code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _a (lowercase__ : Any , lowercase__ : str=0.9_99 , lowercase__ : Any="cosine" , ) -> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : List[str] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __snake_case = [] for i in range(lowercase__ ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( __lowercase , __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = [e.name for e in KarrasDiffusionSchedulers] _SCREAMING_SNAKE_CASE : Optional[Any] = 2 @register_to_config def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int = 1000 , SCREAMING_SNAKE_CASE_ : float = 0.0_0_0_8_5 , SCREAMING_SNAKE_CASE_ : float = 0.0_1_2 , SCREAMING_SNAKE_CASE_ : str = "linear" , SCREAMING_SNAKE_CASE_ : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE_ : str = "epsilon" , SCREAMING_SNAKE_CASE_ : Optional[bool] = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = False , SCREAMING_SNAKE_CASE_ : float = 1.0 , SCREAMING_SNAKE_CASE_ : str = "linspace" , SCREAMING_SNAKE_CASE_ : int = 0 , ) -> List[Any]: if trained_betas is not None: __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case = torch.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __snake_case = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='exp' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = use_karras_sigmas def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> Dict: if schedule_timesteps is None: __snake_case = self.timesteps __snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __snake_case = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: __snake_case = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep __snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def a ( self : List[Any] ) -> str: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __snake_case = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) __snake_case = self.sigmas[step_index] __snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , ) -> Optional[Any]: __snake_case = num_inference_steps __snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(SCREAMING_SNAKE_CASE_ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __snake_case = np.log(SCREAMING_SNAKE_CASE_ ) __snake_case = np.interp(SCREAMING_SNAKE_CASE_ , np.arange(0 , len(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ ) if self.config.use_karras_sigmas: __snake_case = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE_ , num_inference_steps=self.num_inference_steps ) __snake_case = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for sigma in sigmas] ) __snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __snake_case = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __snake_case = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) __snake_case = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 __snake_case = timesteps.to(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) else: __snake_case = timesteps.to(device=SCREAMING_SNAKE_CASE_ ) # empty dt and derivative __snake_case = None __snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case = defaultdict(SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: # get log sigma __snake_case = np.log(SCREAMING_SNAKE_CASE_ ) # get distribution __snake_case = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __snake_case = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __snake_case = low_idx + 1 __snake_case = log_sigmas[low_idx] __snake_case = log_sigmas[high_idx] # interpolate sigmas __snake_case = (low - log_sigma) / (low - high) __snake_case = np.clip(SCREAMING_SNAKE_CASE_ , 0 , 1 ) # transform interpolation to time range __snake_case = (1 - w) * low_idx + w * high_idx __snake_case = t.reshape(sigma.shape ) return t def a ( self : Any , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : List[str] ) -> torch.FloatTensor: __snake_case = in_sigmas[-1].item() __snake_case = in_sigmas[0].item() __snake_case = 7.0 # 7.0 is the value used in the paper __snake_case = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE_ ) __snake_case = sigma_min ** (1 / rho) __snake_case = sigma_max ** (1 / rho) __snake_case = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def a ( self : Tuple ) -> List[Any]: return self.dt is None def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE_ : Union[float, torch.FloatTensor] , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: __snake_case = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 __snake_case = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case = self.sigmas[step_index] __snake_case = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __snake_case = self.sigmas[step_index - 1] __snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case = 0 __snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case = sigma_hat if self.state_in_first_order else sigma_next __snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __snake_case = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: __snake_case = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case = sigma_next - sigma_hat # store for 2nd order step __snake_case = derivative __snake_case = dt __snake_case = sample else: # 2. 2nd order / Heun's method __snake_case = (sample - pred_original_sample) / sigma_next __snake_case = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __snake_case = self.dt __snake_case = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __snake_case = None __snake_case = None __snake_case = None __snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def a ( self : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 __snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __snake_case = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __snake_case = self.timesteps.to(original_samples.device ) __snake_case = timesteps.to(original_samples.device ) __snake_case = [self.index_for_timestep(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for t in timesteps] __snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __snake_case = sigma.unsqueeze(-1 ) __snake_case = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any] ) -> Tuple: return self.config.num_train_timesteps
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _a : Union[str, Any] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _a : Optional[int] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _a : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _a (lowercase__ : int , lowercase__ : List[Any] ) -> List[str]: """simple docstring""" return float((preds == labels).mean() ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> int: """simple docstring""" __snake_case = simple_accuracy(lowercase__ , lowercase__ ) __snake_case = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _a (lowercase__ : Tuple , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = float(pearsonr(lowercase__ , lowercase__ )[0] ) __snake_case = float(spearmanr(lowercase__ , lowercase__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def a ( self : Dict ) -> str: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> str: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif self.config_name == "stsb": return pearson_and_spearman(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' def _a (lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(lowercase__ ) * abs(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[str] = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __snake_case = Vector() def a ( self : List[str] ) -> None: __snake_case = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,0,0,0,0,1)' ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 2, 3, 4] ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) def a ( self : Union[str, Any] ) -> None: __snake_case = Vector([1, 2] ) __snake_case = Vector([1, 2, 3, 4, 5] ) __snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def a ( self : Union[str, Any] ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([2, -1, 4] ) # for test of dot product __snake_case = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def a ( self : int ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def a ( self : Any ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , '(3,4,7)' ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 0, 0, 0, 0, 0] ) __snake_case = x.copy() self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,1,0)' ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Tuple ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : str ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : Optional[Any] ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __snake_case = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def a ( self : Union[str, Any] ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def a ( self : Tuple ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def a ( self : int ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def a ( self : Any ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _a (lowercase__ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: """simple docstring""" __snake_case = [] if isinstance(lowercase__ , lowercase__ ): for v in tree.values(): shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowercase__ ) ) elif isinstance(lowercase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def _a (lowercase__ : int , lowercase__ : Tuple[int, ...] ) -> Tuple[int, ...]: """simple docstring""" __snake_case = [] for d in reversed(lowercase__ ): idx.append(flat_idx % d ) __snake_case = flat_idx // d return tuple(reversed(lowercase__ ) ) @torch.jit.ignore def _a (lowercase__ : Sequence[int] , lowercase__ : Sequence[int] , lowercase__ : Sequence[int] , lowercase__ : Optional[Sequence[bool]] = None , lowercase__ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowercase__ : List[bool] ) -> None: __snake_case = True for i in range(len(lowercase__ ) ): __snake_case = -1 * (i + 1) l[reversed_idx] &= tally __snake_case = l[reversed_idx] if start_edges is None: __snake_case = [s == 0 for s in start] reduce_edge_list(lowercase__ ) if end_edges is None: __snake_case = [e == (d - 1) for e, d in zip(lowercase__ , lowercase__ )] reduce_edge_list(lowercase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowercase__ ) == 0: return [()] elif len(lowercase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __snake_case = [] __snake_case = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowercase__ , lowercase__ ): if s == e: path_list.append(slice(lowercase__ , s + 1 ) ) else: break __snake_case = tuple(lowercase__ ) __snake_case = len(lowercase__ ) # start == end, and we're done if divergence_idx == len(lowercase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = start[divergence_idx] return tuple( path + (slice(lowercase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __snake_case = end[divergence_idx] return tuple( path + (slice(lowercase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __snake_case = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _a (lowercase__ : torch.Tensor , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> torch.Tensor: """simple docstring""" __snake_case = t.shape[:no_batch_dims] __snake_case = list(_flat_idx_to_idx(lowercase__ , lowercase__ ) ) # _get_minimal_slice_set is inclusive __snake_case = list(_flat_idx_to_idx(flat_end - 1 , lowercase__ ) ) # Get an ordered list of slices to perform __snake_case = _get_minimal_slice_set( lowercase__ , lowercase__ , lowercase__ , ) __snake_case = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _a (lowercase__ : Callable , lowercase__ : Dict[str, Any] , lowercase__ : int , lowercase__ : int , lowercase__ : bool = False , lowercase__ : Any = None , lowercase__ : bool = False , ) -> Any: """simple docstring""" if not (len(lowercase__ ) > 0): raise ValueError('Must provide at least one input' ) __snake_case = [shape[:no_batch_dims] for shape in _fetch_dims(lowercase__ )] __snake_case = tuple([max(lowercase__ ) for s in zip(*lowercase__ )] ) def _prep_inputs(lowercase__ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __snake_case = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __snake_case = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __snake_case = tensor_tree_map(_prep_inputs , lowercase__ ) __snake_case = None if _out is not None: __snake_case = tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __snake_case = 1 for d in orig_batch_dims: flat_batch_dim *= d __snake_case = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __snake_case = 0 __snake_case = prepped_outputs for _ in range(lowercase__ ): # Chunk the input if not low_mem: __snake_case = _select_chunk else: __snake_case = partial( _chunk_slice , flat_start=lowercase__ , flat_end=min(lowercase__ , i + chunk_size ) , no_batch_dims=len(lowercase__ ) , ) __snake_case = tensor_tree_map(lowercase__ , lowercase__ ) # Run the layer on the chunk __snake_case = layer(**lowercase__ ) # Allocate space for the output if out is None: __snake_case = tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowercase__ ) # Put the chunk in its pre-allocated space if isinstance(lowercase__ , lowercase__ ): def assign(lowercase__ : dict , lowercase__ : dict ) -> None: for k, v in da.items(): if isinstance(lowercase__ , lowercase__ ): assign(lowercase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __snake_case = da[k] assign(lowercase__ , lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): for xa, xa in zip(lowercase__ , lowercase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __snake_case = xa elif isinstance(lowercase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __snake_case = output_chunk else: raise ValueError('Not supported' ) i += chunk_size __snake_case = tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ) , lowercase__ ) return out class _lowercase : def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 512 , ) -> Union[str, Any]: __snake_case = max_chunk_size __snake_case = None __snake_case = None def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __snake_case = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __snake_case = [c for c in candidates if c > min_chunk_size] __snake_case = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE_ : int ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False __snake_case = 0 __snake_case = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: __snake_case = test_chunk_size(candidates[i] ) if not viable: __snake_case = (min_viable_chunk_size_index + i) // 2 else: __snake_case = i __snake_case = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def a ( self : Any , SCREAMING_SNAKE_CASE_ : Iterable , SCREAMING_SNAKE_CASE_ : Iterable ) -> bool: __snake_case = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] __snake_case = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int , ) -> int: __snake_case = True __snake_case = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) __snake_case = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value __snake_case = False if not consistent: __snake_case = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def _a (lowercase__ : Optional[Any] ) -> Any: """simple docstring""" if hor == 1_2_8: __snake_case = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') __snake_case = (3_2, 1_2_8, 2_5_6) __snake_case = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 3_2: __snake_case = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') __snake_case = (3_2, 6_4, 1_2_8, 2_5_6) __snake_case = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') __snake_case = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) __snake_case = model.state_dict() __snake_case = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 1_4, 'out_channels': 1_4, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_5_5_3_6, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } __snake_case = UNetaDModel(**lowercase__ ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __snake_case = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __snake_case = state_dict.pop(lowercase__ ) hf_value_function.load_state_dict(lowercase__ ) torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) def _a () -> List[str]: """simple docstring""" __snake_case = { 'in_channels': 1_4, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (3_2, 6_4, 1_2_8, 2_5_6), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_5_5_3_6, 'out_channels': 1_4, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } __snake_case = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) __snake_case = model __snake_case = UNetaDModel(**lowercase__ ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) __snake_case = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __snake_case = state_dict.pop(lowercase__ ) hf_value_function.load_state_dict(lowercase__ ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _a : Union[str, Any] = 256_047 _a : str = 256_145 @require_sentencepiece @require_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = NllbTokenizer _SCREAMING_SNAKE_CASE : Tuple = NllbTokenizerFast _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Any = {} def a ( self : List[str] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __snake_case = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int ) -> int: __snake_case = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def a ( self : List[str] ) -> Tuple: __snake_case = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __snake_case = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def a ( self : Dict ) -> Optional[Any]: if not self.test_seqaseq: return __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __snake_case = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __snake_case = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __snake_case = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __snake_case = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __snake_case = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def a ( self : Any ) -> Union[str, Any]: pass def a ( self : str ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = [AddedToken('<special>' , lstrip=SCREAMING_SNAKE_CASE_ )] __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.encode('Hey this is a <special> token' ) __snake_case = tokenizer_r.encode('<special>' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.encode('Hey this is a <special> token' ) __snake_case = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "facebook/nllb-200-distilled-600M" _SCREAMING_SNAKE_CASE : Optional[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _SCREAMING_SNAKE_CASE : Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _SCREAMING_SNAKE_CASE : List[str] = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def a ( cls : Union[str, Any] ) -> Union[str, Any]: __snake_case = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __snake_case = 1 return cls def a ( self : int ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def a ( self : Optional[int] ) -> int: __snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> Union[str, Any]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) # fmt: off __snake_case = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __snake_case = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> Union[str, Any]: __snake_case = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) __snake_case = 10 __snake_case = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def a ( self : str ) -> Tuple: __snake_case = tempfile.mkdtemp() __snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def a ( self : str ) -> List[Any]: __snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __snake_case = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : int ) -> List[Any]: __snake_case = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) __snake_case = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) __snake_case = targets['input_ids'] __snake_case = shift_tokens_right( SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Union[str, Any] ) -> Any: __snake_case = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def a ( self : List[str] ) -> Union[str, Any]: __snake_case = True __snake_case = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __snake_case = False __snake_case = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : int = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _a (lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" # Load configuration defined in the metadata file with open(lowercase__ ) as metadata_file: __snake_case = json.load(lowercase__ ) __snake_case = LukeConfig(use_entity_aware_attention=lowercase__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __snake_case = torch.load(lowercase__ , map_location='cpu' ) # Load the entity vocab file __snake_case = load_entity_vocab(lowercase__ ) __snake_case = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case = AddedToken('<ent>' , lstrip=lowercase__ , rstrip=lowercase__ ) __snake_case = AddedToken('<ent2>' , lstrip=lowercase__ , rstrip=lowercase__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) __snake_case = LukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens __snake_case = state_dict['embeddings.word_embeddings.weight'] __snake_case = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __snake_case = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case = f'encoder.layer.{layer_index}.attention.self.' __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] __snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] __snake_case = entity_emb[entity_vocab['[MASK]']] __snake_case = LukeModel(config=lowercase__ ).eval() __snake_case , __snake_case = model.load_state_dict(lowercase__ , strict=lowercase__ ) if not (len(lowercase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(lowercase__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __snake_case = LukeTokenizer.from_pretrained(lowercase__ , task='entity_classification' ) __snake_case = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __snake_case = (3_9, 4_2) __snake_case = tokenizer(lowercase__ , entity_spans=[span] , add_prefix_space=lowercase__ , return_tensors='pt' ) __snake_case = model(**lowercase__ ) # Verify word hidden states if model_size == "large": __snake_case = torch.Size((1, 4_2, 1_0_2_4) ) __snake_case = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base __snake_case = torch.Size((1, 4_2, 7_6_8) ) __snake_case = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __snake_case = torch.Size((1, 1, 1_0_2_4) ) __snake_case = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base __snake_case = torch.Size((1, 1, 7_6_8) ) __snake_case = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def _a (lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = {} with open(lowercase__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(lowercase__ ): __snake_case , __snake_case = line.rstrip().split('\t' ) __snake_case = index return entity_vocab if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _a : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : Tuple = logging.get_logger(__name__) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["pixel_values"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = size if size is not None else {'height': 224, 'width': 224} __snake_case = get_size_dict(SCREAMING_SNAKE_CASE_ ) __snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} __snake_case = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) __snake_case = do_resize __snake_case = do_rescale __snake_case = do_normalize __snake_case = do_center_crop __snake_case = crop_size __snake_case = size __snake_case = resample __snake_case = rescale_factor __snake_case = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __snake_case = image_std if image_std is not None else IMAGENET_DEFAULT_STD def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> np.ndarray: __snake_case = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: __snake_case = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __snake_case = (size['height'], size['width']) else: raise ValueError(f'Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}' ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> np.ndarray: __snake_case = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : int = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : str , ) -> BatchFeature: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' , default_to_square=SCREAMING_SNAKE_CASE_ ) __snake_case = resample if resample is not None else self.resample __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = size if size is not None else self.size __snake_case = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): __snake_case = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __snake_case = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __snake_case = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _a (lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> tuple: """simple docstring""" __snake_case = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _a : Any = get_tests_dir("fixtures") class _lowercase ( unittest.TestCase ): def a ( self : str ) -> Dict: # A mock response for an HTTP head request to emulate server down __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=SCREAMING_SNAKE_CASE_ ) as mock_head: __snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def a ( self : Dict ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 __snake_case = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Any ) -> int: __snake_case = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def a ( cls : Optional[int] ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def a ( self : Optional[Any] ) -> List[Any]: __snake_case = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='test-feature-extractor' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : Any ) -> Optional[int]: __snake_case = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : Any ) -> Optional[Any]: CustomFeatureExtractor.register_for_auto_class() __snake_case = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __snake_case = AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' def _a (lowercase__ : str , lowercase__ : str ) -> float: """simple docstring""" def get_matched_characters(lowercase__ : str , lowercase__ : str ) -> str: __snake_case = [] __snake_case = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __snake_case = int(max(0 , i - limit ) ) __snake_case = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase__ ) __snake_case = f'{_stra[0:_stra.index(lowercase__ )]} {_stra[_stra.index(lowercase__ ) + 1:]}' return "".join(lowercase__ ) # matching characters __snake_case = get_matched_characters(lowercase__ , lowercase__ ) __snake_case = get_matched_characters(lowercase__ , lowercase__ ) __snake_case = len(lowercase__ ) # transposition __snake_case = ( len([(ca, ca) for ca, ca in zip(lowercase__ , lowercase__ ) if ca != ca] ) // 2 ) if not match_count: __snake_case = 0.0 else: __snake_case = ( 1 / 3 * ( match_count / len(lowercase__ ) + match_count / len(lowercase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __snake_case = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _lowercase : pass
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' import random class _lowercase : @staticmethod def a ( SCREAMING_SNAKE_CASE_ : str ) -> tuple[list[int], list[int]]: __snake_case = [ord(SCREAMING_SNAKE_CASE_ ) for i in text] __snake_case = [] __snake_case = [] for i in plain: __snake_case = random.randint(1 , 300 ) __snake_case = (i + k) * k cipher.append(SCREAMING_SNAKE_CASE_ ) key.append(SCREAMING_SNAKE_CASE_ ) return cipher, key @staticmethod def a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] ) -> str: __snake_case = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __snake_case = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(SCREAMING_SNAKE_CASE_ ) ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _a , _a : Optional[Any] = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _a (lowercase__ : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _a (lowercase__ : int , lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _a (lowercase__ : int ) -> int: """simple docstring""" __snake_case = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', 'stage2.cls_token') ) return token def _a () -> Union[str, Any]: """simple docstring""" __snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def _a (lowercase__ : List[str] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case = 'imagenet-1k-id2label.json' __snake_case = 1_0_0_0 __snake_case = 'huggingface/label-files' __snake_case = num_labels __snake_case = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' ) ) , 'r' ) ) __snake_case = {int(lowercase__ ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = __snake_case = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": __snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": __snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __snake_case = [2, 2, 2_0] __snake_case = [3, 1_2, 1_6] __snake_case = [1_9_2, 7_6_8, 1_0_2_4] __snake_case = CvtForImageClassification(lowercase__ ) __snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) __snake_case = image_size __snake_case = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) __snake_case = OrderedDict() __snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __snake_case = list_of_state_dict + cls_token(lowercase__ ) __snake_case = list_of_state_dict + embeddings(lowercase__ ) for cnt in range(config.depth[idx] ): __snake_case = list_of_state_dict + attention(lowercase__ , lowercase__ ) __snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(lowercase__ ) for i in range(len(lowercase__ ) ): __snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _a : Optional[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github _a : Optional[Any] = [ "good first issue", "feature request", "wip", ] def _a () -> Any: """simple docstring""" __snake_case = Github(os.environ['GITHUB_TOKEN'] ) __snake_case = g.get_repo('huggingface/accelerate' ) __snake_case = repo.get_issues(state='open' ) for issue in open_issues: __snake_case = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __snake_case = comments[0] if len(lowercase__ ) > 0 else None __snake_case = dt.utcnow() __snake_case = (current_time - issue.updated_at).days __snake_case = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 2_3 and days_since_creation >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _a : List[Any] = logging.get_logger(__name__) _a : str = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = "instructblip_vision_model" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=1408 , SCREAMING_SNAKE_CASE_ : str=6144 , SCREAMING_SNAKE_CASE_ : List[Any]=39 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=224 , SCREAMING_SNAKE_CASE_ : List[str]=14 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=1e-10 , SCREAMING_SNAKE_CASE_ : Any=True , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act __snake_case = qkv_bias @classmethod def a ( cls : Any , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "instructblip_qformer" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=3072 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1e-12 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : str=1408 , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = cross_attention_frequency __snake_case = encoder_hidden_size @classmethod def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = "instructblip" _SCREAMING_SNAKE_CASE : str = True def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]=32 , **SCREAMING_SNAKE_CASE_ : str ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if vision_config is None: __snake_case = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE_ ) __snake_case = self.text_config.tie_word_embeddings __snake_case = self.text_config.is_encoder_decoder __snake_case = num_query_tokens __snake_case = self.vision_config.hidden_size __snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case = 1.0 __snake_case = 0.0_2 @classmethod def a ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE_ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE_ : PretrainedConfig , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Optional[Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE_ , ) def a ( self : Optional[int] ) -> Any: __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.vision_config.to_dict() __snake_case = self.qformer_config.to_dict() __snake_case = self.text_config.to_dict() __snake_case = self.__class__.model_type return output
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' def _a (lowercase__ : str , lowercase__ : str ) -> Dict: """simple docstring""" assert x is not None assert y is not None __snake_case = len(lowercase__ ) __snake_case = len(lowercase__ ) # declaring the array for storing the dp values __snake_case = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __snake_case = 1 if x[i - 1] == y[j - 1] else 0 __snake_case = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __snake_case = '' __snake_case , __snake_case = m, n while i > 0 and j > 0: __snake_case = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __snake_case = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _a : Dict = "AGGTAB" _a : Any = "GXTXAYB" _a : Dict = 4 _a : Optional[int] = "GTAB" _a , _a : Union[str, Any] = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' def _a (lowercase__ : str , lowercase__ : int ) -> list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(lowercase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _lowercase ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : UNetaDModel , SCREAMING_SNAKE_CASE_ : DDPMScheduler , SCREAMING_SNAKE_CASE_ : List[str] , ) -> Union[str, Any]: super().__init__() __snake_case = value_function __snake_case = unet __snake_case = scheduler __snake_case = env __snake_case = env.get_dataset() __snake_case = {} for key in self.data.keys(): try: __snake_case = self.data[key].mean() except: # noqa: E722 pass __snake_case = {} for key in self.data.keys(): try: __snake_case = self.data[key].std() except: # noqa: E722 pass __snake_case = env.observation_space.shape[0] __snake_case = env.action_space.shape[0] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: return (x_in - self.means[key]) / self.stds[key] def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> str: return x_in * self.stds[key] + self.means[key] def a ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: if type(SCREAMING_SNAKE_CASE_ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any ) -> Any: for key, val in cond.items(): __snake_case = val.clone() return x_in def a ( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: __snake_case = x.shape[0] __snake_case = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __snake_case = torch.full((batch_size,) , SCREAMING_SNAKE_CASE_ , device=self.unet.device , dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __snake_case = self.value_function(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample __snake_case = torch.autograd.grad([y.sum()] , [x] )[0] __snake_case = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_ ) __snake_case = torch.exp(0.5 * posterior_variance ) __snake_case = model_std * grad __snake_case = 0 __snake_case = x.detach() __snake_case = x + scale * grad __snake_case = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) __snake_case = self.unet(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __snake_case = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , predict_epsilon=SCREAMING_SNAKE_CASE_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) __snake_case = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) __snake_case = self.to_torch(SCREAMING_SNAKE_CASE_ ) return x, y def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int=64 , SCREAMING_SNAKE_CASE_ : str=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Dict=0.1 ) -> List[str]: # normalize the observations and create batch dimension __snake_case = self.normalize(SCREAMING_SNAKE_CASE_ , 'observations' ) __snake_case = obs[None].repeat(SCREAMING_SNAKE_CASE_ , axis=0 ) __snake_case = {0: self.to_torch(SCREAMING_SNAKE_CASE_ )} __snake_case = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __snake_case = randn_tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) __snake_case = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) __snake_case = self.to_torch(SCREAMING_SNAKE_CASE_ ) # run the diffusion process __snake_case , __snake_case = self.run_diffusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # sort output trajectories by value __snake_case = y.argsort(0 , descending=SCREAMING_SNAKE_CASE_ ).squeeze() __snake_case = x[sorted_idx] __snake_case = sorted_values[:, :, : self.action_dim] __snake_case = actions.detach().cpu().numpy() __snake_case = self.de_normalize(SCREAMING_SNAKE_CASE_ , key='actions' ) # select the action with the highest value if y is not None: __snake_case = 0 else: # if we didn't run value guiding, select a random action __snake_case = np.random.randint(0 , SCREAMING_SNAKE_CASE_ ) __snake_case = denorm_actions[selected_index, 0] return denorm_actions
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' from __future__ import annotations _a : List[str] = "Muhammad Umer Farooq" _a : List[Any] = "MIT" _a : Optional[int] = "1.0.0" _a : List[str] = "Muhammad Umer Farooq" _a : List[Any] = "[email protected]" _a : Union[str, Any] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class _lowercase ( __lowercase ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> None: super().__init__() __snake_case = [] __snake_case = domain def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case = parse.urljoin(self.domain , SCREAMING_SNAKE_CASE_ ) self.urls.append(SCREAMING_SNAKE_CASE_ ) def _a (lowercase__ : str ) -> str: """simple docstring""" return ".".join(get_sub_domain_name(lowercase__ ).split('.' )[-2:] ) def _a (lowercase__ : str ) -> str: """simple docstring""" return parse.urlparse(lowercase__ ).netloc def _a (lowercase__ : str = "https://github.com" ) -> list[str]: """simple docstring""" __snake_case = get_domain_name(lowercase__ ) # Initialize the parser __snake_case = Parser(lowercase__ ) try: # Open URL __snake_case = requests.get(lowercase__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case = requests.get(lowercase__ ) # Get the valid email. __snake_case = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase__ ) if __name__ == "__main__": _a : Optional[int] = emails_from_url("https://github.com") print(f'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : Optional[Any] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "altclip_text_model" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=25_0002 , SCREAMING_SNAKE_CASE_ : List[Any]=1024 , SCREAMING_SNAKE_CASE_ : int=24 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : List[Any]=4096 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=514 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=1e-05 , SCREAMING_SNAKE_CASE_ : List[str]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : List[Any]="absolute" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=768 , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = initializer_factor __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = project_dim class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "altclip_vision_model" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : Tuple=224 , SCREAMING_SNAKE_CASE_ : Any=32 , SCREAMING_SNAKE_CASE_ : Any="quick_gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=1e-5 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1.0 , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = projection_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = num_channels __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = initializer_factor __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act @classmethod def a ( cls : str , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "altclip" _SCREAMING_SNAKE_CASE : str = True def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Any=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2.6_5_9_2 , **SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). __snake_case = kwargs.pop('text_config_dict' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('vision_config_dict' , SCREAMING_SNAKE_CASE_ ) super().__init__(**SCREAMING_SNAKE_CASE_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __snake_case = {} # This is the complete result when using `text_config_dict`. __snake_case = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __snake_case = ( f'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: __snake_case = ( f'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' f'value `text_config["{key}"]` will be overriden.' ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __snake_case = {} # This is the complete result when using `vision_config_dict`. __snake_case = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __snake_case = { str(SCREAMING_SNAKE_CASE_ ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __snake_case = ( f'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: __snake_case = ( f'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' f'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __snake_case = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: __snake_case = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) __snake_case = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = projection_dim __snake_case = logit_scale_init_value __snake_case = 1.0 @classmethod def a ( cls : Dict , SCREAMING_SNAKE_CASE_ : AltCLIPTextConfig , SCREAMING_SNAKE_CASE_ : AltCLIPVisionConfig , **SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> List[Any]: __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _a (lowercase__ : Sequence[float] , lowercase__ : int , lowercase__ : int ) -> tuple[int | None, int | None, float]: """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] __snake_case = (low + high) // 2 __snake_case , __snake_case , __snake_case = max_subarray(lowercase__ , lowercase__ , lowercase__ ) __snake_case , __snake_case , __snake_case = max_subarray(lowercase__ , mid + 1 , lowercase__ ) __snake_case , __snake_case , __snake_case = max_cross_sum(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _a (lowercase__ : Sequence[float] , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> tuple[int, int, float]: """simple docstring""" __snake_case , __snake_case = float('-inf' ), -1 __snake_case , __snake_case = float('-inf' ), -1 __snake_case = 0 for i in range(lowercase__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __snake_case = summ __snake_case = i __snake_case = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __snake_case = summ __snake_case = i return max_left, max_right, (left_sum + right_sum) def _a (lowercase__ : int ) -> float: """simple docstring""" __snake_case = [randint(1 , lowercase__ ) for _ in range(lowercase__ )] __snake_case = time.time() max_subarray(lowercase__ , 0 , input_size - 1 ) __snake_case = time.time() return end - start def _a () -> None: """simple docstring""" __snake_case = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] __snake_case = [time_max_subarray(lowercase__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(lowercase__ , lowercase__ ): print(lowercase__ , '\t\t' , lowercase__ ) plt.plot(lowercase__ , lowercase__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _a : str = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : List[str] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _a : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _a : List[str] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _a : Union[str, Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _a : str = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _a : Any = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _a : List[str] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _a : List[str] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _a : Tuple = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _a : Dict = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _a : List[Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _a : Optional[int] = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__lowercase ) class _lowercase : def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: __snake_case = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] __snake_case = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.' ) __snake_case = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] __snake_case = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] __snake_case = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: __snake_case = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __snake_case = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: __snake_case = reader_input['input_ids'] __snake_case , __snake_case , __snake_case = reader_output[:3] __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) __snake_case = [] for doc_id in sorted_docs: __snake_case = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __snake_case = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __snake_case = sequence_ids.index(self.pad_token_id ) else: __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: __snake_case = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __snake_case = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) __snake_case = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'Wrong span indices: [{start_index}:{end_index}]' ) __snake_case = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowercase ) class _lowercase ( __lowercase , __lowercase ): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Dict = READER_PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"]
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from __future__ import annotations from typing import Any class _lowercase : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> None: __snake_case = num_of_nodes __snake_case = [] __snake_case = {} def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: self.m_edges.append([u_node, v_node, weight] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: __snake_case = self.find_component(SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None: if component_size[u_node] <= component_size[v_node]: __snake_case = v_node component_size[v_node] += component_size[u_node] self.set_component(SCREAMING_SNAKE_CASE_ ) elif component_size[u_node] >= component_size[v_node]: __snake_case = self.find_component(SCREAMING_SNAKE_CASE_ ) component_size[u_node] += component_size[v_node] self.set_component(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> None: __snake_case = [] __snake_case = 0 __snake_case = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __snake_case = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __snake_case , __snake_case , __snake_case = edge __snake_case = self.m_component[u] __snake_case = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __snake_case = [u, v, w] for edge in minimum_weight_edge: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case , __snake_case , __snake_case = edge __snake_case = self.m_component[u] __snake_case = self.m_component[v] if u_component != v_component: mst_weight += w self.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 __snake_case = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def _a () -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _a : List[str] = "src/transformers" _a : Dict = "docs/source/en" _a : Optional[Any] = "." def _a (lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Dict ) -> List[Any]: """simple docstring""" with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __snake_case = f.readlines() # Find the start prompt. __snake_case = 0 while not lines[start_index].startswith(lowercase__ ): start_index += 1 start_index += 1 __snake_case = start_index while not lines[end_index].startswith(lowercase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _a : Optional[int] = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _a : str = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _a : Tuple = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _a : Optional[Any] = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _a : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) def _a (lowercase__ : Any ) -> Any: """simple docstring""" __snake_case = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase__ ) return [m.group(0 ) for m in matches] def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] ) -> Any: """simple docstring""" __snake_case = 2 if text == '✅' or text == '❌' else len(lowercase__ ) __snake_case = (width - text_length) // 2 __snake_case = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _a () -> List[str]: """simple docstring""" __snake_case = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __snake_case = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __snake_case = collections.defaultdict(lowercase__ ) __snake_case = collections.defaultdict(lowercase__ ) __snake_case = collections.defaultdict(lowercase__ ) __snake_case = collections.defaultdict(lowercase__ ) __snake_case = collections.defaultdict(lowercase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase__ ): __snake_case = None if attr_name.endswith('Tokenizer' ): __snake_case = slow_tokenizers __snake_case = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): __snake_case = fast_tokenizers __snake_case = attr_name[:-1_3] elif _re_tf_models.match(lowercase__ ) is not None: __snake_case = tf_models __snake_case = _re_tf_models.match(lowercase__ ).groups()[0] elif _re_flax_models.match(lowercase__ ) is not None: __snake_case = flax_models __snake_case = _re_flax_models.match(lowercase__ ).groups()[0] elif _re_pt_models.match(lowercase__ ) is not None: __snake_case = pt_models __snake_case = _re_pt_models.match(lowercase__ ).groups()[0] if lookup_dict is not None: while len(lowercase__ ) > 0: if attr_name in model_name_to_prefix.values(): __snake_case = True break # Try again after removing the last word in the name __snake_case = ''.join(camel_case_split(lowercase__ )[:-1] ) # Let's build that table! __snake_case = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __snake_case = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __snake_case = [len(lowercase__ ) + 2 for c in columns] __snake_case = max([len(lowercase__ ) for name in model_names] ) + 2 # Build the table per se __snake_case = '|' + '|'.join([_center_text(lowercase__ , lowercase__ ) for c, w in zip(lowercase__ , lowercase__ )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" __snake_case = {True: '✅', False: '❌'} for name in model_names: __snake_case = model_name_to_prefix[name] __snake_case = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase__ , lowercase__ ) for l, w in zip(lowercase__ , lowercase__ )] ) + "|\n" return table def _a (lowercase__ : str=False ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case = _find_text_in_file( filename=os.path.join(lowercase__ , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) __snake_case = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase__ , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _a : Optional[int] = parser.parse_args() check_model_table(args.fix_and_overwrite)
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a : Optional[Any] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : Union[str, None] = None , SCREAMING_SNAKE_CASE_ : Union[List[str], None] = None , SCREAMING_SNAKE_CASE_ : Union[str, List[str], None] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Any: __snake_case = [file for file in os.listdir(SCREAMING_SNAKE_CASE_ ) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py' ) __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , SCREAMING_SNAKE_CASE_ ) if only_modules: __snake_case = file.split('.' )[0] try: __snake_case = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = doctest.DocTestSuite(SCREAMING_SNAKE_CASE_ ) __snake_case = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __snake_case = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def a ( self : List[Any] ) -> int: __snake_case = Path('src/transformers' ) __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(SCREAMING_SNAKE_CASE_ , identifier=SCREAMING_SNAKE_CASE_ , ignore_files=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> str: __snake_case = Path('src/transformers' ) __snake_case = 'tokenization' self.analyze_directory(SCREAMING_SNAKE_CASE_ , identifier=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = Path('src/transformers' ) __snake_case = 'configuration' self.analyze_directory(SCREAMING_SNAKE_CASE_ , identifier=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> int: __snake_case = Path('src/transformers' ) __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(SCREAMING_SNAKE_CASE_ , n_identifier=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: __snake_case = Path('docs/source' ) __snake_case = ['favicon.ico'] self.analyze_directory(SCREAMING_SNAKE_CASE_ , ignore_files=SCREAMING_SNAKE_CASE_ , only_modules=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowercase ( pl.LightningModule ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = model __snake_case = 2 __snake_case = nn.Linear(self.model.config.hidden_size , self.num_labels ) def a ( self : int ) -> Tuple: pass def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> int: """simple docstring""" # load longformer model from model identifier __snake_case = LongformerModel.from_pretrained(lowercase__ ) __snake_case = LightningModel(lowercase__ ) __snake_case = torch.load(lowercase__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __snake_case = LongformerForQuestionAnswering.from_pretrained(lowercase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowercase__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a : Union[str, Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' _a : Union[str, Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a : Optional[int] = [{"type": "code", "content": INSTALL_CONTENT}] _a : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _a : List[Any] = logging.get_logger(__name__) _a : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : str = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } _a : int = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } _a : List[str] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Tuple = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Union[str, Any] = DistilBertTokenizer def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Dict="[UNK]" , SCREAMING_SNAKE_CASE_ : Dict="[SEP]" , SCREAMING_SNAKE_CASE_ : List[str]="[PAD]" , SCREAMING_SNAKE_CASE_ : Optional[Any]="[CLS]" , SCREAMING_SNAKE_CASE_ : List[str]="[MASK]" , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Any , ) -> List[str]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __snake_case = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = tokenize_chinese_chars __snake_case = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = do_lower_case def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=None ) -> Optional[Any]: __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: __snake_case = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _a : Optional[Any] = logging.get_logger(__name__) _a : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : Optional[int] = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] _a : Union[str, Any] = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } _a : List[str] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} _a : Optional[int] = {f'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : int = FunnelTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : int = 2 def __init__( self : int , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Any="<sep>" , SCREAMING_SNAKE_CASE_ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : int="<cls>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : List[str]="<s>" , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : int="##" , **SCREAMING_SNAKE_CASE_ : int , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , clean_text=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , wordpieces_prefix=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __snake_case = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = tokenize_chinese_chars __snake_case = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = do_lower_case def a ( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> str: __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: __snake_case = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : str = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = "git_vision_model" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int]=768 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : str=12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : Optional[int]=224 , SCREAMING_SNAKE_CASE_ : Dict=16 , SCREAMING_SNAKE_CASE_ : List[Any]="quick_gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=0.0_2 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> str: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = num_channels __snake_case = patch_size __snake_case = image_size __snake_case = initializer_range __snake_case = attention_dropout __snake_case = layer_norm_eps __snake_case = hidden_act @classmethod def a ( cls : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "git" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=3_0522 , SCREAMING_SNAKE_CASE_ : Optional[Any]=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=6 , SCREAMING_SNAKE_CASE_ : Any=12 , SCREAMING_SNAKE_CASE_ : Tuple=3072 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1024 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : str=1e-12 , SCREAMING_SNAKE_CASE_ : str=0 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : List[Any]=101 , SCREAMING_SNAKE_CASE_ : Dict=102 , SCREAMING_SNAKE_CASE_ : str=None , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Tuple: super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if vision_config is None: __snake_case = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) __snake_case = GitVisionConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = tie_word_embeddings __snake_case = num_image_with_embedding __snake_case = bos_token_id __snake_case = eos_token_id def a ( self : Optional[Any] ) -> List[Any]: __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: __snake_case = TextaTextGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) return generator, ["Something to write", "Something else"] def a ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple: __snake_case = generator('Something there' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) __snake_case = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) __snake_case = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], [{'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}, {'generated_text': ANY(SCREAMING_SNAKE_CASE_ )}], ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): generator(4 ) @require_torch def a ( self : int ) -> str: __snake_case = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility __snake_case = generator('Something there' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ''}] ) __snake_case = 3 __snake_case = generator( 'Something there' , num_return_sequences=SCREAMING_SNAKE_CASE_ , num_beams=SCREAMING_SNAKE_CASE_ , ) __snake_case = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = generator('This is a test' , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) __snake_case = generator.model.config.eos_token_id __snake_case = '<pad>' __snake_case = generator( ['This is a test', 'This is a second test'] , do_sample=SCREAMING_SNAKE_CASE_ , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def a ( self : Optional[Any] ) -> Dict: __snake_case = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility __snake_case = generator('Something there' , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [{'generated_text': ''}] )
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : str = "SpeechT5FeatureExtractor" _SCREAMING_SNAKE_CASE : int = "SpeechT5Tokenizer" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self : List[str] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : str ) -> Any: __snake_case = kwargs.pop('audio' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('text' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('text_target' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('audio_target' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('sampling_rate' , SCREAMING_SNAKE_CASE_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: __snake_case = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif text is not None: __snake_case = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: __snake_case = None if audio_target is not None: __snake_case = self.feature_extractor(audio_target=SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = targets['input_values'] elif text_target is not None: __snake_case = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = targets['input_ids'] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def a ( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Dict ) -> Any: __snake_case = kwargs.pop('input_values' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('input_ids' , SCREAMING_SNAKE_CASE_ ) __snake_case = kwargs.pop('labels' , SCREAMING_SNAKE_CASE_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: __snake_case = self.feature_extractor.pad(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif input_ids is not None: __snake_case = self.tokenizer.pad(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: __snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and "input_ids" in labels[0]): __snake_case = self.tokenizer.pad(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = targets['input_ids'] else: __snake_case = self.feature_extractor.feature_size __snake_case = self.feature_extractor.num_mel_bins __snake_case = self.feature_extractor.pad(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = feature_size_hack __snake_case = targets['input_values'] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get('attention_mask' ) if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def a ( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' def _a (lowercase__ : int ) -> list: """simple docstring""" __snake_case = int(lowercase__ ) if n_element < 1: __snake_case = ValueError('a should be a positive number' ) raise my_error __snake_case = [1] __snake_case , __snake_case , __snake_case = (0, 0, 0) __snake_case = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _a : Optional[Any] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _a : Tuple = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __snake_case = str(bin(lowercase__ ) )[2:] # remove the leading "0b" __snake_case = str(bin(lowercase__ ) )[2:] # remove the leading "0b" __snake_case = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _a : Dict = logging.get_logger(__name__) def _a (lowercase__ : str , lowercase__ : str ) -> Tuple: """simple docstring""" __snake_case = RobertaPreLayerNormConfig.from_pretrained( lowercase__ , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __snake_case = torch.load(hf_hub_download(repo_id=lowercase__ , filename='pytorch_model.bin' ) ) __snake_case = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __snake_case = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __snake_case = tensor_value __snake_case = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowercase__ , config=lowercase__ , state_dict=lowercase__ ) model.save_pretrained(lowercase__ ) # convert tokenizer __snake_case = AutoTokenizer.from_pretrained(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) if __name__ == "__main__": _a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _a (lowercase__ : int ) -> bool: """simple docstring""" __snake_case = int(number**0.5 ) return number == sq * sq def _a (lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> tuple[int, int]: """simple docstring""" __snake_case = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __snake_case = x_den * y_den * z_den __snake_case = gcd(lowercase__ , lowercase__ ) top //= hcf bottom //= hcf return top, bottom def _a (lowercase__ : int = 3_5 ) -> int: """simple docstring""" __snake_case = set() __snake_case = 42 __snake_case = Fraction(0 ) __snake_case = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __snake_case = x_num * y_den + x_den * y_num __snake_case = x_den * y_den __snake_case = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __snake_case = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 __snake_case = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __snake_case = x_den * x_den * y_den * y_den if is_sq(lowercase__ ) and is_sq(lowercase__ ): __snake_case = int(sqrt(lowercase__ ) ) __snake_case = int(sqrt(lowercase__ ) ) __snake_case = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __snake_case = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=-1 __snake_case = x_num * y_num __snake_case = x_den * y_num + x_num * y_den __snake_case = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __snake_case = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 __snake_case = x_num * x_num * y_num * y_num __snake_case = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase__ ) and is_sq(lowercase__ ): __snake_case = int(sqrt(lowercase__ ) ) __snake_case = int(sqrt(lowercase__ ) ) __snake_case = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __snake_case = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) for num, den in unique_s: total += Fraction(lowercase__ , lowercase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = "convbert" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=3_0522 , SCREAMING_SNAKE_CASE_ : Optional[int]=768 , SCREAMING_SNAKE_CASE_ : Any=12 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : str=512 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : List[str]=1e-12 , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=768 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> int: super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = embedding_size __snake_case = head_ratio __snake_case = conv_kernel_size __snake_case = num_groups __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' from __future__ import annotations _a : Dict = list[tuple[int, int]] _a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowercase : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Node | None , ) -> Optional[int]: __snake_case = pos_x __snake_case = pos_y __snake_case = (pos_y, pos_x) __snake_case = goal_x __snake_case = goal_y __snake_case = g_cost __snake_case = parent __snake_case = self.calculate_heuristic() def a ( self : Tuple ) -> float: __snake_case = abs(self.pos_x - self.goal_x ) __snake_case = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> bool: return self.f_cost < other.f_cost class _lowercase : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : tuple[int, int] , SCREAMING_SNAKE_CASE_ : tuple[int, int] ) -> str: __snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) __snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , SCREAMING_SNAKE_CASE_ ) __snake_case = [self.start] __snake_case = [] __snake_case = False def a ( self : Optional[int] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __snake_case = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Node ) -> list[Node]: __snake_case = [] for action in delta: __snake_case = parent.pos_x + action[1] __snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Node | None ) -> Path: __snake_case = node __snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case = current_node.parent path.reverse() return path if __name__ == "__main__": _a : List[str] = (0, 0) _a : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _a : int = GreedyBestFirst(init, goal) _a : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: _a : Union[str, Any] = 2 for elem in grid: print(elem)
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _a () -> Any: """simple docstring""" __snake_case = HfArgumentParser(lowercase__ ) __snake_case = parser.parse_args_into_dataclasses()[0] __snake_case = TensorFlowBenchmark(args=lowercase__ ) try: __snake_case = parser.parse_args_into_dataclasses()[0] except ValueError as e: __snake_case = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' __snake_case = ' '.join(str(lowercase__ ).split(' ' )[:-1] ) __snake_case = '' __snake_case = eval(str(lowercase__ ).split(' ' )[-1] ) __snake_case = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase__ ) if len(lowercase__ ) > 0: __snake_case = full_error_msg + begin_error_msg + str(lowercase__ ) raise ValueError(lowercase__ ) benchmark.run() if __name__ == "__main__": main()
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : str = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = "owlvit_text_model" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int=4_9408 , SCREAMING_SNAKE_CASE_ : Dict=512 , SCREAMING_SNAKE_CASE_ : Any=2048 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE_ : Any="quick_gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : int=0.0_2 , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0 , SCREAMING_SNAKE_CASE_ : List[Any]=4_9406 , SCREAMING_SNAKE_CASE_ : int=4_9407 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = max_position_embeddings __snake_case = hidden_act __snake_case = layer_norm_eps __snake_case = attention_dropout __snake_case = initializer_range __snake_case = initializer_factor @classmethod def a ( cls : Dict , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __snake_case = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = "owlvit_vision_model" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int=768 , SCREAMING_SNAKE_CASE_ : List[Any]=3072 , SCREAMING_SNAKE_CASE_ : Any=12 , SCREAMING_SNAKE_CASE_ : List[Any]=12 , SCREAMING_SNAKE_CASE_ : str=3 , SCREAMING_SNAKE_CASE_ : Any=768 , SCREAMING_SNAKE_CASE_ : Optional[int]=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="quick_gelu" , SCREAMING_SNAKE_CASE_ : Any=1e-5 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1.0 , **SCREAMING_SNAKE_CASE_ : str , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = num_channels __snake_case = image_size __snake_case = patch_size __snake_case = hidden_act __snake_case = layer_norm_eps __snake_case = attention_dropout __snake_case = initializer_range __snake_case = initializer_factor @classmethod def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "owlvit" _SCREAMING_SNAKE_CASE : int = True def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Tuple=512 , SCREAMING_SNAKE_CASE_ : Dict=2.6_5_9_2 , SCREAMING_SNAKE_CASE_ : Tuple=True , **SCREAMING_SNAKE_CASE_ : Any , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) if text_config is None: __snake_case = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __snake_case = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __snake_case = OwlViTTextConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE_ ) __snake_case = projection_dim __snake_case = logit_scale_init_value __snake_case = return_dict __snake_case = 1.0 @classmethod def a ( cls : Dict , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def a ( cls : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Dict ) -> Any: __snake_case = {} __snake_case = text_config __snake_case = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output class _lowercase ( __lowercase ): @property def a ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def a ( self : Optional[int] ) -> float: return 1e-4 def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : "ProcessorMixin" , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: __snake_case = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) __snake_case = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) return {**text_input_dict, **image_input_dict} @property def a ( self : Tuple ) -> int: return 14
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' from collections.abc import Sequence def _a (lowercase__ : Sequence[int] | None = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) __snake_case = nums[0] for i in range(1 , len(lowercase__ ) ): __snake_case = nums[i] __snake_case = max(lowercase__ , ans + num , lowercase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _a : int = int(input("Enter number of elements : ").strip()) _a : int = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' def _a (lowercase__ : list , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = 0 ) -> int: """simple docstring""" __snake_case = right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _a : Union[str, Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _a : int = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _a (lowercase__ : list[list[int]] ) -> list[list[int]]: """simple docstring""" __snake_case = [] for i in range(len(lowercase__ ) ): __snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def _a (lowercase__ : list[list[int]] , lowercase__ : int ) -> list[Image.Image]: """simple docstring""" __snake_case = [] for _ in range(lowercase__ ): # Create output image __snake_case = Image.new('RGB' , (len(cells[0] ), len(lowercase__ )) ) __snake_case = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): __snake_case = 2_5_5 - cells[y][x] * 2_5_5 __snake_case = (colour, colour, colour) # Save image images.append(lowercase__ ) __snake_case = new_generation(lowercase__ ) return images if __name__ == "__main__": _a : Union[str, Any] = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _a : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _a : Optional[Any] = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } _a : List[str] = { "unc-nlp/lxmert-base-uncased": 512, } _a : Tuple = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[str]="[UNK]" , SCREAMING_SNAKE_CASE_ : Dict="[SEP]" , SCREAMING_SNAKE_CASE_ : Any="[PAD]" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="[CLS]" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="[MASK]" , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __snake_case = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = tokenize_chinese_chars __snake_case = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = do_lower_case def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=None ) -> List[str]: __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: __snake_case = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' _a : Union[str, Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a : int = [{"type": "code", "content": INSTALL_CONTENT}] _a : Optional[int] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Optional[Any] = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "xlm" _SCREAMING_SNAKE_CASE : Dict = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0145 , SCREAMING_SNAKE_CASE_ : Dict=2048 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=512 , SCREAMING_SNAKE_CASE_ : List[Any]=2048**-0.5 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Dict=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=0 , SCREAMING_SNAKE_CASE_ : Optional[int]=1 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : int=5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int="first" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Any=5 , SCREAMING_SNAKE_CASE_ : int=5 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[str]=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> Optional[int]: __snake_case = vocab_size __snake_case = emb_dim __snake_case = n_layers __snake_case = n_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = gelu_activation __snake_case = sinusoidal_embeddings __snake_case = causal __snake_case = asm __snake_case = n_langs __snake_case = use_lang_emb __snake_case = layer_norm_eps __snake_case = bos_index __snake_case = eos_index __snake_case = pad_index __snake_case = unk_index __snake_case = mask_index __snake_case = is_encoder __snake_case = max_position_embeddings __snake_case = embed_init_std __snake_case = init_std __snake_case = summary_type __snake_case = summary_use_proj __snake_case = summary_activation __snake_case = summary_proj_to_labels __snake_case = summary_first_dropout __snake_case = start_n_top __snake_case = end_n_top __snake_case = mask_token_id __snake_case = lang_id if "n_words" in kwargs: __snake_case = kwargs['n_words'] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): @property def a ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : Any = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["ViTFeatureExtractor"] _a : Tuple = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _a : int = logging.getLogger(__name__) _a : Optional[Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _a : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__lowercase )} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) _SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def a ( self : List[Any] ) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={"help": "The input training data file (a text file)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) _SCREAMING_SNAKE_CASE : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def a ( self : Optional[Any] ) -> Optional[int]: if self.train_file is not None: __snake_case = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __snake_case = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _a (lowercase__ : Dict , lowercase__ : Dict ) -> int: """simple docstring""" with open(lowercase__ , 'r' , encoding='utf-8' ) as f: __snake_case = [json.loads(lowercase__ ) for line in f.read().splitlines() if (len(lowercase__ ) > 0 and not line.isspace())] assert len(lowercase__ ) == len(lowercase__ ) __snake_case = {c: dataset[c] for c in dataset.column_names} __snake_case = refs return Dataset.from_dict(lowercase__ ) def _a () -> Tuple: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __snake_case = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[:{data_args.validation_split_percentage}%]' , ) __snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[{data_args.validation_split_percentage}%:]' , ) else: __snake_case = {} if data_args.train_file is not None: __snake_case = data_args.train_file if data_args.validation_file is not None: __snake_case = data_args.validation_file __snake_case = data_args.train_file.split('.' )[-1] if extension == "txt": __snake_case = 'text' __snake_case = load_dataset(lowercase__ , data_files=lowercase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __snake_case = AutoConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: __snake_case = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: __snake_case = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) __snake_case = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __snake_case = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase__ ) elif model_args.model_name_or_path: __snake_case = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __snake_case = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __snake_case = AutoModelForMaskedLM.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __snake_case = datasets['train'].column_names else: __snake_case = datasets['validation'].column_names __snake_case = 'text' if 'text' in column_names else column_names[0] __snake_case = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowercase__ : Any ): # Remove empty lines __snake_case = [line for line in examples['text'] if len(lowercase__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=lowercase__ , truncation=lowercase__ , max_length=data_args.max_seq_length ) __snake_case = datasets.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __snake_case = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __snake_case = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __snake_case = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __snake_case = False # Data collator # This one will take care of randomly masking the tokens. __snake_case = DataCollatorForWholeWordMask(tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __snake_case = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: __snake_case = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __snake_case = model_args.model_name_or_path else: __snake_case = None __snake_case = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation __snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = math.exp(eval_output['eval_loss'] ) __snake_case = perplexity __snake_case = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def _a (lowercase__ : int ) -> Any: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = KandinskyVaaControlnetImgaImgPipeline _SCREAMING_SNAKE_CASE : List[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] _SCREAMING_SNAKE_CASE : Tuple = ["image_embeds", "negative_image_embeds", "image", "hint"] _SCREAMING_SNAKE_CASE : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Optional[Any] ) -> Any: return 32 @property def a ( self : Union[str, Any] ) -> Optional[int]: return 32 @property def a ( self : Union[str, Any] ) -> Optional[Any]: return self.time_input_dim @property def a ( self : str ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Optional[int] ) -> List[str]: return 100 @property def a ( self : str ) -> Tuple: torch.manual_seed(0 ) __snake_case = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __snake_case = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Any ) -> Union[str, Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a ( self : str ) -> str: torch.manual_seed(0 ) __snake_case = VQModel(**self.dummy_movq_kwargs ) return model def a ( self : int ) -> Any: __snake_case = self.dummy_unet __snake_case = self.dummy_movq __snake_case = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __snake_case = DDIMScheduler(**SCREAMING_SNAKE_CASE_ ) __snake_case = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> List[Any]: __snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create init_image __snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((256, 256) ) # create hint __snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a ( self : str ) -> List[str]: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images __snake_case = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : str ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> List[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) __snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __snake_case = init_image.resize((512, 512) ) __snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __snake_case = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 2_5_5.0 __snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __snake_case = 'A robot, 4k photo' __snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) __snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __snake_case = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device='cpu' ).manual_seed(0 ) __snake_case , __snake_case = pipe_prior( SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.8_5 , generator=SCREAMING_SNAKE_CASE_ , negative_prompt='' , ).to_tuple() __snake_case = pipeline( image=SCREAMING_SNAKE_CASE_ , image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _a : int = logging.getLogger(__name__) _a : List[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _a : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__lowercase )} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "The input training data file (a text file)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) _SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={"help": "Whether ot not to use whole word mask."} ) _SCREAMING_SNAKE_CASE : float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) _SCREAMING_SNAKE_CASE : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) _SCREAMING_SNAKE_CASE : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) _SCREAMING_SNAKE_CASE : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _a (lowercase__ : DataTrainingArguments , lowercase__ : PreTrainedTokenizer , lowercase__ : bool = False , lowercase__ : Optional[str] = None , ) -> Optional[Any]: """simple docstring""" def _dataset(lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size , ref_path=lowercase__ , ) return LineByLineTextDataset(tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowercase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _a () -> List[str]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __snake_case = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __snake_case = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: __snake_case = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: __snake_case = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) __snake_case = AutoModelWithLMHead.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: __snake_case = tokenizer.max_len # Our input block size will be the max possible for the model else: __snake_case = min(data_args.block_size , tokenizer.max_len ) # Get datasets __snake_case = ( get_dataset(lowercase__ , tokenizer=lowercase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __snake_case = ( get_dataset(lowercase__ , tokenizer=lowercase__ , evaluate=lowercase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __snake_case = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __snake_case = DataCollatorForWholeWordMask( tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) else: __snake_case = DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __snake_case = Trainer( model=lowercase__ , args=lowercase__ , data_collator=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , prediction_loss_only=lowercase__ , ) # Training if training_args.do_train: __snake_case = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = math.exp(eval_output['eval_loss'] ) __snake_case = {'perplexity': perplexity} __snake_case = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowercase__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(lowercase__ ) return results def _a (lowercase__ : Tuple ) -> Dict: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _a : int = (3, 9, -11, 0, 7, 5, 1, -1) _a : Tuple = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : Node | None class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : Iterable[int] ) -> None: __snake_case = None for i in sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ): __snake_case = Node(SCREAMING_SNAKE_CASE_ , self.head ) def __iter__( self : str ) -> Iterator[int]: __snake_case = self.head while node: yield node.data __snake_case = node.next_node def __len__( self : Tuple ) -> int: return sum(1 for _ in self ) def __str__( self : List[Any] ) -> str: return " -> ".join([str(SCREAMING_SNAKE_CASE_ ) for node in self] ) def _a (lowercase__ : SortedLinkedList , lowercase__ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() _a : Tuple = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' from math import sqrt def _a (lowercase__ : int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" __snake_case = 0 __snake_case = 0 __snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def _a (lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Dict: """simple docstring""" __snake_case = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ , config=lowercase__ ) __snake_case = downstream_dict['projector.weight'] __snake_case = downstream_dict['projector.bias'] __snake_case = downstream_dict['model.post_net.linear.weight'] __snake_case = downstream_dict['model.post_net.linear.bias'] return model def _a (lowercase__ : Dict , lowercase__ : int , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ , config=lowercase__ ) __snake_case = downstream_dict['model.linear.weight'] __snake_case = downstream_dict['model.linear.bias'] return model def _a (lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> Any: """simple docstring""" __snake_case = UniSpeechSatForXVector.from_pretrained(lowercase__ , config=lowercase__ ) __snake_case = downstream_dict['connector.weight'] __snake_case = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __snake_case = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] __snake_case = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] __snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __snake_case = downstream_dict['objective.W'] return model @torch.no_grad() def _a (lowercase__ : Dict , lowercase__ : int , lowercase__ : str , lowercase__ : int ) -> str: """simple docstring""" __snake_case = torch.load(lowercase__ , map_location='cpu' ) __snake_case = checkpoint['Downstream'] __snake_case = UniSpeechSatConfig.from_pretrained(lowercase__ ) __snake_case = WavaVecaFeatureExtractor.from_pretrained( lowercase__ , return_attention_mask=lowercase__ , do_normalize=lowercase__ ) __snake_case = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __snake_case = convert_classification(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith('ForAudioFrameClassification' ): __snake_case = convert_diarization(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith('ForXVector' ): __snake_case = convert_xvector(lowercase__ , lowercase__ , lowercase__ ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: __snake_case = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") _a : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _a (lowercase__ : Any ) -> Dict: """simple docstring""" if isinstance(lowercase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowercase : def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: pass def a ( self : Dict ) -> Optional[int]: pass def a ( self : int ) -> List[str]: pass def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float ) -> List[Any]: __snake_case = np.abs((a - b) ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : str ) -> Any: __snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) __snake_case = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case , __snake_case = self.get_vision_text_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = {'vision_model': vision_model, 'text_model': text_model} __snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE_ ) __snake_case = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : List[str] ) -> str: __snake_case , __snake_case = self.get_vision_text_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = {'vision_model': vision_model, 'text_model': text_model} __snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE_ ) __snake_case = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) __snake_case = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) __snake_case = after_output[0] __snake_case = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-3 ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: __snake_case , __snake_case = self.get_vision_text_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = {'vision_model': vision_model, 'text_model': text_model} __snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE_ ) __snake_case = model( input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) __snake_case = output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case = to_atuple(vision_model.config.image_size ) __snake_case = to_atuple(vision_model.config.patch_size ) __snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __snake_case = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __snake_case = output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: pt_model.to(SCREAMING_SNAKE_CASE_ ) pt_model.eval() # prepare inputs __snake_case = inputs_dict __snake_case = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __snake_case = pt_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() __snake_case = fx_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE_ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_ ) __snake_case = fx_model_loaded(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE_ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = VisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_ ) pt_model_loaded.to(SCREAMING_SNAKE_CASE_ ) pt_model_loaded.eval() with torch.no_grad(): __snake_case = pt_model_loaded(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE_ , pt_output_loaded.numpy() , 4e-2 ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ) -> int: __snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) __snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_ ) __snake_case = fx_state self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: __snake_case = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) __snake_case = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params ) self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Any: __snake_case = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: __snake_case = self.prepare_config_and_inputs() self.check_save_load(**SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: __snake_case = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**SCREAMING_SNAKE_CASE_ ) @is_pt_flax_cross_test def a ( self : Dict ) -> str: __snake_case = self.prepare_config_and_inputs() __snake_case = config_inputs_dict.pop('vision_config' ) __snake_case = config_inputs_dict.pop('text_config' ) __snake_case = config_inputs_dict self.check_equivalence_pt_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.check_equivalence_flax_to_pt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def a ( self : Dict ) -> Tuple: __snake_case , __snake_case = self.get_pretrained_model_and_inputs() __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ) __snake_case = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ) __snake_case = after_outputs[0] __snake_case = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1e-5 ) @require_flax class _lowercase ( __lowercase , unittest.TestCase ): def a ( self : List[str] ) -> Union[str, Any]: __snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=SCREAMING_SNAKE_CASE_ , text_from_pt=SCREAMING_SNAKE_CASE_ , ) __snake_case = 13 __snake_case = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __snake_case = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __snake_case = random_attention_mask([batch_size, 4] ) __snake_case = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: __snake_case = FlaxViTModel(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) return vision_model, text_model def a ( self : Optional[int] ) -> List[Any]: __snake_case = FlaxViTModelTester(self ) __snake_case = FlaxBertModelTester(self ) __snake_case = vit_model_tester.prepare_config_and_inputs() __snake_case = bert_model_tester.prepare_config_and_inputs() __snake_case , __snake_case = vision_config_and_inputs __snake_case , __snake_case , __snake_case , __snake_case = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowercase ( __lowercase , unittest.TestCase ): def a ( self : int ) -> List[Any]: __snake_case = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=SCREAMING_SNAKE_CASE_ , text_from_pt=SCREAMING_SNAKE_CASE_ , ) __snake_case = 13 __snake_case = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __snake_case = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __snake_case = random_attention_mask([batch_size, 4] ) __snake_case = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = FlaxCLIPVisionModel(SCREAMING_SNAKE_CASE_ ) __snake_case = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) return vision_model, text_model def a ( self : str ) -> Dict: __snake_case = FlaxCLIPVisionModelTester(self ) __snake_case = FlaxBertModelTester(self ) __snake_case = clip_model_tester.prepare_config_and_inputs() __snake_case = bert_model_tester.prepare_config_and_inputs() __snake_case , __snake_case = vision_config_and_inputs __snake_case , __snake_case , __snake_case , __snake_case = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowercase ( unittest.TestCase ): @slow def a ( self : Tuple ) -> Any: __snake_case = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 ) __snake_case = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __snake_case = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __snake_case = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) )
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: __snake_case = AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ ) # test with a raw waveform __snake_case = np.zeros((3_4000,) ) __snake_case = np.zeros((1_4000,) ) return audio_classifier, [audioa, audio] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: __snake_case , __snake_case = examples __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ ) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=1 ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) self.run_torchaudio(SCREAMING_SNAKE_CASE_ ) @require_torchaudio def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: import datasets # test with a local file __snake_case = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) __snake_case = dataset[0]['audio']['array'] __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) @require_torch def a ( self : Union[str, Any] ) -> List[Any]: __snake_case = 'anton-l/wav2vec2-random-tiny-classifier' __snake_case = pipeline('audio-classification' , model=SCREAMING_SNAKE_CASE_ ) __snake_case = np.ones((8000,) ) __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=4 ) __snake_case = [ {'score': 0.0_8_4_2, 'label': 'no'}, {'score': 0.0_8_3_8, 'label': 'up'}, {'score': 0.0_8_3_7, 'label': 'go'}, {'score': 0.0_8_3_4, 'label': 'right'}, ] __snake_case = [ {'score': 0.0_8_4_5, 'label': 'stop'}, {'score': 0.0_8_4_4, 'label': 'on'}, {'score': 0.0_8_4_1, 'label': 'right'}, {'score': 0.0_8_3_4, 'label': 'left'}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) __snake_case = {'array': np.ones((8000,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=4 ) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def a ( self : List[Any] ) -> Any: import datasets __snake_case = 'superb/wav2vec2-base-superb-ks' __snake_case = pipeline('audio-classification' , model=SCREAMING_SNAKE_CASE_ ) __snake_case = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) __snake_case = np.array(dataset[3]['speech'] , dtype=np.floataa ) __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=4 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=3 ) , [ {'score': 0.9_8_1, 'label': 'go'}, {'score': 0.0_0_7, 'label': 'up'}, {'score': 0.0_0_6, 'label': '_unknown_'}, {'score': 0.0_0_1, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def a ( self : List[str] ) -> Tuple: pass
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _a : List[str] = logging.get_logger(__name__) _a : Tuple = "T5Config" def _a (lowercase__ : jnp.array , lowercase__ : int , lowercase__ : int ) -> jnp.ndarray: """simple docstring""" __snake_case = jnp.zeros_like(lowercase__ ) __snake_case = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __snake_case = shifted_input_ids.at[:, 0].set(lowercase__ ) __snake_case = jnp.where(shifted_input_ids == -1_0_0 , lowercase__ , lowercase__ ) return shifted_input_ids class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : str = "mt5" _SCREAMING_SNAKE_CASE : str = MTaConfig class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = "mt5" _SCREAMING_SNAKE_CASE : int = MTaConfig class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "mt5" _SCREAMING_SNAKE_CASE : Dict = MTaConfig
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _a (lowercase__ : List[str] ) -> Any: """simple docstring""" __snake_case = os.path.join(args.tf_model_dir , 'parameters.json' ) __snake_case = json.loads(open(lowercase__ ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('.pt' ): __snake_case = args.output + '.pt' __snake_case = OrderedDict() with tf.device('/CPU:0' ): __snake_case = tf.train.load_checkpoint(args.tf_model_dir ) __snake_case = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __snake_case = reader.get_tensor(lowercase__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): __snake_case = int(key_name[9] ) elif key_name.startswith('pasts/out' ): __snake_case = 8 __snake_case = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name.startswith('model/moe' ): __snake_case = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): __snake_case = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player __snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/softmlp/kernel' ): __snake_case = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player __snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): __snake_case = key_name[-9:-7] for i in range(1_6 ): __snake_case = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) __snake_case = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __snake_case = torch.tensor(lowercase__ ) elif key_name.startswith('model/mlp' ): __snake_case = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): __snake_case = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player __snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/p1/bias' ): __snake_case = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/p2/kernel' ): __snake_case = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player __snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/p2/bias' ): __snake_case = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) elif key_name.startswith('model/ln' ): __snake_case = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __snake_case = 'model.blocks.%d.feed_forward.norm.bias' % player __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/g' ): __snake_case = 'model.blocks.%d.feed_forward.norm.weight' % player __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) elif key_name.startswith('model/att' ): __snake_case = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): __snake_case = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __snake_case = state[:, 0, :, :] __snake_case = state[:, 1, :, :] __snake_case = state[:, 2, :, :] __snake_case = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player __snake_case = torch.tensor(lowercase__ ) __snake_case = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player __snake_case = torch.tensor(lowercase__ ) __snake_case = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/o/kernel' ): __snake_case = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player __snake_case = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name.startswith('model/an' ): __snake_case = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): __snake_case = 'model.blocks.%d.self_attn.norm.bias' % player __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) elif key_name.endswith('/g' ): __snake_case = 'model.blocks.%d.self_attn.norm.weight' % player __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): __snake_case = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] __snake_case = 'model.%s.weight' % nlayer __snake_case = vnp.copy() # same in embedded __snake_case = torch.tensor(lowercase__ ) if key_name.startswith('model/wte' ): __snake_case = 'lm_head.weight' __snake_case = vnp.copy() # same in embedded __snake_case = torch.tensor(lowercase__ ) elif key_name.startswith('model/wob' ): __snake_case = 'final_logits_bias' __snake_case = vnp.copy() # same in embedded __snake_case = state.reshape((1, -1) ) __snake_case = torch.tensor(lowercase__ ) elif key_name == "model/dense/kernel": __snake_case = 'model.last_project.weight' __snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __snake_case = torch.tensor(lowercase__ ) elif key_name == "model/dense_1/bias": __snake_case = 'model.last_project.bias' __snake_case = vnp.copy() # same because it is one dimensional __snake_case = torch.tensor(lowercase__ ) torch.save(lowercase__ , args.output ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") _a : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Tuple = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' from collections import deque def _a (lowercase__ : Union[str, Any] ) -> int: """simple docstring""" __snake_case = len(lowercase__ ) __snake_case = deque() __snake_case = [False for _ in range(lowercase__ )] __snake_case = [-1 for _ in range(lowercase__ )] __snake_case = index_of[:] def strong_connect(lowercase__ : int , lowercase__ : List[Any] , lowercase__ : List[str] ): __snake_case = index # the number when this node is seen __snake_case = index # lowest rank node reachable from here index += 1 stack.append(lowercase__ ) __snake_case = True for w in g[v]: if index_of[w] == -1: __snake_case = strong_connect(lowercase__ , lowercase__ , lowercase__ ) __snake_case = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __snake_case = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __snake_case = [] __snake_case = stack.pop() __snake_case = False component.append(lowercase__ ) while w != v: __snake_case = stack.pop() __snake_case = False component.append(lowercase__ ) components.append(lowercase__ ) return index __snake_case = [] for v in range(lowercase__ ): if index_of[v] == -1: strong_connect(lowercase__ , 0 , lowercase__ ) return components def _a (lowercase__ : Optional[int] , lowercase__ : List[str] ) -> Dict: """simple docstring""" __snake_case = [[] for _ in range(lowercase__ )] for u, v in edges: g[u].append(lowercase__ ) return g if __name__ == "__main__": # Test _a : Optional[Any] = 7 _a : str = [0, 0, 1, 2, 3, 3, 4, 4, 6] _a : Dict = [1, 3, 2, 0, 1, 4, 5, 6, 5] _a : Optional[Any] = [(u, v) for u, v in zip(source, target)] _a : str = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _a (lowercase__ : Optional[Any] ) -> str: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _a () -> Any: """simple docstring""" with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(lowercase__ ): with parallel_backend('unsupported backend' ): map_nested(lowercase__ , lowercase__ , num_proc=2 ) with pytest.raises(lowercase__ ): with parallel_backend('unsupported backend' ): map_nested(lowercase__ , lowercase__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = [1, 2] __snake_case = {'a': 1, 'b': 2} __snake_case = {'a': [1, 2], 'b': [3, 4]} __snake_case = {'a': {'1': 1}, 'b': 2} __snake_case = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __snake_case = [2, 3] __snake_case = {'a': 2, 'b': 3} __snake_case = {'a': [2, 3], 'b': [4, 5]} __snake_case = {'a': {'1': 2}, 'b': 3} __snake_case = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa assert map_nested(lowercase__ , lowercase__ , num_proc=lowercase__ ) == expected_map_nested_sa
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : str=18 , SCREAMING_SNAKE_CASE_ : str=30 , SCREAMING_SNAKE_CASE_ : Tuple=400 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_ : Tuple=[0.5, 0.5, 0.5] , ) -> Any: __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size if size is not None else {'height': 18, 'width': 20} __snake_case = do_thumbnail __snake_case = do_align_axis __snake_case = do_pad __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def a ( self : Optional[int] ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = DonutImageProcessor if is_vision_available() else None def a ( self : str ) -> List[str]: __snake_case = DonutImageProcessingTester(self ) @property def a ( self : Optional[Any] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : str ) -> Dict: __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_pad' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_std' ) ) def a ( self : str ) -> Optional[Any]: __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def a ( self : List[str] ) -> Optional[int]: pass @is_flaky() def a ( self : Dict ) -> Dict: # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def a ( self : List[str] ) -> str: # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def a ( self : str ) -> int: # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _a (lowercase__ : Optional[Any] , lowercase__ : int=7 ) -> Tuple: """simple docstring""" __snake_case = None if token is not None: __snake_case = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} # The id of a workflow (not of a workflow run) __snake_case = '636036' __snake_case = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' __snake_case = requests.get(lowercase__ , headers=lowercase__ ).json() return result["workflow_runs"] def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = get_daily_ci_runs(lowercase__ ) __snake_case = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __snake_case = workflow_run['id'] break return workflow_run_id def _a (lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_last_daily_ci_runs(lowercase__ ) if workflow_run_id is not None: __snake_case = get_artifacts_links(worflow_run_id=lowercase__ , token=lowercase__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __snake_case = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase__ , artifact_url=lowercase__ , output_dir=lowercase__ , token=lowercase__ ) def _a (lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : int ) -> Dict: """simple docstring""" get_last_daily_ci_artifacts(lowercase__ , lowercase__ , lowercase__ ) __snake_case = {} for artifact_name in artifact_names: __snake_case = os.path.join(lowercase__ , f'{artifact_name}.zip' ) if os.path.isfile(lowercase__ ): __snake_case = {} with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file with z.open(lowercase__ ) as f: __snake_case = f.read().decode('UTF-8' ) return results
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") _a : str = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) _a : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={"help": "A folder containing the training data."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={"help": "A folder containing the validation data."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) _SCREAMING_SNAKE_CASE : int = field(default=3_2 , metadata={"help": "The size of the square patches to use for masking."} ) _SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def a ( self : List[str] ) -> Tuple: __snake_case = {} if self.train_dir is not None: __snake_case = self.train_dir if self.validation_dir is not None: __snake_case = self.validation_dir __snake_case = data_files if data_files else None @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : str = field( default=__lowercase , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__lowercase )} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) _SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={"help": "Name or path of preprocessor config."} ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={"help": "Stride to use for the encoder."} , ) class _lowercase : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Dict=192 , SCREAMING_SNAKE_CASE_ : int=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : Dict=0.6 ) -> List[str]: __snake_case = input_size __snake_case = mask_patch_size __snake_case = model_patch_size __snake_case = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('Input size must be divisible by mask patch size' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('Mask patch size must be divisible by model patch size' ) __snake_case = self.input_size // self.mask_patch_size __snake_case = self.mask_patch_size // self.model_patch_size __snake_case = self.rand_size**2 __snake_case = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : List[Any] ) -> Tuple: __snake_case = np.random.permutation(self.token_count )[: self.mask_count] __snake_case = np.zeros(self.token_count , dtype=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = mask.reshape((self.rand_size, self.rand_size) ) __snake_case = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = torch.stack([example['pixel_values'] for example in examples] ) __snake_case = torch.stack([example['mask'] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _a () -> Dict: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mim' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __snake_case = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: __snake_case = ds['train'].train_test_split(data_args.train_val_split ) __snake_case = split['train'] __snake_case = split['test'] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __snake_case = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase__ ) elif model_args.model_name_or_path: __snake_case = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: __snake_case = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase__ , 'decoder_type' ): __snake_case = 'simmim' # adapt config __snake_case = model_args.image_size if model_args.image_size is not None else config.image_size __snake_case = model_args.patch_size if model_args.patch_size is not None else config.patch_size __snake_case = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { 'image_size': model_args.image_size, 'patch_size': model_args.patch_size, 'encoder_stride': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __snake_case = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: __snake_case = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: __snake_case = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __snake_case = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __snake_case = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __snake_case = AutoModelForMaskedImageModeling.from_config(lowercase__ ) if training_args.do_train: __snake_case = ds['train'].column_names else: __snake_case = ds['validation'].column_names if data_args.image_column_name is not None: __snake_case = data_args.image_column_name elif "image" in column_names: __snake_case = 'image' elif "img" in column_names: __snake_case = 'img' else: __snake_case = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __snake_case = Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __snake_case = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase__ : Union[str, Any] ): __snake_case = [transforms(lowercase__ ) for image in examples[image_column_name]] __snake_case = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __snake_case = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __snake_case = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Initialize our trainer __snake_case = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __snake_case = trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub __snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'masked-image-modeling', 'dataset': data_args.dataset_name, 'tags': ['masked-image-modeling'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) if __name__ == "__main__": main()
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : Dict = ["torch", "transformers", "onnx"] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : str ) -> Dict: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self : str , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : Tuple = ["torch", "transformers", "onnx"] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : str ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Dict , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : str , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : str , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : List[str] = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : str , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = ["torch", "transformers", "onnx"] def __init__( self : Any , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Optional[int] , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : str ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def a ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = ["vqvae"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : AutoencoderKL , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : Mel , SCREAMING_SNAKE_CASE_ : Union[DDIMScheduler, DDPMScheduler] , ) -> List[str]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , vqvae=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> int: return 50 if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ) else 1000 @torch.no_grad() def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : np.ndarray = None , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : int = None , SCREAMING_SNAKE_CASE_ : torch.Generator = None , SCREAMING_SNAKE_CASE_ : float = 0 , SCREAMING_SNAKE_CASE_ : float = 0 , SCREAMING_SNAKE_CASE_ : torch.Generator = None , SCREAMING_SNAKE_CASE_ : float = 0 , SCREAMING_SNAKE_CASE_ : torch.Tensor = None , SCREAMING_SNAKE_CASE_ : torch.Tensor = None , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: __snake_case = steps or self.get_default_steps() self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) __snake_case = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __snake_case = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __snake_case = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=SCREAMING_SNAKE_CASE_ , device=self.device , ) __snake_case = noise __snake_case = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = self.mel.audio_slice_to_image(SCREAMING_SNAKE_CASE_ ) __snake_case = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __snake_case = (input_image / 255) * 2 - 1 __snake_case = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __snake_case = self.vqvae.encode(torch.unsqueeze(SCREAMING_SNAKE_CASE_ , 0 ) ).latent_dist.sample( generator=SCREAMING_SNAKE_CASE_ )[0] __snake_case = self.vqvae.config.scaling_factor * input_images if start_step > 0: __snake_case = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.scheduler.timesteps[start_step - 1] ) __snake_case = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __snake_case = int(mask_start_secs * pixels_per_second ) __snake_case = int(mask_end_secs * pixels_per_second ) __snake_case = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , SCREAMING_SNAKE_CASE_ ): __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] else: __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): __snake_case = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )['prev_sample'] else: __snake_case = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )['prev_sample'] if mask is not None: if mask_start > 0: __snake_case = mask[:, step, :, :mask_start] if mask_end > 0: __snake_case = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __snake_case = 1 / self.vqvae.config.scaling_factor * images __snake_case = self.vqvae.decode(SCREAMING_SNAKE_CASE_ )['sample'] __snake_case = (images / 2 + 0.5).clamp(0 , 1 ) __snake_case = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __snake_case = (images * 255).round().astype('uint8' ) __snake_case = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(SCREAMING_SNAKE_CASE_ , mode='RGB' ).convert('L' ) for _ in images) ) __snake_case = [self.mel.image_to_audio(SCREAMING_SNAKE_CASE_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(SCREAMING_SNAKE_CASE_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(SCREAMING_SNAKE_CASE_ ) ) @torch.no_grad() def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Image.Image] , SCREAMING_SNAKE_CASE_ : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) __snake_case = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __snake_case = (sample / 255) * 2 - 1 __snake_case = torch.Tensor(SCREAMING_SNAKE_CASE_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __snake_case = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __snake_case = self.scheduler.alphas_cumprod[t] __snake_case = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __snake_case = 1 - alpha_prod_t __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] __snake_case = (1 - alpha_prod_t_prev) ** 0.5 * model_output __snake_case = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __snake_case = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a ( SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : float ) -> torch.Tensor: __snake_case = acos(torch.dot(torch.flatten(SCREAMING_SNAKE_CASE_ ) , torch.flatten(SCREAMING_SNAKE_CASE_ ) ) / torch.norm(SCREAMING_SNAKE_CASE_ ) / torch.norm(SCREAMING_SNAKE_CASE_ ) ) return sin((1 - alpha) * theta ) * xa / sin(SCREAMING_SNAKE_CASE_ ) + sin(alpha * theta ) * xa / sin(SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : str = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def _a () -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _a : Tuple = "Usage of script: script_name <size_of_canvas:int>" _a : Union[str, Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def _a (lowercase__ : int ) -> list[list[bool]]: """simple docstring""" __snake_case = [[False for i in range(lowercase__ )] for j in range(lowercase__ )] return canvas def _a (lowercase__ : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(lowercase__ ): for j, _ in enumerate(lowercase__ ): __snake_case = bool(random.getrandbits(1 ) ) def _a (lowercase__ : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" __snake_case = np.array(lowercase__ ) __snake_case = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowercase__ ): for c, pt in enumerate(lowercase__ ): __snake_case = __judge_point( lowercase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case = current_canvas.tolist() return return_canvas def _a (lowercase__ : bool , lowercase__ : list[list[bool]] ) -> bool: """simple docstring""" __snake_case = 0 __snake_case = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case = pt if pt: if alive < 2: __snake_case = False elif alive == 2 or alive == 3: __snake_case = True elif alive > 3: __snake_case = False else: if alive == 3: __snake_case = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _a : List[Any] = int(sys.argv[1]) # main working structure of this module. _a : Optional[Any] = create_canvas(canvas_size) seed(c) _a , _a : Optional[int] = plt.subplots() fig.show() _a : Any = ListedColormap(["w", "k"]) try: while True: _a : Tuple = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' def _a (lowercase__ : int = 1_0_0_0 ) -> int: """simple docstring""" __snake_case = -1 __snake_case = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __snake_case = (n * n - 2 * a * n) // (2 * n - 2 * a) __snake_case = n - a - b if c * c == (a * a + b * b): __snake_case = a * b * c if candidate >= product: __snake_case = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' def _a (lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" if height >= 1: move_tower(height - 1 , lowercase__ , lowercase__ , lowercase__ ) move_disk(lowercase__ , lowercase__ ) move_tower(height - 1 , lowercase__ , lowercase__ , lowercase__ ) def _a (lowercase__ : Optional[Any] , lowercase__ : Any ) -> List[Any]: """simple docstring""" print('moving disk from' , lowercase__ , 'to' , lowercase__ ) def _a () -> Any: """simple docstring""" __snake_case = int(input('Height of hanoi: ' ).strip() ) move_tower(lowercase__ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = MobileBertTokenizer _SCREAMING_SNAKE_CASE : str = MobileBertTokenizerFast _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[Any] = filter_non_english _SCREAMING_SNAKE_CASE : Optional[Any] = "google/mobilebert-uncased" def a ( self : Any ) -> Any: super().setUp() __snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __snake_case = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: __snake_case = 'UNwant\u00E9d,running' __snake_case = 'unwanted, running' return input_text, output_text def a ( self : Dict ) -> Any: __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [9, 6, 7, 12, 10, 11] ) def a ( self : Optional[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = 'UNwant\u00E9d,running' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # With lower casing __snake_case = self.get_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_rust_tokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) __snake_case = 'UNwant\u00E9d,running' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __snake_case = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Dict: __snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self : str ) -> int: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a ( self : Any ) -> Optional[Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self : List[Any] ) -> Dict: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a ( self : Optional[int] ) -> Dict: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self : Dict ) -> Dict: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self : Union[str, Any] ) -> Union[str, Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a ( self : int ) -> Optional[Any]: __snake_case = BasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a ( self : List[Any] ) -> Dict: __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): __snake_case = i __snake_case = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a ( self : Optional[Any] ) -> Optional[int]: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a ( self : List[str] ) -> List[str]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a ( self : Dict ) -> Optional[int]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a ( self : Any ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a ( self : List[Any] ) -> Optional[int]: __snake_case = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) __snake_case = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a ( self : Dict ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __snake_case = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) __snake_case = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , 'do_lower_case' ) else False __snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a ( self : Union[str, Any] ) -> Tuple: __snake_case = ['的', '人', '有'] __snake_case = ''.join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = True __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = False __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". __snake_case = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _a : List[str] = 8 def _a (lowercase__ : str , lowercase__ : Tuple=BITS ) -> List[str]: """simple docstring""" __snake_case = x.device __snake_case = (x * 2_5_5).int().clamp(0 , 2_5_5 ) __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase__ ) __snake_case = rearrange(lowercase__ , 'd -> d 1 1' ) __snake_case = rearrange(lowercase__ , 'b c h w -> b c 1 h w' ) __snake_case = ((x & mask) != 0).float() __snake_case = rearrange(lowercase__ , 'b c d h w -> b (c d) h w' ) __snake_case = bits * 2 - 1 return bits def _a (lowercase__ : List[Any] , lowercase__ : int=BITS ) -> Optional[Any]: """simple docstring""" __snake_case = x.device __snake_case = (x > 0).int() __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase__ , dtype=torch.intaa ) __snake_case = rearrange(lowercase__ , 'd -> d 1 1' ) __snake_case = rearrange(lowercase__ , 'b (c d) h w -> b c d h w' , d=8 ) __snake_case = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def _a (self : List[Any] , lowercase__ : torch.FloatTensor , lowercase__ : int , lowercase__ : torch.FloatTensor , lowercase__ : float = 0.0 , lowercase__ : bool = True , lowercase__ : List[str]=None , lowercase__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case = self.alphas_cumprod[timestep] __snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(lowercase__ , -scale , lowercase__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case = self._get_variance(lowercase__ , lowercase__ ) __snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case = model_output.device if torch.is_tensor(lowercase__ ) else 'cpu' __snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase__ ).to(lowercase__ ) __snake_case = self._get_variance(lowercase__ , lowercase__ ) ** 0.5 * eta * noise __snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase__ , pred_original_sample=lowercase__ ) def _a (self : int , lowercase__ : torch.FloatTensor , lowercase__ : int , lowercase__ : torch.FloatTensor , lowercase__ : Optional[int]="epsilon" , lowercase__ : List[str]=None , lowercase__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" __snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case = torch.split(lowercase__ , sample.shape[1] , dim=1 ) else: __snake_case = None # 1. compute alphas, betas __snake_case = self.alphas_cumprod[t] __snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case = 1 - alpha_prod_t __snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(lowercase__ , -scale , lowercase__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case = 0 if t > 0: __snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase__ ).to(model_output.device ) __snake_case = (self._get_variance(lowercase__ , predicted_variance=lowercase__ ) ** 0.5) * noise __snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase__ , pred_original_sample=lowercase__ ) class _lowercase ( __lowercase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : UNetaDConditionModel , SCREAMING_SNAKE_CASE_ : Union[DDIMScheduler, DDPMScheduler] , SCREAMING_SNAKE_CASE_ : Optional[float] = 1.0 , ) -> Any: super().__init__() __snake_case = bit_scale __snake_case = ( ddim_bit_scheduler_step if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] = 256 , SCREAMING_SNAKE_CASE_ : Optional[int] = 256 , SCREAMING_SNAKE_CASE_ : Optional[int] = 50 , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=SCREAMING_SNAKE_CASE_ , ) __snake_case = decimal_to_bits(SCREAMING_SNAKE_CASE_ ) * self.bit_scale __snake_case = latents.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample __snake_case = bits_to_decimal(SCREAMING_SNAKE_CASE_ ) if output_type == "pil": __snake_case = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _a (lowercase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case = int(lowercase__ ) __snake_case , __snake_case , __snake_case = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f'{h}:{m:02d}:{s:02d}' if h != 0 else f'{m:02d}:{s:02d}' def _a (lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : List[str]=3_0_0 ) -> Optional[int]: """simple docstring""" # docstyle-ignore return f'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def _a (lowercase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __snake_case = f'{elt:.6f}' if isinstance(lowercase__ , lowercase__ ) else str(lowercase__ ) html_code += f' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _lowercase : _SCREAMING_SNAKE_CASE : Union[str, Any] = 5 _SCREAMING_SNAKE_CASE : List[str] = 0.2 def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional["NotebookTrainingTracker"] = None , SCREAMING_SNAKE_CASE_ : int = 300 , ) -> List[Any]: __snake_case = total __snake_case = '' if prefix is None else prefix __snake_case = leave __snake_case = parent __snake_case = width __snake_case = None __snake_case = None __snake_case = None def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : str = None ) -> Any: __snake_case = value if comment is not None: __snake_case = comment if self.last_value is None: __snake_case = __snake_case = time.time() __snake_case = __snake_case = value __snake_case = __snake_case = None __snake_case = self.warmup __snake_case = 1 self.update_bar(SCREAMING_SNAKE_CASE_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __snake_case = time.time() __snake_case = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __snake_case = self.elapsed_time / (value - self.start_value) else: __snake_case = None if value >= self.total: __snake_case = self.total __snake_case = None if not self.leave: self.close() elif self.average_time_per_item is not None: __snake_case = self.average_time_per_item * (self.total - value) self.update_bar(SCREAMING_SNAKE_CASE_ ) __snake_case = value __snake_case = current_time if self.average_time_per_item is None: __snake_case = 1 else: __snake_case = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> str: __snake_case = ' ' * (len(str(self.total ) ) - len(str(SCREAMING_SNAKE_CASE_ ) )) + str(SCREAMING_SNAKE_CASE_ ) if self.elapsed_time is None: __snake_case = f'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: __snake_case = f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: __snake_case = ( f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' f' {format_time(self.predicted_remaining )}' ) self.label += f', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f', {self.comment}]' self.display() def a ( self : Optional[int] ) -> Any: __snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __snake_case = disp.display(disp.HTML(self.html_code ) , display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def a ( self : Dict ) -> Union[str, Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class _lowercase ( __lowercase ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = None if column_names is None else [column_names] __snake_case = None def a ( self : Dict ) -> Optional[Any]: __snake_case = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __snake_case = disp.display(disp.HTML(self.html_code ) , display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: if self.inner_table is None: __snake_case = [list(values.keys() ), list(values.values() )] else: __snake_case = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(SCREAMING_SNAKE_CASE_ ) __snake_case = columns self.inner_table.append([values[c] for c in columns] ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Optional[int]=300 ) -> Any: __snake_case = NotebookProgressBar(SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , parent=self , width=SCREAMING_SNAKE_CASE_ ) return self.child_bar def a ( self : Optional[int] ) -> Any: __snake_case = None self.display() class _lowercase ( __lowercase ): def __init__( self : Any ) -> List[Any]: __snake_case = None __snake_case = None __snake_case = False def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: __snake_case = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __snake_case = 0 __snake_case = 0 __snake_case = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __snake_case = NotebookTrainingTracker(state.max_steps , SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: __snake_case = int(state.epoch ) if int(state.epoch ) == state.epoch else f'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=f'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) __snake_case = False def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Tuple: if not has_length(SCREAMING_SNAKE_CASE_ ): return if self.prediction_bar is None: if self.training_tracker is not None: __snake_case = self.training_tracker.add_child(len(SCREAMING_SNAKE_CASE_ ) ) else: __snake_case = NotebookProgressBar(len(SCREAMING_SNAKE_CASE_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: if self.prediction_bar is not None: self.prediction_bar.close() __snake_case = None def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str]=None , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __snake_case = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __snake_case = state.global_step self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=None , **SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: if self.training_tracker is not None: __snake_case = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __snake_case = log['loss'] break if self.first_column == "Epoch": __snake_case = int(state.epoch ) else: __snake_case = state.global_step __snake_case = 'eval' for k in metrics: if k.endswith('_loss' ): __snake_case = re.sub(r'\_loss$' , '' , SCREAMING_SNAKE_CASE_ ) __snake_case = metrics.pop('total_flos' , SCREAMING_SNAKE_CASE_ ) __snake_case = metrics.pop('epoch' , SCREAMING_SNAKE_CASE_ ) __snake_case = metrics.pop(f'{metric_key_prefix}_runtime' , SCREAMING_SNAKE_CASE_ ) __snake_case = metrics.pop(f'{metric_key_prefix}_samples_per_second' , SCREAMING_SNAKE_CASE_ ) __snake_case = metrics.pop(f'{metric_key_prefix}_steps_per_second' , SCREAMING_SNAKE_CASE_ ) __snake_case = metrics.pop(f'{metric_key_prefix}_jit_compilation_time' , SCREAMING_SNAKE_CASE_ ) for k, v in metrics.items(): if k == f'{metric_key_prefix}_loss': __snake_case = v else: __snake_case = k.split('_' ) __snake_case = ' '.join([part.capitalize() for part in splits[1:]] ) __snake_case = v self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) self.training_tracker.remove_child() __snake_case = None # Evaluation takes a long time so we should force the next update. __snake_case = True def a ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[Any]: self.training_tracker.update( state.global_step , comment=f'Epoch {int(state.epoch )}/{state.num_train_epochs}' , force_update=SCREAMING_SNAKE_CASE_ ) __snake_case = None
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _lowercase : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=sys.maxsize ) -> Optional[Any]: __snake_case = 'bilinear' __snake_case = max_size __snake_case = short_edge_length def __call__( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: __snake_case = [] for img in imgs: __snake_case , __snake_case = img.shape[:2] # later: provide list and randomly choose index for resize __snake_case = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img __snake_case = size * 1.0 / min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if h < w: __snake_case , __snake_case = size, scale * w else: __snake_case , __snake_case = scale * h, size if max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) > self.max_size: __snake_case = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = newh * scale __snake_case = neww * scale __snake_case = int(neww + 0.5 ) __snake_case = int(newh + 0.5 ) if img.dtype == np.uinta: __snake_case = Image.fromarray(SCREAMING_SNAKE_CASE_ ) __snake_case = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) __snake_case = np.asarray(SCREAMING_SNAKE_CASE_ ) else: __snake_case = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __snake_case = nn.functional.interpolate( SCREAMING_SNAKE_CASE_ , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE_ ).squeeze(0 ) img_augs.append(SCREAMING_SNAKE_CASE_ ) return img_augs class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) __snake_case = cfg.INPUT.FORMAT __snake_case = cfg.SIZE_DIVISIBILITY __snake_case = cfg.PAD_VALUE __snake_case = cfg.INPUT.MAX_SIZE_TEST __snake_case = cfg.MODEL.DEVICE __snake_case = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __snake_case = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) __snake_case = lambda SCREAMING_SNAKE_CASE_ : (x - self.pixel_mean) / self.pixel_std def a ( self : str , SCREAMING_SNAKE_CASE_ : int ) -> int: __snake_case = tuple(max(SCREAMING_SNAKE_CASE_ ) for s in zip(*[img.shape for img in images] ) ) __snake_case = [im.shape[-2:] for im in images] __snake_case = [ nn.functional.pad( SCREAMING_SNAKE_CASE_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] return torch.stack(SCREAMING_SNAKE_CASE_ ), torch.tensor(SCREAMING_SNAKE_CASE_ ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ) -> str: with torch.no_grad(): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [images] if single_image: assert len(SCREAMING_SNAKE_CASE_ ) == 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(SCREAMING_SNAKE_CASE_ , images.pop(SCREAMING_SNAKE_CASE_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( SCREAMING_SNAKE_CASE_ , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge __snake_case = torch.tensor([im.shape[:2] for im in images] ) __snake_case = self.aug(SCREAMING_SNAKE_CASE_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __snake_case = [self.normalizer(SCREAMING_SNAKE_CASE_ ) for x in images] # now pad them to do the following operations __snake_case , __snake_case = self.pad(SCREAMING_SNAKE_CASE_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __snake_case = torch.true_divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a (lowercase__ : Tuple , lowercase__ : str ) -> Tuple: """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple[int, int] ) -> Any: """simple docstring""" assert torch.isfinite(lowercase__ ).all(), "Box tensor contains infinite or NaN!" __snake_case , __snake_case = box_size tensor[:, 0].clamp_(min=0 , max=lowercase__ ) tensor[:, 1].clamp_(min=0 , max=lowercase__ ) tensor[:, 2].clamp_(min=0 , max=lowercase__ ) tensor[:, 3].clamp_(min=0 , max=lowercase__ )
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _a : Dict = logging.get_logger(__name__) class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : uuid.UUID = None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=None ) -> int: if not conversation_id: __snake_case = uuid.uuida() if past_user_inputs is None: __snake_case = [] if generated_responses is None: __snake_case = [] __snake_case = conversation_id __snake_case = past_user_inputs __snake_case = generated_responses __snake_case = text def __eq__( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> Union[str, Any]: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) __snake_case = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __snake_case = text def a ( self : Tuple ) -> Optional[Any]: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __snake_case = None def a ( self : str , SCREAMING_SNAKE_CASE_ : str ) -> Tuple: self.generated_responses.append(SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Tuple: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[int] ) -> List[Any]: __snake_case = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __snake_case = 'user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( __lowercase , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowercase ( __lowercase ): def __init__( self : str , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Dict ) -> str: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.tokenizer.pad_token_id is None: __snake_case = self.tokenizer.eos_token def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : str=None , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: __snake_case = {} __snake_case = {} __snake_case = {} if min_length_for_response is not None: __snake_case = min_length_for_response if minimum_tokens is not None: __snake_case = minimum_tokens if "max_length" in generate_kwargs: __snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE_ : Dict=0 , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: __snake_case = super().__call__(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1: return outputs[0] return outputs def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Conversation , SCREAMING_SNAKE_CASE_ : Optional[int]=32 ) -> Dict[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): __snake_case = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __snake_case = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE_ ) if self.framework == "pt": __snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": __snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=10 , **SCREAMING_SNAKE_CASE_ : str ) -> List[str]: __snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) __snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __snake_case = max_length - minimum_tokens __snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: __snake_case = model_inputs['attention_mask'][:, -trim:] __snake_case = model_inputs.pop('conversation' ) __snake_case = max_length __snake_case = self.model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.model.config.is_encoder_decoder: __snake_case = 1 else: __snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any=True ) -> List[str]: __snake_case = model_outputs['output_ids'] __snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , ) __snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE_ ) return conversation def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Conversation ) -> Dict: __snake_case = self.tokenizer.eos_token_id __snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > self.tokenizer.model_max_length: __snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a : str = logging.get_logger(__name__) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = ["pixel_values"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : int = 32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> None: __snake_case = do_resize __snake_case = do_rescale __snake_case = size_divisor __snake_case = resample super().__init__(**SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE_ : Tuple ) -> np.ndarray: __snake_case , __snake_case = get_image_size(SCREAMING_SNAKE_CASE_ ) # Rounds the height and width down to the closest multiple of size_divisor __snake_case = height // size_divisor * size_divisor __snake_case = width // size_divisor * size_divisor __snake_case = resize(SCREAMING_SNAKE_CASE_ , (new_h, new_w) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return image def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE_ : List[str] ) -> np.ndarray: return rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[TensorType, str]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> BatchFeature: __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = size_divisor if size_divisor is not None else self.size_divisor __snake_case = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __snake_case = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for img in images] if do_resize: __snake_case = [self.resize(SCREAMING_SNAKE_CASE_ , size_divisor=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __snake_case = [self.rescale(SCREAMING_SNAKE_CASE_ , scale=1 / 255 ) for image in images] __snake_case = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _a : Any = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class _lowercase ( __lowercase ): def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) self.check_model_type(SCREAMING_SNAKE_CASE_ ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE_ : Any ) -> Tuple: __snake_case , __snake_case = {}, {} if padding is not None: __snake_case = padding if truncation is not None: __snake_case = truncation if top_k is not None: __snake_case = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union["Image.Image", str] , SCREAMING_SNAKE_CASE_ : str = None , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = {'image': image, 'question': question} else: __snake_case = image __snake_case = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return results def a ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : int=False ) -> str: __snake_case = load_image(inputs['image'] ) __snake_case = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ) __snake_case = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE_ ) return model_inputs def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: __snake_case = self.model(**SCREAMING_SNAKE_CASE_ ) return model_outputs def a ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=5 ) -> Optional[int]: if top_k > self.model.config.num_labels: __snake_case = self.model.config.num_labels if self.framework == "pt": __snake_case = model_outputs.logits.sigmoid()[0] __snake_case , __snake_case = probs.topk(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) __snake_case = scores.tolist() __snake_case = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Any , ) -> Union[str, Any]: """simple docstring""" __snake_case = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __snake_case , __snake_case = input_paths_and_base_extractors[compression_format] if input_path is None: __snake_case = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase__ ) assert base_extractor.is_extractable(lowercase__ ) __snake_case = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(lowercase__ , lowercase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case = file_path.read_text(encoding='utf-8' ) else: __snake_case = output_path.read_text(encoding='utf-8' ) __snake_case = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _a (lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : Dict , lowercase__ : int , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , ) -> Dict: """simple docstring""" __snake_case = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __snake_case = input_paths[compression_format] if input_path is None: __snake_case = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase__ ) __snake_case = Extractor.infer_extractor_format(lowercase__ ) assert extractor_format is not None __snake_case = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(lowercase__ , lowercase__ , lowercase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __snake_case = file_path.read_text(encoding='utf-8' ) else: __snake_case = output_path.read_text(encoding='utf-8' ) __snake_case = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> Any: """simple docstring""" import tarfile __snake_case = tmp_path / 'data_dot_dot' directory.mkdir() __snake_case = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def _a (lowercase__ : str ) -> Dict: """simple docstring""" import tarfile __snake_case = tmp_path / 'data_sym_link' directory.mkdir() __snake_case = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=lowercase__ ) with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def _a (lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __snake_case = insecure_tar_files[insecure_tar_file] __snake_case = tmp_path / 'extracted' TarExtractor.extract(lowercase__ , lowercase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _a (lowercase__ : Dict ) -> Union[str, Any]: """simple docstring""" # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __snake_case = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __snake_case = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(lowercase__ ) assert zipfile.is_zipfile(str(lowercase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowercase__ ) # but we're right
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _a () -> Tuple: """simple docstring""" __snake_case = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __snake_case = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(lowercase__ ) # Let's go __snake_case = parser.parse_args() if not hasattr(lowercase__ , 'func' ): parser.print_help() exit(1 ) # Run __snake_case = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' # flake8: noqa # Lint as: python3 _a : Tuple = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' def _a (lowercase__ : str ) -> bool: """simple docstring""" __snake_case = [int(lowercase__ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(lowercase__ ) == 4 and all(0 <= int(lowercase__ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": _a : Optional[int] = input().strip() _a : List[Any] = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Dict = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = "roberta-prelayernorm" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any]=5_0265 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Optional[Any]=12 , SCREAMING_SNAKE_CASE_ : Any=12 , SCREAMING_SNAKE_CASE_ : Dict=3072 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : List[str]=1e-12 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Tuple="absolute" , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Any=None , **SCREAMING_SNAKE_CASE_ : int , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : List[Any] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "open-llama" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Dict=10_0000 , SCREAMING_SNAKE_CASE_ : int=4096 , SCREAMING_SNAKE_CASE_ : str=1_1008 , SCREAMING_SNAKE_CASE_ : List[str]=32 , SCREAMING_SNAKE_CASE_ : Dict=32 , SCREAMING_SNAKE_CASE_ : Optional[int]="silu" , SCREAMING_SNAKE_CASE_ : Dict=2048 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE_ : int=1e-6 , SCREAMING_SNAKE_CASE_ : int=True , SCREAMING_SNAKE_CASE_ : Tuple=0 , SCREAMING_SNAKE_CASE_ : Any=1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Any , ) -> Optional[Any]: __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = intermediate_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = initializer_range __snake_case = rms_norm_eps __snake_case = use_cache __snake_case = kwargs.pop( 'use_memorry_efficient_attention' , SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_dropout_prob __snake_case = attention_dropout_prob __snake_case = use_stable_embedding __snake_case = shared_input_output_embedding __snake_case = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def a ( self : List[Any] ) -> List[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) __snake_case = self.rope_scaling.get('type' , SCREAMING_SNAKE_CASE_ ) __snake_case = self.rope_scaling.get('factor' , SCREAMING_SNAKE_CASE_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1