise_s={seed}_shape={'_'.join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy" def __UpperCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self , _UpperCamelCase=0 , _UpperCamelCase=(4, 3, 5_1_2, 5_1_2) , _UpperCamelCase=False ) -> int: UpperCAmelCase_ : Union[str, Any] = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def __UpperCAmelCase ( self , _UpperCamelCase="CompVis/stable-diffusion-v1-4" , _UpperCamelCase=False ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = 'fp16' if fpaa else None UpperCAmelCase_ : int = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : str = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def __UpperCAmelCase ( self , _UpperCamelCase=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model() UpperCAmelCase_ : List[str] = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Any = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : Any = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : int = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [4_7, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : Tuple = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Any = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : str = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [3_7, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> int: UpperCAmelCase_ : str = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): UpperCAmelCase_ : Any = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [1_6, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : Any = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Tuple = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 6_4, 6_4) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] UpperCAmelCase_ : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5E-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Optional[int] = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 6_4, 6_4) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model() UpperCAmelCase_ : Tuple = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): UpperCAmelCase_ : Any = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : str = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [4_7, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : List[Any] = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist UpperCAmelCase_ : List[Any] = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Union[str, Any] = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : str = 3E-3 if torch_device != 'mps' else 1E-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
406
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __SCREAMING_SNAKE_CASE : str =False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self ) -> Dict: return 12 @property def a__ ( self ) -> Tuple: return 12 @property def a__ ( self ) -> List[str]: return 32 @property def a__ ( self ) -> List[str]: torch.manual_seed(0 ) A: Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def a__ ( self ) -> Optional[int]: A: int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def a__ ( self ) -> List[str]: torch.manual_seed(0 ) A: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE_ ) @property def a__ ( self ) -> Any: torch.manual_seed(0 ) A: Dict = 12 A: Optional[int] = 12 A: Optional[Any] = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } A: Optional[Any] = TransformeraDModel(**SCREAMING_SNAKE_CASE_ ) return model def a__ ( self ) -> str: A: Dict = """cpu""" A: List[Any] = self.dummy_vqvae A: Optional[Any] = self.dummy_text_encoder A: Dict = self.dummy_tokenizer A: List[Any] = self.dummy_transformer A: List[Any] = VQDiffusionScheduler(self.num_embed ) A: Dict = LearnedClassifierFreeSamplingEmbeddings(learnable=SCREAMING_SNAKE_CASE_ ) A: List[str] = VQDiffusionPipeline( vqvae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , transformer=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE_ , ) A: List[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A: List[Any] = """teddy bear playing in the pool""" A: int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) A: str = pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type="""np""" ) A: Tuple = output.images A: str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) A: List[Any] = pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 )[0] A: int = image[0, -3:, -3:, -1] A: List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) A: int = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Dict: A: Optional[Any] = """cpu""" A: Optional[Any] = self.dummy_vqvae A: int = self.dummy_text_encoder A: List[str] = self.dummy_tokenizer A: Any = self.dummy_transformer A: List[str] = VQDiffusionScheduler(self.num_embed ) A: List[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=SCREAMING_SNAKE_CASE_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) A: int = VQDiffusionPipeline( vqvae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , transformer=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE_ , ) A: Any = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = """teddy bear playing in the pool""" A: Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) A: List[str] = pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type="""np""" ) A: int = output.images A: List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) A: str = pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , return_dict=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 )[0] A: List[Any] = image[0, -3:, -3:, -1] A: List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) A: Union[str, Any] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Dict: A: Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) A: Dict = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) A: Any = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though A: Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) A: List[Any] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=SCREAMING_SNAKE_CASE_ , output_type="""np""" , ) A: List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
135
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
"""simple docstring""" def UpperCAmelCase ( a__ ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowercase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
553
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {"vocab_file": "sentencepiece.bpe.model"} _lowerCamelCase = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _lowerCamelCase = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _lowerCamelCase = "▁" class UpperCamelCase_ ( __lowercase ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ["input_ids", "attention_mask"] def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Optional[int]="<s>" , __A :Optional[int]="</s>" , __A :List[Any]="</s>" , __A :Tuple="<s>" , __A :List[str]="<unk>" , __A :Any="<pad>" , __A :str="<mask>" , __A :Optional[Dict[str, Any]] = None , **__A :Optional[Any] , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} SCREAMING_SNAKE_CASE__ = len(self.sp_model ) - 1 SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self :Tuple , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self :Union[str, Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self :List[str] ) -> Dict: """simple docstring""" return len(self.sp_model ) def _snake_case ( self :Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self :Dict , __A :str ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self :Dict , __A :Tuple ) -> List[str]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) return spm_id if spm_id else self.unk_token_id def _snake_case ( self :List[Any] , __A :Dict ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self :Dict , __A :Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self :List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self :str , __A :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self :Union[str, Any] , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
6
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : List[Any] = None lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} lowercase__ : Optional[Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } lowercase__ : Union[str, Any] = { "camembert-base": 5_1_2, } lowercase__ : List[str] = "▁" class lowercase_ ( __lowercase ): """simple docstring""" UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[Any] = ["input_ids", "attention_mask"] UpperCAmelCase_ : Optional[int] = CamembertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] , **__SCREAMING_SNAKE_CASE , ) ->Dict: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase = vocab_file lowerCAmelCase = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
312
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
0
from __future__ import annotations A__ : Dict = list[tuple[int, int]] A__ : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A__ : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self : List[str] , A_ : int , A_ : int , A_ : int , A_ : int , A_ : float , A_ : Node | None , ): lowerCAmelCase_ : Optional[int] = pos_x lowerCAmelCase_ : List[Any] = pos_y lowerCAmelCase_ : List[Any] = (pos_y, pos_x) lowerCAmelCase_ : Union[str, Any] = goal_x lowerCAmelCase_ : Dict = goal_y lowerCAmelCase_ : Optional[int] = g_cost lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Dict = self.calculate_heuristic() def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[Any] = abs(self.pos_x - self.goal_x) lowerCAmelCase_ : Dict = abs(self.pos_y - self.goal_y) return dx + dy def __lt__( self : Any , A_ : List[Any]): return self.f_cost < other.f_cost class __snake_case : def __init__( self : List[str] , A_ : tuple[int, int] , A_ : tuple[int, int]): lowerCAmelCase_ : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : List[str] = [self.start] lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Any = False def UpperCAmelCase__ ( self : Optional[int]): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase_ : str = self.open_nodes.pop(0) if current_node.pos == self.target.pos: lowerCAmelCase_ : Any = True return self.retrace_path(SCREAMING_SNAKE_CASE_) self.closed_nodes.append(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Optional[int] = self.get_successors(SCREAMING_SNAKE_CASE_) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_) else: # retrieve the best current path lowerCAmelCase_ : List[Any] = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_) if not self.reached: return [self.start.pos] return None def UpperCAmelCase__ ( self : Tuple , A_ : Node): lowerCAmelCase_ : Optional[int] = [] for action in delta: lowerCAmelCase_ : int = parent.pos_x + action[1] lowerCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , )) return successors def UpperCAmelCase__ ( self : Optional[Any] , A_ : Node | None): lowerCAmelCase_ : str = node lowerCAmelCase_ : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) lowerCAmelCase_ : Any = current_node.parent path.reverse() return path if __name__ == "__main__": A__ : List[str] = (0, 0) A__ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') A__ : int = GreedyBestFirst(init, goal) A__ : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: A__ : Union[str, Any] = 2 for elem in grid: print(elem)
171
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class SCREAMING_SNAKE_CASE_ ( __lowercase ): """simple docstring""" def __init__( self :Optional[int], snake_case :str = "▁", snake_case :bool = True, snake_case :Union[str, AddedToken] = "<unk>", snake_case :Union[str, AddedToken] = "</s>", snake_case :Union[str, AddedToken] = "<pad>", ): """simple docstring""" _lowercase ={ 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } _lowercase =[None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): _lowercase =token_dict['token'] _lowercase =Tokenizer(Unigram()) _lowercase =normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}'), ' '), normalizers.Lowercase(), ]) _lowercase =pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_), pre_tokenizers.Digits(individual_digits=SCREAMING_SNAKE_CASE_), pre_tokenizers.Punctuation(), ]) _lowercase =decoders.Metaspace(replacement=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_) _lowercase =TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''', special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])], ) _lowercase ={ 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_) def UpperCamelCase__ ( self :Optional[Any], snake_case :Union[str, List[str]], snake_case :int = 8000, snake_case :bool = True, ): """simple docstring""" _lowercase =trainers.UnigramTrainer( vocab_size=SCREAMING_SNAKE_CASE_, special_tokens=self.special_tokens_list, show_progress=SCREAMING_SNAKE_CASE_, ) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_): _lowercase =[files] self._tokenizer.train(SCREAMING_SNAKE_CASE_, trainer=SCREAMING_SNAKE_CASE_) self.add_unk_id() def UpperCamelCase__ ( self :str, snake_case :Union[Iterator[str], Iterator[Iterator[str]]], snake_case :int = 8000, snake_case :bool = True, ): """simple docstring""" _lowercase =trainers.UnigramTrainer( vocab_size=SCREAMING_SNAKE_CASE_, special_tokens=self.special_tokens_list, show_progress=SCREAMING_SNAKE_CASE_, ) self._tokenizer.train_from_iterator(SCREAMING_SNAKE_CASE_, trainer=SCREAMING_SNAKE_CASE_) self.add_unk_id() def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =json.loads(self._tokenizer.to_str()) _lowercase =self.special_tokens['unk']['id'] _lowercase =Tokenizer.from_str(json.dumps(SCREAMING_SNAKE_CASE_))
181
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
0
def lowerCAmelCase_ ( lowercase: int ) -> list: '''simple docstring''' _UpperCamelCase: List[str] = int(lowercase__ ) if n_element < 1: _UpperCamelCase: Any = ValueError('''a should be a positive number''' ) raise my_error _UpperCamelCase: str = [1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Union[str, Any] = (0, 0, 0) _UpperCamelCase: Optional[Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCAmelCase_ = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') UpperCAmelCase_ = hamming(int(n)) print('''-----------------------------------------------------''') print(f"""The list with nth numbers is: {hamming_numbers}""") print('''-----------------------------------------------------''')
271
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece.model''') __magic_name__ = {"target_lang": "fi", "source_lang": "en"} __magic_name__ = ">>zh<<" __magic_name__ = "Helsinki-NLP/" if is_torch_available(): __magic_name__ = "pt" elif is_tf_available(): __magic_name__ = "tf" else: __magic_name__ = "jax" @require_sentencepiece class _lowerCAmelCase ( __lowercase , unittest.TestCase ): lowercase_ : int = MarianTokenizer lowercase_ : str = False lowercase_ : Union[str, Any] = True def _a ( self ) -> int: super().setUp() _UpperCAmelCase = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCAmelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) _UpperCAmelCase = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) _UpperCAmelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self , **a_ ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _a ( self , a_ ) -> List[Any]: return ( "This is a test", "This is a test", ) def _a ( self ) -> Optional[Any]: _UpperCAmelCase = "</s>" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> List[str]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def _a ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _a ( self ) -> Optional[int]: _UpperCAmelCase = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) _UpperCAmelCase = en_de_tokenizer(["I am a small frog"] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [38, 121, 14, 697, 38848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) _UpperCAmelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob("*" )] self.assertIn("source.spm" , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> Any: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def _a ( self ) -> Dict: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok(["I am a tiny frog", "I am a small frog"] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def _a ( self ) -> int: # fmt: off _UpperCAmelCase = {"input_ids": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def _a ( self ) -> str: _UpperCAmelCase = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) _UpperCAmelCase = "Tämä on testi" _UpperCAmelCase = "This is a test" _UpperCAmelCase = [76, 7, 2047, 2] _UpperCAmelCase = [69, 12, 11, 940, 2] _UpperCAmelCase = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
657
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCamelCase (nn.Module ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' super().__init__() lowercase = module lowercase = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _a ( self , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCamelCase (unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __A = "bigscience/bloom-1b7" # Constant values __A = 2.1_09_65_95_52_69_25_74 __A = "Hello my name is" __A = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) __A = 10 def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCamelCase (__lowercase ): def _a ( self ) -> List[str]: '''simple docstring''' super().setUp() # Models and tokenizer lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) def _a ( self ) -> Any: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _a ( self ) -> int: '''simple docstring''' lowercase = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """quantization_config""" ) ) lowercase = config.to_dict() lowercase = config.to_diff_dict() lowercase = config.to_json_string() def _a ( self ) -> str: '''simple docstring''' from bitsandbytes.nn import Paramsabit lowercase = self.model_fpaa.get_memory_footprint() lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _a ( self ) -> Optional[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _a ( self ) -> int: '''simple docstring''' lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def _a ( self ) -> Dict: '''simple docstring''' lowercase = BitsAndBytesConfig() lowercase = True lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def _a ( self ) -> str: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def _a ( self ) -> Dict: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ) lowercase = self.model_fpaa.to(torch.floataa ) lowercase = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowercase = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error lowercase = self.model_fpaa.half() # Check this does not throw an error lowercase = self.model_fpaa.float() def _a ( self ) -> Union[str, Any]: '''simple docstring''' lowercase = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCamelCase (unittest.TestCase ): @classmethod def _a ( cls ) -> Dict: '''simple docstring''' lowercase = """t5-small""" lowercase = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense lowercase = AutoTokenizer.from_pretrained(cls.model_name ) lowercase = """Translate in German: Hello, my dog is cute""" def _a ( self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration lowercase = TaForConditionalGeneration._keep_in_fpaa_modules lowercase = None # test with `t5-small` lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase = model.generate(**SCREAMING_SNAKE_CASE_ ) lowercase = modules def _a ( self ) -> Any: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) lowercase = model.generate(**SCREAMING_SNAKE_CASE_ ) class __UpperCamelCase (__lowercase ): def _a ( self ) -> str: '''simple docstring''' super().setUp() # model_name lowercase = """bigscience/bloom-560m""" lowercase = """t5-small""" # Different types of model lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) # Sequence classification model lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) # CausalLM model lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) # Seq2seq model lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""auto""" ) def _a ( self ) -> Dict: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Optional[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCamelCase (__lowercase ): def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() def _a ( self ) -> str: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _a ( self ) -> List[str]: '''simple docstring''' lowercase = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCamelCase (__lowercase ): def _a ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowercase = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch lowercase = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class __UpperCamelCase (__lowercase ): def _a ( self ) -> str: '''simple docstring''' lowercase = """facebook/opt-350m""" super().setUp() def _a ( self ) -> List[Any]: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): lowercase = LoRALayer(module.q_proj , rank=16 ) lowercase = LoRALayer(module.k_proj , rank=16 ) lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowercase = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCamelCase (__lowercase ): __A = "gpt2-xl" __A = 3.31_91_85_48_54_15_21_87
588
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
0
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a : Dict = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=None ) -> int: '''simple docstring''' require_version(deps[pkg], lowercase__ )
640
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
0
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') __UpperCAmelCase = int(input('Enter the base: ').strip()) __UpperCAmelCase = int(input('Enter the exponent: ').strip()) __UpperCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __UpperCAmelCase = 1 / result print(F'{base} to the power of {exponent} is {result}')
406
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=2 , A=56 , A=True , A=True , A=True , A=True , A=99 , A=32 , A=2 , A=2 , A=7 , A="gelu_new" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=4 , A="block_sparse" , A=True , A=False , A=2 , A=3 , ) -> Union[str, Any]: A: Union[str, Any] = parent A: Optional[Any] = batch_size A: Tuple = seq_length A: int = is_training A: Optional[int] = use_attention_mask A: Union[str, Any] = use_token_type_ids A: Any = use_labels A: Any = vocab_size A: List[str] = hidden_size A: Dict = num_hidden_layers A: Any = num_attention_heads A: int = intermediate_size A: Union[str, Any] = hidden_act A: int = hidden_dropout_prob A: Tuple = attention_probs_dropout_prob A: str = max_position_embeddings A: List[str] = type_vocab_size A: Union[str, Any] = type_sequence_label_size A: Optional[Any] = initializer_range A: Any = num_choices A: Any = rescale_embeddings A: Optional[Any] = attention_type A: str = use_bias A: str = block_size A: List[str] = num_random_blocks def a__ ( self ) -> Tuple: A: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A: Any = None if self.use_attention_mask: A: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A: Dict = None if self.use_token_type_ids: A: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A: Tuple = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> Optional[int]: A: str = self.prepare_config_and_inputs() A , A , A , A: Union[str, Any] = config_and_inputs A: Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( __lowercase , unittest.TestCase ): """simple docstring""" A__ : List[str] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A__ : Optional[Any] = False A__ : int = False def a__ ( self ) -> Tuple: A: List[str] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self ) -> Tuple: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self ) -> Tuple: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self ) -> Tuple: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self ) -> Dict: super().test_hidden_states_output() @slow def a__ ( self ) -> Dict: for model_class_name in self.all_model_classes: A: Union[str, Any] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a__ ( self ) -> Tuple: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a__ ( self ) -> Dict: A , A: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A: Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(A , A=None , **A ): return model(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest("""JIT Enabled""" ): A: str = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A: Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) def a__ ( self , A , A , A , A=1e-5 , A="outputs" , A=None ) -> Dict: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
135
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCAmelCase ( a__ ): '''simple docstring''' return TrainCommand(lowercase__ ) class __UpperCamelCase ( __lowercase ): @staticmethod def UpperCAmelCase__ ( UpperCAmelCase : ArgumentParser ) -> Any: lowerCAmelCase :Any = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE_ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE_ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE_ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE_ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE_ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE_ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE_ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE_ , default=1e-0_8 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self : str , UpperCAmelCase : Namespace ) -> Optional[int]: lowerCAmelCase :int = logging.get_logger('transformers-cli/training' ) lowerCAmelCase :Any = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase :str = args.output lowerCAmelCase :List[Any] = args.column_label lowerCAmelCase :Tuple = args.column_text lowerCAmelCase :Optional[int] = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": lowerCAmelCase :Optional[Any] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) lowerCAmelCase :Tuple = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase :Optional[Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) lowerCAmelCase :Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowerCAmelCase :List[Any] = args.validation_split lowerCAmelCase :Tuple = args.train_batch_size lowerCAmelCase :int = args.valid_batch_size lowerCAmelCase :Any = args.learning_rate lowerCAmelCase :Tuple = args.adam_epsilon def UpperCAmelCase__ ( self : Optional[int] ) -> int: if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCAmelCase__ ( self : Tuple ) -> List[str]: raise NotImplementedError def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
553
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
0
import math import random from typing import Any from .hill_climbing import SearchProblem def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: bool = True , UpperCamelCase__: float = math.inf , UpperCamelCase__: float = -math.inf , UpperCamelCase__: float = math.inf , UpperCamelCase__: float = -math.inf , UpperCamelCase__: bool = False , UpperCamelCase__: float = 100 , UpperCamelCase__: float = 0.0_1 , UpperCamelCase__: float = 1 , ): SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = search_prob SCREAMING_SNAKE_CASE__ = start_temperate SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = None while not search_end: SCREAMING_SNAKE_CASE__ = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE__ = current_state scores.append(lowercase__ ) iterations += 1 SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE__ = random.randint(0 , len(lowercase__ ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE__ = neighbors.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE__ = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE__ = picked_neighbor else: SCREAMING_SNAKE_CASE__ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE__ = picked_neighbor SCREAMING_SNAKE_CASE__ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase__ ) , lowercase__ ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[str] ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _lowerCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _lowerCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowerCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Dict ): return (3 * x**2) - (6 * y) _lowerCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' ) _lowerCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowerCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' F'''{local_min.score()}''' )
6
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
0
A__ : Union[str, Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A__ : Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}] A__ : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
171
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
181
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
0
def lowerCAmelCase_ ( lowercase: int = 3 , lowercase: int = 7 , lowercase: int = 1_000_000 ) -> int: '''simple docstring''' _UpperCamelCase: int = 0 _UpperCamelCase: Optional[Any] = 1 for current_denominator in range(1 , limit + 1 ): _UpperCamelCase: Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _UpperCamelCase: Optional[int] = current_numerator _UpperCamelCase: Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
271
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __magic_name__ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["DPTFeatureExtractor"] __magic_name__ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
657
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : Any = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowercase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
588
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def lowercase__ ( __snake_case : int , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def lowercase__ ( __snake_case : List[str] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 'imagenet-1k-id2label.json' UpperCAmelCase_ : List[Any] = 1_000 UpperCAmelCase_ : str = 'huggingface/label-files' UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) ) UpperCAmelCase_ : Optional[int] = {int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : int = idalabel UpperCAmelCase_ : str = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": UpperCAmelCase_ : Optional[int] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": UpperCAmelCase_ : List[str] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase_ : Optional[Any] = [2, 2, 20] UpperCAmelCase_ : str = [3, 12, 16] UpperCAmelCase_ : Tuple = [192, 768, 1_024] UpperCAmelCase_ : Union[str, Any] = CvtForImageClassification(lowercase__ ) UpperCAmelCase_ : List[str] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Union[str, Any] = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) UpperCAmelCase_ : Tuple = OrderedDict() UpperCAmelCase_ : Optional[int] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase_ : str = list_of_state_dict + cls_token(lowercase__ ) UpperCAmelCase_ : List[Any] = list_of_state_dict + embeddings(lowercase__ ) for cnt in range(config.depth[idx] ): UpperCAmelCase_ : Union[str, Any] = list_of_state_dict + attention(lowercase__ , lowercase__ ) UpperCAmelCase_ : Tuple = list_of_state_dict + final() for gg in list_of_state_dict: print(lowercase__ ) for i in range(len(lowercase__ ) ): UpperCAmelCase_ : List[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
406
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
0