code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : Optional[Any] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowercase : Tuple = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowercase : Tuple = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : List[str] = simple_accuracy(a_ , a_ ) lowercase : Optional[int] = float(fa_score(y_true=a_ , y_pred=a_ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Optional[Any] = float(pearsonr(a_ , a_ )[0] ) lowercase : int = float(spearmanr(a_ , a_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
336
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ = field(default="image-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) a_ = Features({"image": Image()} ) a_ = Features({"labels": ClassLabel} ) a_ = "image" a_ = "labels" def _lowerCAmelCase ( self , lowerCAmelCase_ ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase_ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) a_ : Any = copy.deepcopy(self ) a_ : Tuple = self.label_schema.copy() a_ : Optional[Any] = features[self.label_column] a_ : Any = label_schema return task_template @property def _lowerCAmelCase ( self ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
577
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self : str ): A__ = tempfile.mkdtemp() A__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A__ = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], '''do_convert_rgb''': True, } A__ = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def A__ ( self : Any , **_lowerCamelCase : Dict ): return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def A__ ( self : Dict , **_lowerCamelCase : str ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def A__ ( self : Optional[Any] , **_lowerCamelCase : Dict ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def A__ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def A__ ( self : Any ): A__ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self : Optional[int] ): A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def A__ ( self : List[str] ): A__ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) A__ = self.get_image_processor(do_normalize=_lowerCamelCase ) A__ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def A__ ( self : List[Any] ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(_lowerCamelCase , return_tensors='''np''' ) A__ = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A__ ( self : Any ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = '''Alexandra,T-shirt的价格是15便士。''' A__ = processor(text=_lowerCamelCase ) A__ = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : List[Any] ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = '''Alexandra,T-shirt的价格是15便士。''' A__ = self.prepare_image_inputs() A__ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def A__ ( self : Optional[int] ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_lowerCamelCase ) A__ = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def A__ ( self : Tuple ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = ChineseCLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = '''Alexandra,T-shirt的价格是15便士。''' A__ = self.prepare_image_inputs() A__ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
571
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 3_8_4 if "tiny" in model_name: __SCREAMING_SNAKE_CASE : Any = [3, 3, 9, 3] __SCREAMING_SNAKE_CASE : List[str] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = [3, 3, 2_7, 3] __SCREAMING_SNAKE_CASE : Tuple = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 3, 2_7, 3] __SCREAMING_SNAKE_CASE : Dict = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] __SCREAMING_SNAKE_CASE : Optional[int] = 5_1_2 if "large" in model_name: __SCREAMING_SNAKE_CASE : int = [3, 3, 2_7, 3] __SCREAMING_SNAKE_CASE : List[str] = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] __SCREAMING_SNAKE_CASE : List[Any] = 7_6_8 if "xlarge" in model_name: __SCREAMING_SNAKE_CASE : int = [3, 3, 2_7, 3] __SCREAMING_SNAKE_CASE : Dict = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] __SCREAMING_SNAKE_CASE : Optional[int] = 1_0_2_4 # set label information __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_5_0 __SCREAMING_SNAKE_CASE : Any = "huggingface/label-files" __SCREAMING_SNAKE_CASE : str = "ade20k-id2label.json" __SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __SCREAMING_SNAKE_CASE : Dict = {int(a_ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : str = ConvNextConfig( depths=a_ , hidden_sizes=a_ , out_features=["stage1", "stage2", "stage3", "stage4"] ) __SCREAMING_SNAKE_CASE : List[str] = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __A ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = dct.pop(a_ ) __SCREAMING_SNAKE_CASE : int = val def __A ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE : Any = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )["state_dict"] __SCREAMING_SNAKE_CASE : Any = get_upernet_config(a_ ) __SCREAMING_SNAKE_CASE : Optional[int] = UperNetForSemanticSegmentation(a_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Any = state_dict.pop(a_ ) if "bn" in key: __SCREAMING_SNAKE_CASE : Any = key.replace("bn" , "batch_norm" ) __SCREAMING_SNAKE_CASE : Tuple = val # rename keys __SCREAMING_SNAKE_CASE : Dict = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) model.load_state_dict(a_ ) # verify on image __SCREAMING_SNAKE_CASE : str = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(a_ , stream=a_ ).raw ).convert("RGB" ) __SCREAMING_SNAKE_CASE : int = SegformerImageProcessor() __SCREAMING_SNAKE_CASE : str = processor(a_ , return_tensors="pt" ).pixel_values with torch.no_grad(): __SCREAMING_SNAKE_CASE : str = model(a_ ) if model_name == "upernet-convnext-tiny": __SCREAMING_SNAKE_CASE : str = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": __SCREAMING_SNAKE_CASE : str = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": __SCREAMING_SNAKE_CASE : str = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a_ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(a_ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
211
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Any = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE): """simple docstring""" __UpperCAmelCase = """megatron-bert""" def __init__( self : Tuple , UpperCamelCase_ : int=2_9_0_5_6 , UpperCamelCase_ : int=1_0_2_4 , UpperCamelCase_ : Optional[Any]=2_4 , UpperCamelCase_ : str=1_6 , UpperCamelCase_ : Union[str, Any]=4_0_9_6 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : int=5_1_2 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Union[str, Any]=1e-1_2 , UpperCamelCase_ : Any=0 , UpperCamelCase_ : Union[str, Any]="absolute" , UpperCamelCase_ : Tuple=True , **UpperCamelCase_ : int , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = use_cache
545
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore A_ : int =namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE_ ( snake_case : Any = "https://www.worldometers.info/coronavirus/" )-> covid_data: _lowerCamelCase = '//div[@class = \"maincounter-number\"]/span/text()' return covid_data(*html.fromstring(requests.get(a_ ).content ).xpath(a_ ) ) A_ : List[str] ='Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
650
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
627
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _a : List[Any] = '''efficientnet''' def __init__( self , lowerCamelCase__ = 3 , lowerCamelCase__ = 600 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 3.1 , lowerCamelCase__ = 8 , lowerCamelCase__ = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase__ = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase__ = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase__ = [] , lowerCamelCase__ = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase__ = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase__ = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase__ = 0.25 , lowerCamelCase__ = "swish" , lowerCamelCase__ = 2560 , lowerCamelCase__ = "mean" , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 0.001 , lowerCamelCase__ = 0.99 , lowerCamelCase__ = 0.5 , lowerCamelCase__ = 0.2 , **lowerCamelCase__ , ) -> str: super().__init__(**lowerCamelCase__ ) lowercase__ : Union[str, Any] = num_channels lowercase__ : List[Any] = image_size lowercase__ : Optional[int] = width_coefficient lowercase__ : int = depth_coefficient lowercase__ : str = depth_divisor lowercase__ : Optional[int] = kernel_sizes lowercase__ : Optional[int] = in_channels lowercase__ : Tuple = out_channels lowercase__ : str = depthwise_padding lowercase__ : Any = strides lowercase__ : Union[str, Any] = num_block_repeats lowercase__ : List[str] = expand_ratios lowercase__ : str = squeeze_expansion_ratio lowercase__ : str = hidden_act lowercase__ : Dict = hidden_dim lowercase__ : Tuple = pooling_type lowercase__ : List[Any] = initializer_range lowercase__ : Tuple = batch_norm_eps lowercase__ : List[str] = batch_norm_momentum lowercase__ : str = dropout_rate lowercase__ : Optional[int] = drop_connect_rate lowercase__ : List[Any] = sum(lowerCamelCase__ ) * 4 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _a : Optional[Any] = version.parse('''1.11''' ) @property def UpperCAmelCase__( self ) -> Dict: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__( self ) -> Union[str, Any]: return 1E-5
200
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCAmelCase_ = { # 1536-bit 5: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=1_6, ), 'generator': 2, }, } class __lowerCAmelCase : def __init__(self , __magic_name__ = 14 ) -> int: '''simple docstring''' if group not in primes: raise ValueError('''Unsupported Group''' ) snake_case_ : Dict = primes[group]['''prime'''] snake_case_ : Union[str, Any] = primes[group]['''generator'''] snake_case_ : List[str] = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return hex(self.__private_key )[2:] def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : List[str] = pow(self.generator , self.__private_key , self.prime ) return hex(__magic_name__ )[2:] def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(__magic_name__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = int(__magic_name__ , base=16 ) if not self.is_valid_public_key(__magic_name__ ): raise ValueError('''Invalid public key''' ) snake_case_ : Tuple = pow(__magic_name__ , self.__private_key , self.prime ) return shaaaa(str(__magic_name__ ).encode() ).hexdigest() @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ ) -> int: '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(__magic_name__ , (prime - 1) // 2 , __magic_name__ ) == 1 ) @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ = 14 ) -> str: '''simple docstring''' snake_case_ : List[Any] = int(__magic_name__ , base=16 ) snake_case_ : Tuple = int(__magic_name__ , base=16 ) snake_case_ : str = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(__magic_name__ , __magic_name__ ): raise ValueError('''Invalid public key''' ) snake_case_ : List[Any] = pow(__magic_name__ , __magic_name__ , __magic_name__ ) return shaaaa(str(__magic_name__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
60
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import copy import re class __UpperCAmelCase : __lowerCamelCase : Any = "hp" __lowerCamelCase : Any = {} __lowerCamelCase : Optional[int] = None @classmethod def UpperCAmelCase ( cls : Optional[Any] , a_ : List[str] , a_ : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = prefix a__ : List[Any] = defaults cls.build_naming_info() @staticmethod def UpperCAmelCase ( a_ : str , a_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if len(a_ ) == 0: return "" a__ : List[str] = None if any(char.isdigit() for char in word ): raise Exception(F"Parameters should not contain numbers: \'{word}\' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(a_ ) + 1 ): a__ : Optional[Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: a__ : List[str] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(a_ : Union[str, Any] ): a__ : Tuple = "" while integer != 0: a__ : Optional[Any] = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s a__ : Union[str, Any] = 0 while True: a__ : str = word + "#" + int_to_alphabetic(a_ ) if sword in info["reverse_short_word"]: continue else: a__ : Any = sword break a__ : List[str] = short_word a__ : Any = word return short_word @staticmethod def UpperCAmelCase ( a_ : Tuple , a_ : str ) -> List[Any]: '''simple docstring''' a__ : Dict = param_name.split("_" ) a__ : str = [TrialShortNamer.shortname_for_word(a_ , a_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name a__ : List[str] = ["", "_"] for separator in separators: a__ : str = separator.join(a_ ) if shortname not in info["reverse_short_param"]: a__ : List[Any] = shortname a__ : Union[str, Any] = param_name return shortname return param_name @staticmethod def UpperCAmelCase ( a_ : Union[str, Any] , a_ : List[Any] ) -> List[str]: '''simple docstring''' a__ : Dict = TrialShortNamer.shortname_for_key(a_ , a_ ) a__ : Optional[int] = short_name a__ : Tuple = param_name @classmethod def UpperCAmelCase ( cls : List[Any] ) -> List[str]: '''simple docstring''' if cls.NAMING_INFO is not None: return a__ : Union[str, Any] = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } a__ : Optional[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(a_ , a_ ) a__ : int = info @classmethod def UpperCAmelCase ( cls : Union[str, Any] , a_ : int ) -> str: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None a__ : Tuple = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue a__ : str = cls.NAMING_INFO["short_param"][k] if isinstance(a_ , a_ ): a__ : str = 1 if v else 0 a__ : Dict = "" if isinstance(a_ , (int, float) ) else "-" a__ : str = F"{key}{sep}{v}" name.append(a_ ) return "_".join(a_ ) @classmethod def UpperCAmelCase ( cls : List[str] , a_ : Tuple ) -> Tuple: '''simple docstring''' a__ : int = repr[len(cls.PREFIX ) + 1 :] if repr == "": a__ : List[str] = [] else: a__ : Any = repr.split("_" ) a__ : List[str] = {} for value in values: if "-" in value: a__ , a__ : List[Any] = value.split("-" ) else: a__ : Dict = re.sub("[0-9.]" , "" , a_ ) a__ : Any = float(re.sub("[^0-9.]" , "" , a_ ) ) a__ : Dict = cls.NAMING_INFO["reverse_short_param"][p_k] a__ : Any = p_v for k in cls.DEFAULTS: if k not in parameters: a__ : Tuple = cls.DEFAULTS[k] return parameters
642
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _A : Any = 25_00_04 _A : Tuple = 25_00_20 @require_sentencepiece @require_tokenizers class a__ ( __SCREAMING_SNAKE_CASE, unittest.TestCase ): __lowerCAmelCase = MBartTokenizer __lowerCAmelCase = MBartTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Union[str, Any] = MBartTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[Any] = MBartTokenizer(_a , keep_accents=_a ) lowercase : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase : Dict = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __magic_name__ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase : Dict = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : int = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(_a , **_a ) lowercase : Optional[Any] = tempfile.mkdtemp() lowercase : Union[str, Any] = tokenizer_r.save_pretrained(_a ) lowercase : Optional[int] = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowercase : str = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way lowercase : Any = tokenizer_r.from_pretrained(_a ) lowercase : List[str] = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=True lowercase : List[str] = tempfile.mkdtemp() lowercase : Union[str, Any] = tokenizer_r.save_pretrained(_a , legacy_format=_a ) lowercase : int = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way lowercase : List[Any] = tokenizer_r.from_pretrained(_a ) lowercase : Tuple = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=False lowercase : List[str] = tempfile.mkdtemp() lowercase : Dict = tokenizer_r.save_pretrained(_a , legacy_format=_a ) lowercase : Optional[int] = tokenizer_p.save_pretrained(_a ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase : List[Any] = tokenizer_r.from_pretrained(_a ) lowercase : Optional[Any] = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): __lowerCAmelCase = """facebook/mbart-large-en-ro""" __lowerCAmelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __lowerCAmelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __lowerCAmelCase = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def __magic_name__ ( cls ): lowercase : Union[str, Any] = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) lowercase : Tuple = 1 return cls def __magic_name__ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) def __magic_name__ ( self ): lowercase : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __magic_name__ ( self ): self.assertIn(_a , self.tokenizer.all_special_ids ) lowercase : Optional[Any] = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] lowercase : Dict = self.tokenizer.decode(_a , skip_special_tokens=_a ) lowercase : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __magic_name__ ( self ): lowercase : int = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , _a ) lowercase : Union[str, Any] = 10 lowercase : str = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _a ) self.assertEqual(len(_a ) , _a ) def __magic_name__ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_026, 250_001] ) def __magic_name__ ( self ): lowercase : Tuple = tempfile.mkdtemp() lowercase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) lowercase : List[str] = MBartTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def __magic_name__ ( self ): lowercase : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors="pt" ) lowercase : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __magic_name__ ( self ): lowercase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowercase : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors="pt" ) lowercase : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors="pt" ) lowercase : List[str] = targets["input_ids"] lowercase : Dict = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ): lowercase : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_a ) , { # A, test, EOS, en_XX "input_ids": [[62, 3_034, 2, 250_004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
361
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
import requests lowercase : List[str] = 'YOUR API KEY' def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = giphy_api_key ) -> list: lowercase : Optional[Any] = """+""".join(query.split() ) lowercase : List[str] = f"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" lowercase : int = requests.get(a_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
336
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
'''simple docstring''' import math def _snake_case ( A_ : Optional[Any] ): """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False a_ : Any = range(3 , int(math.sqrt(a_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _snake_case ( A_ : Optional[int] , A_ : Optional[int]=1 , **A_ : Optional[int] ): """simple docstring""" a_ : Any = factor * value a_ : Tuple = value while not is_prime(a_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **a_ ) return value
577
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Tuple = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
571
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
211
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
"""simple docstring""" snake_case : List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] snake_case : Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] snake_case : int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def A ( __snake_case: int , __snake_case: Any , __snake_case: Optional[Any] ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __magic_name__ = year // 1_0_0 __magic_name__ = (5 * (century % 4) + 2) % 7 __magic_name__ = year % 1_0_0 __magic_name__ = centurian % 1_2 __magic_name__ = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __magic_name__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __magic_name__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
545
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset A_ : List[str] =pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) A_ : List[str] =dataset.iloc[:, 1:2].values A_ : int =dataset.iloc[:, 2].values A_ : Optional[Any] =train_test_split(X, y, test_size=0.2, random_state=0) A_ : Union[str, Any] =PolynomialFeatures(degree=4) A_ : Tuple =poly_reg.fit_transform(X) A_ : List[Any] =LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: plt.scatter(a_ , a_ , color='red' ) plt.plot(a_ , pol_reg.predict(poly_reg.fit_transform(a_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
650
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
'''simple docstring''' import string def a__ ( a__ ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __SCREAMING_SNAKE_CASE = """""" for symbol in message: if symbol in string.ascii_uppercase: __SCREAMING_SNAKE_CASE = string.ascii_uppercase.find(a_ ) __SCREAMING_SNAKE_CASE = num - key if num < 0: __SCREAMING_SNAKE_CASE = num + len(string.ascii_uppercase ) __SCREAMING_SNAKE_CASE = translated + string.ascii_uppercase[num] else: __SCREAMING_SNAKE_CASE = translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = input("""Encrypted message: """ ) __SCREAMING_SNAKE_CASE = message.upper() decrypt(a_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
627
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" def _lowerCamelCase ( lowerCamelCase__ : Tuple = 60_08_51_47_51_43 ): try: lowercase__ : str = int(a_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowercase__ : Union[str, Any] = 2 lowercase__ : Optional[Any] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase__ : Tuple = i while n % i == 0: lowercase__ : int = n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F"{solution() = }")
200
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = { 'roberta-base': 5_1_2, 'roberta-large': 5_1_2, 'roberta-large-mnli': 5_1_2, 'distilroberta-base': 5_1_2, 'roberta-base-openai-detector': 5_1_2, 'roberta-large-openai-detector': 5_1_2, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowerCamelCase_ : Any = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : str = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ : Union[str, Any] = RobertaTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> int: '''simple docstring''' super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) snake_case_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: snake_case_ : int = getattr(__magic_name__ , pre_tok_state.pop('''type''' ) ) snake_case_ : Any = add_prefix_space snake_case_ : Optional[Any] = pre_tok_class(**__magic_name__ ) snake_case_ : Union[str, Any] = add_prefix_space snake_case_ : Union[str, Any] = '''post_processor''' snake_case_ : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: snake_case_ : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : int = tuple(state['''sep'''] ) if "cls" in state: snake_case_ : Union[str, Any] = tuple(state['''cls'''] ) snake_case_ : List[Any] = False if state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: snake_case_ : Tuple = add_prefix_space snake_case_ : List[str] = True if state.get('''trim_offsets''' , __magic_name__ ) != trim_offsets: snake_case_ : List[Any] = trim_offsets snake_case_ : int = True if changes_to_apply: snake_case_ : Tuple = getattr(__magic_name__ , state.pop('''type''' ) ) snake_case_ : List[str] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowerCamelCase (self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase (self , __magic_name__ ) -> str: '''simple docstring''' snake_case_ : int = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value snake_case_ : Optional[int] = value def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = kwargs.get('''is_split_into_words''' , __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = kwargs.get('''is_split_into_words''' , __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Dict: '''simple docstring''' snake_case_ : Any = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
60
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowerCamelCase : Optional[int] = BertJapaneseTokenizer __lowerCamelCase : int = False __lowerCamelCase : Optional[int] = True def UpperCAmelCase ( self : Any ) -> List[str]: '''simple docstring''' super().setUp() a__ : str = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] a__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self : Dict , a_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' a__ : Tuple = "こんにちは、世界。 \nこんばんは、世界。" a__ : Tuple = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def UpperCAmelCase ( self : int , a_ : Tuple ) -> Optional[int]: '''simple docstring''' a__ , a__ : Tuple = self.get_input_output_texts(a_ ) a__ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) a__ : Union[str, Any] = tokenizer.decode(a_ , clean_up_tokenization_spaces=a_ ) return text, ids def UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) a__ : List[str] = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(a_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' a__ : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(a_ ) a__ : Union[str, Any] = "こんにちは、世界。\nこんばんは、世界。" a__ : Optional[int] = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a__ : List[Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(a_ , "wb" ) as handle: pickle.dump(a_ , a_ ) with open(a_ , "rb" ) as handle: a__ : int = pickle.load(a_ ) a__ : str = tokenizer_new.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : int = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' try: a__ : List[str] = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' try: a__ : List[str] = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : Union[str, Any] = MecabTokenizer(do_lower_case=a_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' try: a__ : List[Any] = MecabTokenizer( do_lower_case=a_ , normalize_text=a_ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = MecabTokenizer(normalize_text=a_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' a__ : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(a_ ) a__ : Optional[int] = "こんにちは、世界。\nこんばんは、世界。" a__ : List[Any] = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a__ : Any = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(a_ , "wb" ) as handle: pickle.dump(a_ , a_ ) with open(a_ , "rb" ) as handle: a__ : List[str] = pickle.load(a_ ) a__ : Union[str, Any] = tokenizer_new.tokenize(a_ ) self.assertListEqual(a_ , a_ ) @require_sudachi def UpperCAmelCase ( self : int ) -> int: '''simple docstring''' a__ : int = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def UpperCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' a__ : Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' a__ : str = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ : Any = SudachiTokenizer(do_lower_case=a_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' a__ : Tuple = SudachiTokenizer(normalize_text=a_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' a__ : Any = SudachiTokenizer(trim_whitespace=a_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(a_ ) a__ : List[str] = "こんにちは、世界。\nこんばんは、世界。" a__ : int = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a__ : List[str] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(a_ , "wb" ) as handle: pickle.dump(a_ , a_ ) with open(a_ , "rb" ) as handle: a__ : Tuple = pickle.load(a_ ) a__ : List[str] = tokenizer_new.tokenize(a_ ) self.assertListEqual(a_ , a_ ) @require_jumanpp def UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' a__ : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' a__ : Optional[Any] = JumanppTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' a__ : Tuple = JumanppTokenizer(normalize_text=a_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = JumanppTokenizer(trim_whitespace=a_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' a__ : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' a__ : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] a__ : Dict = {} for i, token in enumerate(a_ ): a__ : str = i a__ : Dict = WordpieceTokenizer(vocab=a_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) a__ : Optional[Any] = tokenizer.subword_tokenizer a__ : Tuple = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(a_ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) a__ : Any = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(a_ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ : Dict = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) a__ : int = tokenizer.encode("ありがとう。" , add_special_tokens=a_ ) a__ : Dict = tokenizer.encode("どういたしまして。" , add_special_tokens=a_ ) a__ : List[str] = tokenizer.build_inputs_with_special_tokens(a_ ) a__ : List[str] = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowerCamelCase : int = BertJapaneseTokenizer __lowerCamelCase : str = False def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' super().setUp() a__ : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] a__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase ( self : int , **a_ : str ) -> List[Any]: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **a_ ) def UpperCAmelCase ( self : Optional[int] , a_ : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : Optional[int] = "こんにちは、世界。 \nこんばんは、世界。" a__ : Any = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase ( self : str ) -> int: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) a__ : Optional[Any] = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( a_ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] a__ : str = {} for i, token in enumerate(a_ ): a__ : Optional[Any] = i a__ : Dict = CharacterTokenizer(vocab=a_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def UpperCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : List[str] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) a__ : int = tokenizer.encode("ありがとう。" , add_special_tokens=a_ ) a__ : int = tokenizer.encode("どういたしまして。" , add_special_tokens=a_ ) a__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(a_ ) a__ : List[str] = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' a__ : Optional[int] = "cl-tohoku/bert-base-japanese" a__ : Tuple = AutoTokenizer.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' a__ : Tuple = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(a_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) a__ : Dict = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(a_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
642
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" def __magic_name__ ( __snake_case : Union[str, Any] ) -> list: if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowercase : Optional[int] = gray_code_sequence_string(a_ ) # # convert them to integers for i in range(len(a_ ) ): lowercase : List[Any] = int(sequence[i] , 2 ) return sequence def __magic_name__ ( __snake_case : Optional[Any] ) -> list: if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase : List[str] = gray_code_sequence_string(bit_count - 1 ) lowercase : List[Any] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase : Any = "0" + smaller_sequence[i] sequence.append(a_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase : Optional[Any] = "1" + smaller_sequence[i] sequence.append(a_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
361
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
import numpy as np lowercase : Union[str, Any] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class __snake_case : def __init__( self ): '''simple docstring''' lowercase : str = np.array(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : List[str] = np.where(letter == self.SQUARE ) lowercase : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.SQUARE[indexa - 1, indexa - 1] return letter def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = message.lower() lowercase : Optional[Any] = message.replace(""" """ ,"""""" ) lowercase : Dict = message.replace("""j""" ,"""i""" ) lowercase : List[Any] = np.empty((2, len(snake_case )) ) for letter_index in range(len(snake_case ) ): lowercase : List[Any] = self.letter_to_numbers(message[letter_index] ) lowercase : int = numbers[0] lowercase : List[str] = numbers[1] lowercase : Tuple = first_step.reshape(2 * len(snake_case ) ) lowercase : Tuple = """""" for numbers_index in range(len(snake_case ) ): lowercase : Union[str, Any] = int(second_step[numbers_index * 2] ) lowercase : str = int(second_step[(numbers_index * 2) + 1] ) lowercase : str = self.numbers_to_letter(snake_case ,snake_case ) lowercase : Dict = encoded_message + letter return encoded_message def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = message.lower() message.replace(""" """ ,"""""" ) lowercase : int = np.empty(2 * len(snake_case ) ) for letter_index in range(len(snake_case ) ): lowercase : Dict = self.letter_to_numbers(message[letter_index] ) lowercase : Optional[int] = numbers[0] lowercase : int = numbers[1] lowercase : Dict = first_step.reshape((2, len(snake_case )) ) lowercase : int = """""" for numbers_index in range(len(snake_case ) ): lowercase : Union[str, Any] = int(second_step[0, numbers_index] ) lowercase : Tuple = int(second_step[1, numbers_index] ) lowercase : List[Any] = self.numbers_to_letter(snake_case ,snake_case ) lowercase : Optional[Any] = decoded_message + letter return decoded_message
336
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __snake_case: Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ = CLIPConfig a_ = ["CLIPEncoderLayer"] def __init__( self , lowerCAmelCase_ ): '''simple docstring''' super().__init__(lowerCAmelCase_ ) a_ : int = CLIPVisionModelWithProjection(config.vision_config ) a_ : Union[str, Any] = nn.Linear(config.vision_config.projection_dim , 1 ) a_ : Optional[int] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=0.5 , lowerCAmelCase_=0.5 ): '''simple docstring''' a_ : int = self.vision_model(lowerCAmelCase_ )[0] a_ : Optional[int] = self.p_head(lowerCAmelCase_ ) a_ : Tuple = nsfw_detected.flatten() a_ : Union[str, Any] = nsfw_detected > p_threshold a_ : str = nsfw_detected.tolist() if any(lowerCAmelCase_ ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(lowerCAmelCase_ ): if nsfw_detected_: a_ : Tuple = np.zeros(images[idx].shape ) a_ : Optional[int] = self.w_head(lowerCAmelCase_ ) a_ : List[str] = watermark_detected.flatten() a_ : Optional[Any] = watermark_detected > w_threshold a_ : Tuple = watermark_detected.tolist() if any(lowerCAmelCase_ ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(lowerCAmelCase_ ): if watermark_detected_: a_ : Tuple = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
577
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def a_ ( __a ): return EnvironmentCommand() def a_ ( __a ): return EnvironmentCommand(args.accelerate_config_file ) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def A__ ( _lowerCamelCase : ArgumentParser ): A__ = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowerCamelCase ) download_parser.add_argument( '''--accelerate-config_file''' , default=_lowerCamelCase , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_lowerCamelCase ) def __init__( self : List[str] , _lowerCamelCase : str , *_lowerCamelCase : str ): A__ = accelerate_config_file def A__ ( self : int ): A__ = '''not installed''' if is_safetensors_available(): import safetensors A__ = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors A__ = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A__ = '''not installed''' A__ = A__ = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_lowerCamelCase ): A__ = load_config_from_file(self._accelerate_config_file ).to_dict() A__ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else F'''\t{accelerate_config}''' ) A__ = '''not installed''' A__ = '''NA''' if is_torch_available(): import torch A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = '''not installed''' A__ = '''NA''' if is_tf_available(): import tensorflow as tf A__ = tf.__version__ try: # deprecated in v2.1 A__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A__ = bool(tf.config.list_physical_devices('''GPU''' ) ) A__ = '''not installed''' A__ = '''not installed''' A__ = '''not installed''' A__ = '''NA''' if is_flax_available(): import flax import jax import jaxlib A__ = flax.__version__ A__ = jax.__version__ A__ = jaxlib.__version__ A__ = jax.lib.xla_bridge.get_backend().platform A__ = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': F'''{safetensors_version}''', '''Accelerate version''': F'''{accelerate_version}''', '''Accelerate config''': F'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': F'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': F'''{flax_version} ({jax_backend})''', '''Jax version''': F'''{jax_version}''', '''JaxLib version''': F'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowerCamelCase ) ) return info @staticmethod def A__ ( _lowerCamelCase : Tuple ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
571
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : Tuple = 1_0 , _SCREAMING_SNAKE_CASE : int = 1_0_0_0 , _SCREAMING_SNAKE_CASE : str = True ): """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return int((number_a + number_a) / 2 ) def __A ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(_SCREAMING_SNAKE_CASE : Tuple ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) __SCREAMING_SNAKE_CASE : List[Any] = lower __SCREAMING_SNAKE_CASE : str = higher __SCREAMING_SNAKE_CASE : Optional[Any] = [] while True: __SCREAMING_SNAKE_CASE : Optional[Any] = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": __SCREAMING_SNAKE_CASE : List[str] = number elif answer(a_ ) == "high": __SCREAMING_SNAKE_CASE : Dict = number else: break print(f'guess the number : {last_numbers[-1]}' ) print(f'details : {last_numbers!s}' ) def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = int(input("Enter lower value : " ).strip() ) __SCREAMING_SNAKE_CASE : List[str] = int(input("Enter high value : " ).strip() ) __SCREAMING_SNAKE_CASE : int = int(input("Enter value to guess : " ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
211
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
"""simple docstring""" def A ( __snake_case: List[str] , __snake_case: Union[str, Any] ) -> int: """simple docstring""" if len(a_ ) != len(a_ ): raise ValueError('String lengths must match!' ) __magic_name__ = 0 for chara, chara in zip(a_ , a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
545
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
"""simple docstring""" import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __a ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Dict = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ : Optional[Any] = 10 def snake_case_ ( self , **a__ ): _lowerCamelCase = { 'num_train_timesteps': 2_01, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**a__ ) return config def snake_case_ ( self ): _lowerCamelCase = 10 _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = self.scheduler_classes[0](**a__ ) scheduler.set_timesteps(a__ ) _lowerCamelCase = scheduler.timesteps[0] _lowerCamelCase = scheduler.timesteps[1] _lowerCamelCase = self.dummy_sample _lowerCamelCase = 0.1 * sample _lowerCamelCase = scheduler.step(a__ , a__ , a__ ).prev_sample _lowerCamelCase = scheduler.step(a__ , a__ , a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=a__ ) def snake_case_ ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a__ ) def snake_case_ ( self ): _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**a__ ) _lowerCamelCase = 1 scheduler.set_timesteps(a__ ) _lowerCamelCase = scheduler.timesteps _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a__ ): # 1. scale model input _lowerCamelCase = scheduler.scale_model_input(a__ , a__ ) # 2. predict noise residual _lowerCamelCase = model(a__ , a__ ) # 3. predict previous sample x_t-1 _lowerCamelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ).prev_sample _lowerCamelCase = pred_prev_sample _lowerCamelCase = torch.sum(torch.abs(a__ ) ) _lowerCamelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def snake_case_ ( self ): _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**a__ ) _lowerCamelCase = [1_06, 0] scheduler.set_timesteps(timesteps=a__ ) _lowerCamelCase = scheduler.timesteps _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _lowerCamelCase = scheduler.scale_model_input(a__ , a__ ) # 2. predict noise residual _lowerCamelCase = model(a__ , a__ ) # 3. predict previous sample x_t-1 _lowerCamelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ).prev_sample _lowerCamelCase = pred_prev_sample _lowerCamelCase = torch.sum(torch.abs(a__ ) ) _lowerCamelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def snake_case_ ( self ): _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**a__ ) _lowerCamelCase = [39, 30, 12, 15, 0] with self.assertRaises(a__ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a__ ) def snake_case_ ( self ): _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**a__ ) _lowerCamelCase = [39, 30, 12, 1, 0] _lowerCamelCase = len(a__ ) with self.assertRaises(a__ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a__ , timesteps=a__ ) def snake_case_ ( self ): _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**a__ ) _lowerCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( a__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a__ )
650
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Optional[int] = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
627
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _lowerCamelCase ( lowerCamelCase__ : Optional[int] = "isbn/0140328726" ): lowercase__ : Optional[Any] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: lowercase__ : Optional[int] = f'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def _lowerCamelCase ( lowerCamelCase__ : List[str] ): lowercase__ : int = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } lowercase__ : Dict = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowercase__ : int = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] lowercase__ : Dict = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(a_ , a_ ): lowercase__ : str = """, """.join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __snake_case = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: __snake_case = summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('\n'.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
200
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = tempfile.mkdtemp() snake_case_ : str = BlipImageProcessor() snake_case_ : Tuple = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) snake_case_ : Optional[int] = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase (self , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def lowerCamelCase (self , **__magic_name__ ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def lowerCamelCase (self ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ : List[str] = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ : Any = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) snake_case_ : Tuple = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = self.get_image_processor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : List[str] = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) snake_case_ : Union[str, Any] = self.prepare_image_inputs() snake_case_ : str = image_processor(__magic_name__ , return_tensors='''np''' ) snake_case_ : int = processor(images=__magic_name__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.get_image_processor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : int = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) snake_case_ : Any = '''lower newer''' snake_case_ : Dict = processor(text=__magic_name__ ) snake_case_ : Dict = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : str = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) snake_case_ : str = '''lower newer''' snake_case_ : Any = self.prepare_image_inputs() snake_case_ : str = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.get_image_processor() snake_case_ : int = self.get_tokenizer() snake_case_ : List[Any] = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) snake_case_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : List[str] = processor.batch_decode(__magic_name__ ) snake_case_ : List[Any] = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = self.get_image_processor() snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : List[str] = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) snake_case_ : str = '''lower newer''' snake_case_ : List[Any] = self.prepare_image_inputs() snake_case_ : Any = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
60
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str="shi-labs/oneformer_demo" ) -> Optional[int]: '''simple docstring''' with open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) as f: a__ : Any = json.load(a_ ) a__ : Union[str, Any] = {} a__ : Union[str, Any] = [] a__ : Optional[int] = [] for key, info in class_info.items(): a__ : int = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(a_ ) ) a__ : Any = thing_ids a__ : Optional[Any] = class_names return metadata class __UpperCAmelCase ( unittest.TestCase ): def __init__( self : str , a_ : Optional[int] , a_ : List[Any]=7 , a_ : List[str]=3 , a_ : Tuple=30 , a_ : List[Any]=4_00 , a_ : List[str]=None , a_ : List[str]=True , a_ : str=True , a_ : Optional[Any]=[0.5, 0.5, 0.5] , a_ : Optional[int]=[0.5, 0.5, 0.5] , a_ : List[Any]=10 , a_ : Dict=False , a_ : Any=2_55 , a_ : int="shi-labs/oneformer_demo" , a_ : Tuple="ade20k_panoptic.json" , a_ : List[Any]=10 , ) -> str: '''simple docstring''' a__ : Any = parent a__ : Optional[Any] = batch_size a__ : Union[str, Any] = num_channels a__ : str = min_resolution a__ : Optional[Any] = max_resolution a__ : Any = do_resize a__ : Tuple = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size a__ : Union[str, Any] = do_normalize a__ : Union[str, Any] = image_mean a__ : List[Any] = image_std a__ : List[str] = class_info_file a__ : List[str] = prepare_metadata(a_ , a_ ) a__ : Tuple = num_text a__ : Dict = repo_path # for the post_process_functions a__ : Dict = 2 a__ : int = 10 a__ : Any = 10 a__ : Dict = 3 a__ : List[str] = 4 a__ : Optional[Any] = num_labels a__ : int = do_reduce_labels a__ : Tuple = ignore_index def UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCAmelCase ( self : Dict , a_ : Optional[int] , a_ : Tuple=False ) -> List[str]: '''simple docstring''' if not batched: a__ : str = image_inputs[0] if isinstance(a_ , Image.Image ): a__ , a__ : List[str] = image.size else: a__ , a__ : int = image.shape[1], image.shape[2] if w < h: a__ : Optional[int] = int(self.size["shortest_edge"] * h / w ) a__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: a__ : Optional[Any] = self.size["shortest_edge"] a__ : List[str] = int(self.size["shortest_edge"] * w / h ) else: a__ : List[str] = self.size["shortest_edge"] a__ : Optional[int] = self.size["shortest_edge"] else: a__ : List[Any] = [] for image in image_inputs: a__ , a__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ : List[str] = max(a_ , key=lambda a_ : item[0] )[0] a__ : int = max(a_ , key=lambda a_ : item[1] )[1] return expected_height, expected_width def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowerCamelCase : Any = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __lowerCamelCase : Any = image_processing_class def UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' a__ : Any = OneFormerImageProcessorTester(self ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "image_mean" ) ) self.assertTrue(hasattr(a_ , "image_std" ) ) self.assertTrue(hasattr(a_ , "do_normalize" ) ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "ignore_index" ) ) self.assertTrue(hasattr(a_ , "class_info_file" ) ) self.assertTrue(hasattr(a_ , "num_text" ) ) self.assertTrue(hasattr(a_ , "repo_path" ) ) self.assertTrue(hasattr(a_ , "metadata" ) ) self.assertTrue(hasattr(a_ , "do_reduce_labels" ) ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' a__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input a__ : Optional[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values a__ , a__ : Optional[Any] = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ : Tuple = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) a__ : Union[str, Any] = image_processor( a_ , ["semantic"] * len(a_ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' a__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input a__ : Union[str, Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values a__ , a__ : List[str] = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ : str = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) a__ : Dict = image_processor( a_ , ["semantic"] * len(a_ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' a__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : List[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input a__ : List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values a__ , a__ : List[str] = self.image_processing_tester.get_expected_values(a_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ : str = self.image_processing_tester.get_expected_values(a_ , batched=a_ ) a__ : str = image_processor( a_ , ["semantic"] * len(a_ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self : Union[str, Any] , a_ : Tuple=False , a_ : List[str]=False , a_ : Optional[Any]="np" ) -> Tuple: '''simple docstring''' a__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target a__ : str = self.image_processing_tester.num_labels a__ : Optional[Any] = None a__ : int = None a__ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=a_ ) if with_segmentation_maps: a__ : Optional[Any] = num_labels if is_instance_map: a__ : int = list(range(a_ ) ) * 2 a__ : Any = dict(enumerate(a_ ) ) a__ : Optional[int] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": a__ : str = [Image.fromarray(a_ ) for annotation in annotations] a__ : Optional[int] = image_processor( a_ , ["semantic"] * len(a_ ) , a_ , return_tensors="pt" , instance_id_to_semantic_id=a_ , pad_and_return_pixel_mask=a_ , ) return inputs def UpperCAmelCase ( self : int ) -> int: '''simple docstring''' pass def UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' def common(a_ : Optional[Any]=False , a_ : str=None ): a__ : str = self.comm_get_image_processor_inputs( with_segmentation_maps=a_ , is_instance_map=a_ , segmentation_type=a_ ) a__ : int = inputs["mask_labels"] a__ : Optional[Any] = inputs["class_labels"] a__ : Optional[int] = inputs["pixel_values"] a__ : Tuple = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(a_ , a_ , a_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(a_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=a_ ) common(is_instance_map=a_ , segmentation_type="pil" ) common(is_instance_map=a_ , segmentation_type="pil" ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple = np.zeros((20, 50) ) a__ : Tuple = 1 a__ : int = 1 a__ : Any = 1 a__ : Dict = binary_mask_to_rle(a_ ) self.assertEqual(len(a_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) a__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() a__ : Any = fature_extractor.post_process_semantic_segmentation(a_ ) self.assertEqual(len(a_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) a__ : Any = [(1, 4) for i in range(self.image_processing_tester.batch_size )] a__ : Optional[Any] = fature_extractor.post_process_semantic_segmentation(a_ , target_sizes=a_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCAmelCase ( self : int ) -> Tuple: '''simple docstring''' a__ : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) a__ : str = self.image_processing_tester.get_fake_oneformer_outputs() a__ : List[str] = image_processor.post_process_instance_segmentation(a_ , threshold=0 ) self.assertTrue(len(a_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , a_ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) a__ : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() a__ : List[str] = image_processor.post_process_panoptic_segmentation(a_ , threshold=0 ) self.assertTrue(len(a_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , a_ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
642
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A : int = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class a__ ( __SCREAMING_SNAKE_CASE, unittest.TestCase ): __lowerCAmelCase = PegasusTokenizer __lowerCAmelCase = PegasusTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Dict = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self ): return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def __magic_name__ ( self , **_a ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self , _a ): return ("This is a test", "This is a test") def __magic_name__ ( self ): lowercase : List[Any] = "</s>" lowercase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __magic_name__ ( self ): lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(_a ) , 1_103 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def __magic_name__ ( self ): lowercase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase : Optional[int] = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) lowercase : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] lowercase : List[str] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : Dict = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase : Optional[Any] = "<mask_1> To ensure a <mask_2> flow of bank resolutions." lowercase : str = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] lowercase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 lowercase : Dict = "To ensure a smooth flow of bank resolutions." lowercase : int = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] lowercase : List[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __magic_name__ ( self ): lowercase : Tuple = ["This is going to be way too long." * 150, "short example"] lowercase : int = ["not super long but more than 5 tokens", "tiny"] lowercase : Optional[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="pt" ) lowercase : Dict = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def __magic_name__ ( self ): # fmt: off lowercase : List[Any] = {"input_ids": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class a__ ( __SCREAMING_SNAKE_CASE, unittest.TestCase ): __lowerCAmelCase = PegasusTokenizer __lowerCAmelCase = PegasusTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowercase : int = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self ): return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def __magic_name__ ( self , **_a ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def __magic_name__ ( self , _a ): return ("This is a test", "This is a test") def __magic_name__ ( self ): lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase : Optional[int] = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) lowercase : str = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] lowercase : Union[str, Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def __magic_name__ ( self ): lowercase : Any = ["This is going to be way too long." * 1_000, "short example"] lowercase : Optional[Any] = ["not super long but more than 5 tokens", "tiny"] lowercase : Optional[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="pt" ) lowercase : Dict = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def __magic_name__ ( self ): lowercase : Any = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) lowercase : List[str] = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
361
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowercase : Optional[int] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) lowercase : int = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE__ ): for patt, repl in iter(a_ ): lowercase : Union[str, Any] = name.replace(a_ , a_ ) return f"bert/{name}" def create_tf_var(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Any = tf.dtypes.as_dtype(tensor.dtype ) lowercase : str = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase : List[str] = to_tf_var_name(a_ ) lowercase : Optional[int] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase : Optional[int] = torch_tensor.T lowercase : Tuple = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) lowercase : Any = session.run(a_ ) print(f"Successfully created {tf_name}: {np.allclose(a_ , a_ )}" ) lowercase : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def _snake_case( SCREAMING_SNAKE_CASE__=None ) -> List[Any]: lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=a_ , required=a_ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=a_ , default=a_ , required=a_ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=a_ , required=a_ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=a_ , required=a_ , help="""Directory in which to save tensorflow model""" ) lowercase : Optional[int] = parser.parse_args(a_ ) lowercase : Dict = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
336
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = tempfile.mkdtemp() a_ : str = BlipImageProcessor() a_ : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) a_ : Any = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) a_ : Optional[int] = InstructBlipProcessor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def _lowerCAmelCase ( self , **lowerCAmelCase_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).qformer_tokenizer def _lowerCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] a_ : Union[str, Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) a_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a_ : List[str] = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) a_ : Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.get_image_processor() a_ : int = self.get_tokenizer() a_ : Optional[Any] = self.get_qformer_tokenizer() a_ : Optional[Any] = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) a_ : Dict = self.prepare_image_inputs() a_ : List[str] = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) a_ : Optional[int] = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : int = self.get_qformer_tokenizer() a_ : Optional[int] = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) a_ : Optional[int] = """lower newer""" a_ : List[str] = processor(text=lowerCAmelCase_ ) a_ : Tuple = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) a_ : Optional[Any] = qformer_tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : int = self.get_qformer_tokenizer() a_ : Optional[int] = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) a_ : int = """lower newer""" a_ : List[Any] = self.prepare_image_inputs() a_ : Dict = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : int = self.get_qformer_tokenizer() a_ : str = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) a_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : Dict = processor.batch_decode(lowerCAmelCase_ ) a_ : Optional[Any] = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.get_image_processor() a_ : Optional[int] = self.get_tokenizer() a_ : List[Any] = self.get_qformer_tokenizer() a_ : List[Any] = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) a_ : int = """lower newer""" a_ : int = self.prepare_image_inputs() a_ : Union[str, Any] = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
577
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __snake_case : Dict = logging.get_logger(__name__) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _lowerCamelCase : str =["pixel_values"] def __init__( self : Tuple , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _lowerCamelCase : bool = True , _lowerCamelCase : Union[int, float] = 1 / 2_5_5 , _lowerCamelCase : bool = True , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = True , **_lowerCamelCase : List[Any] , ): super().__init__(**_lowerCamelCase ) A__ = size if size is not None else {'''shortest_edge''': 2_2_4} A__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A__ = crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} A__ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_center_crop A__ = crop_size A__ = do_flip_channel_order def A__ ( self : List[Any] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : PILImageResampling = PIL.Image.BILINEAR , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Optional[Any] , ): A__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) A__ = get_resize_output_image_size(_lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : Dict[str, int] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : Optional[int] , ): A__ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : str , _lowerCamelCase : np.ndarray , _lowerCamelCase : Union[int, float] , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCamelCase : List[Any] , ): return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def A__ ( self : Tuple , _lowerCamelCase : np.ndarray , _lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(_lowerCamelCase , data_format=_lowerCamelCase ) def A__ ( self : Union[str, Any] , _lowerCamelCase : ImageInput , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : PILImageResampling = None , _lowerCamelCase : bool = None , _lowerCamelCase : float = None , _lowerCamelCase : bool = None , _lowerCamelCase : Dict[str, int] = None , _lowerCamelCase : bool = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCamelCase : str , ): A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) A__ = size if size is not None else self.size A__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' ) A__ = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: A__ = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: A__ = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: A__ = [self.flip_channel_order(image=_lowerCamelCase ) for image in images] A__ = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] A__ = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) def A__ ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Tuple] = None ): A__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_lowerCamelCase ): A__ = target_sizes.numpy() A__ = [] for idx in range(len(_lowerCamelCase ) ): A__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_lowerCamelCase ) A__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCamelCase ) else: A__ = logits.argmax(dim=1 ) A__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
571
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Tuple = set({"(", "[", "{"} ) __SCREAMING_SNAKE_CASE : List[str] = set({")", "]", "}"} ) __SCREAMING_SNAKE_CASE : List[Any] = {"{": "}", "[": "]", "(": ")"} for i in range(len(a_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(a_ ) == 0 or (len(a_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(a_ ) == 0 def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = input("Enter sequence of brackets: " ) if is_balanced(a_ ): print(a_ , "is balanced" ) else: print(a_ , "is not balanced" ) if __name__ == "__main__": main()
211
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) snake_case : List[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A ( __snake_case: Dict , __snake_case: Optional[int] ) -> int: """simple docstring""" inspect_dataset(a_ , a_ ) __magic_name__ = path + '.py' assert script_name in os.listdir(a_ ) assert "__pycache__" not in os.listdir(a_ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A ( __snake_case: Optional[Any] , __snake_case: Union[str, Any] ) -> Optional[int]: """simple docstring""" inspect_metric(a_ , a_ ) __magic_name__ = path + '.py' assert script_name in os.listdir(a_ ) assert "__pycache__" not in os.listdir(a_ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A ( __snake_case: Union[str, Any] , __snake_case: Tuple , __snake_case: int ) -> Optional[Any]: """simple docstring""" __magic_name__ = get_dataset_config_info(a_ , config_name=a_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A ( __snake_case: Optional[int] , __snake_case: Union[str, Any] , __snake_case: Optional[int] ) -> Union[str, Any]: """simple docstring""" with pytest.raises(a_ ): get_dataset_config_info(a_ , config_name=a_ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A ( __snake_case: int , __snake_case: str ) -> Tuple: """simple docstring""" __magic_name__ = get_dataset_config_names(a_ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A ( __snake_case: int , __snake_case: Union[str, Any] , __snake_case: Optional[int] ) -> int: """simple docstring""" __magic_name__ = get_dataset_infos(a_ ) assert list(infos.keys() ) == expected_configs __magic_name__ = expected_configs[0] assert expected_config in infos __magic_name__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A ( __snake_case: int , __snake_case: Any , __snake_case: List[str] ) -> int: """simple docstring""" __magic_name__ = get_dataset_infos(a_ ) assert expected_config in infos __magic_name__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A ( __snake_case: Tuple , __snake_case: List[str] , __snake_case: Any ) -> Union[str, Any]: """simple docstring""" with pytest.raises(a_ ): get_dataset_split_names(a_ , config_name=a_ )
545
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Dict =logging.get_logger(__name__) A_ : str ={ 'nielsr/canine-s': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” A_ : int =1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py A_ : int =0 A_ : Optional[int] =0xE_000 A_ : Dict =0xE_001 A_ : List[Any] =0xE_002 A_ : int =0xE_003 A_ : Any =0xE_004 # Maps special codepoints to human-readable names. A_ : Dict[int, str] ={ # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. A_ : Dict[str, int] ={name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __a ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , a__=chr(a__ ) , a__=chr(a__ ) , a__=chr(a__ ) , a__=chr(a__ ) , a__=chr(a__ ) , a__=chr(a__ ) , a__=False , a__=20_48 , **a__ , ): _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , model_max_length=a__ , **a__ , ) # Creates a mapping for looking up the IDs of special symbols. _lowerCamelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowerCamelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowerCamelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } _lowerCamelCase = UNICODE_VOCAB_SIZE _lowerCamelCase = len(self._special_codepoints ) @property def snake_case_ ( self ): return self._unicode_vocab_size def snake_case_ ( self , a__ ): return list(a__ ) def snake_case_ ( self , a__ ): try: return ord(a__ ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def snake_case_ ( self , a__ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(a__ ) except TypeError: raise ValueError(F'invalid id: {index}' ) def snake_case_ ( self , a__ ): return "".join(a__ ) def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case_ ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) _lowerCamelCase = [1] + ([0] * len(a__ )) + [1] if token_ids_a is not None: result += ([0] * len(a__ )) + [1] return result def snake_case_ ( self , a__ , a__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def snake_case_ ( self , a__ , a__ = None ): return ()
650
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ = "nllb-moe" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Dict=128_112 , __SCREAMING_SNAKE_CASE : Optional[Any]=1_024 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4_096 , __SCREAMING_SNAKE_CASE : Dict=16 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=4_096 , __SCREAMING_SNAKE_CASE : Optional[int]=16 , __SCREAMING_SNAKE_CASE : List[Any]=0.05 , __SCREAMING_SNAKE_CASE : List[Any]=0.05 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]="relu" , __SCREAMING_SNAKE_CASE : Tuple=1_024 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : int="float32" , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Tuple=128 , __SCREAMING_SNAKE_CASE : str=64 , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : Tuple=0.001 , __SCREAMING_SNAKE_CASE : int=0.001 , __SCREAMING_SNAKE_CASE : List[Any]="all" , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : str=0.2 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = router_z_loss_coef __SCREAMING_SNAKE_CASE = router_aux_loss_coef __SCREAMING_SNAKE_CASE = decoder_sparse_step __SCREAMING_SNAKE_CASE = encoder_sparse_step __SCREAMING_SNAKE_CASE = num_experts __SCREAMING_SNAKE_CASE = expert_capacity __SCREAMING_SNAKE_CASE = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) __SCREAMING_SNAKE_CASE = router_dtype __SCREAMING_SNAKE_CASE = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE = batch_prioritized_routing __SCREAMING_SNAKE_CASE = second_expert_policy __SCREAMING_SNAKE_CASE = normalize_router_prob_before_dropping __SCREAMING_SNAKE_CASE = moe_eval_capacity_token_fraction __SCREAMING_SNAKE_CASE = moe_token_dropout __SCREAMING_SNAKE_CASE = output_router_logits super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
627
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class _lowercase ( __lowercase ): def __init__( self : Any , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> List[str]: __snake_case = {} if "candidate_labels" in kwargs: __snake_case = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __snake_case = kwargs['hypothesis_template'] return preprocess_params, {}, {} def a ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Optional[Any]="This is a photo of {}." ) -> Dict: __snake_case = load_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.image_processor(images=[image] , return_tensors=self.framework ) __snake_case = candidate_labels __snake_case = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels] __snake_case = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ ) __snake_case = [text_inputs] return inputs def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: __snake_case = model_inputs.pop('candidate_labels' ) __snake_case = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ): __snake_case = text_inputs[0] else: # Batching case. __snake_case = text_inputs[0][0] __snake_case = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: __snake_case = model_outputs.pop('candidate_labels' ) __snake_case = model_outputs['logits'][0] if self.framework == "pt": __snake_case = logits.softmax(dim=-1 ).squeeze(-1 ) __snake_case = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = [scores] elif self.framework == "tf": __snake_case = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __snake_case = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __snake_case = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] ) ] return result
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _a : List[str] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _a (lowercase__ : Dict ) -> Tuple: """simple docstring""" if isinstance(lowercase__ , torch.Tensor ): return image elif isinstance(lowercase__ , PIL.Image.Image ): __snake_case = [image] __snake_case = [trans(img.convert('RGB' ) ) for img in image] __snake_case = torch.stack(lowercase__ ) return image class _lowercase ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM __snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> str: if strength < 0 or strength > 1: raise ValueError(f'The value of strength should in [0.0, 1.0] but is {strength}' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ) -> str: # get the original timestep using init_timestep __snake_case = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) __snake_case = max(num_inference_steps - init_timestep , 0 ) __snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> List[str]: if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}' ) __snake_case = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __snake_case = init_latents.shape __snake_case = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents print('add noise to latents at timestep' , SCREAMING_SNAKE_CASE_ ) __snake_case = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[torch.FloatTensor, PIL.Image.Image] = None , SCREAMING_SNAKE_CASE_ : float = 0.8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : int = 50 , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(SCREAMING_SNAKE_CASE_ ) # 2. Preprocess image __snake_case = preprocess(SCREAMING_SNAKE_CASE_ ) # 3. set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) __snake_case , __snake_case = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) __snake_case = timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # 4. Prepare latent variables __snake_case = self.prepare_latents(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.unet.dtype , self.device , SCREAMING_SNAKE_CASE_ ) __snake_case = latents # 5. Denoising loop for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # 1. predict noise model_output __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , use_clipped_model_output=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ).prev_sample __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") _a : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) _a : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _a (lowercase__ : str ) -> int: """simple docstring""" with open(lowercase__ , 'rb' ) as f: __snake_case = Image.open(lowercase__ ) return im.convert('RGB' ) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={"help": "A folder containing the training data."} ) _SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={"help": "A folder containing the validation data."} ) _SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def a ( self : List[Any] ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(__lowercase )} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) _SCREAMING_SNAKE_CASE : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) _SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={"help": "Name or path of preprocessor config."} ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) _SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _a (lowercase__ : int ) -> Dict: """simple docstring""" __snake_case = torch.stack([example['pixel_values'] for example in examples] ) __snake_case = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _a () -> Optional[int]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: __snake_case = {} if data_args.train_dir is not None: __snake_case = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: __snake_case = os.path.join(data_args.validation_dir , '**' ) __snake_case = load_dataset( 'imagefolder' , data_files=lowercase__ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. __snake_case = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: __snake_case = dataset['train'].train_test_split(data_args.train_val_split ) __snake_case = split['train'] __snake_case = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __snake_case = dataset['train'].features['labels'].names __snake_case , __snake_case = {}, {} for i, label in enumerate(lowercase__ ): __snake_case = str(lowercase__ ) __snake_case = label # Load the accuracy metric from the datasets package __snake_case = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase__ : Any ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __snake_case = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel=lowercase__ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __snake_case = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __snake_case = image_processor.size['shortest_edge'] else: __snake_case = (image_processor.size['height'], image_processor.size['width']) __snake_case = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __snake_case = Compose( [ RandomResizedCrop(lowercase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __snake_case = Compose( [ Resize(lowercase__ ), CenterCrop(lowercase__ ), ToTensor(), normalize, ] ) def train_transforms(lowercase__ : Optional[Any] ): __snake_case = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(lowercase__ : Optional[Any] ): __snake_case = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __snake_case = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __snake_case = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase__ ) # Initalize our trainer __snake_case = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=lowercase__ , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __snake_case = trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub __snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) if __name__ == "__main__": main()
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = RoFormerTokenizer _SCREAMING_SNAKE_CASE : Tuple = RoFormerTokenizerFast _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : List[Any] = True def a ( self : Tuple ) -> Optional[Any]: super().setUp() def a ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Dict: return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> str: __snake_case = '永和服装饰品有限公司,今天天气非常好' __snake_case = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def a ( self : Dict ) -> int: __snake_case = self.get_tokenizer() __snake_case , __snake_case = self.get_chinese_input_output_texts() __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split() ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> Optional[int]: __snake_case = self.get_rust_tokenizer() __snake_case , __snake_case = self.get_chinese_input_output_texts() __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split() ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> List[str]: pass def a ( self : int ) -> Optional[Any]: pass def a ( self : str ) -> Tuple: pass
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _a : Optional[int] = "scheduler_config.json" class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = 1 _SCREAMING_SNAKE_CASE : Any = 2 _SCREAMING_SNAKE_CASE : int = 3 _SCREAMING_SNAKE_CASE : str = 4 _SCREAMING_SNAKE_CASE : int = 5 @dataclass class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : jnp.ndarray class _lowercase : _SCREAMING_SNAKE_CASE : Optional[Any] = SCHEDULER_CONFIG_NAME _SCREAMING_SNAKE_CASE : Any = ["dtype"] _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Any = True @classmethod def a ( cls : List[Any] , SCREAMING_SNAKE_CASE_ : Dict[str, Any] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : List[Any]=False , **SCREAMING_SNAKE_CASE_ : Dict , ) -> Dict: __snake_case , __snake_case = cls.load_config( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case , __snake_case = cls.from_config(SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , 'create_state' ) and getattr(SCREAMING_SNAKE_CASE_ , 'has_state' , SCREAMING_SNAKE_CASE_ ): __snake_case = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def a ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Union[str, Any]: self.save_config(save_directory=SCREAMING_SNAKE_CASE_ , push_to_hub=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def a ( self : Optional[Any] ) -> Optional[int]: return self._get_compatibles() @classmethod def a ( cls : Any ) -> int: __snake_case = list(set([cls.__name__] + cls._compatibles ) ) __snake_case = importlib.import_module(__name__.split('.' )[0] ) __snake_case = [ getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c in compatible_classes_str if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] return compatible_classes def _a (lowercase__ : jnp.ndarray , lowercase__ : Tuple[int] ) -> jnp.ndarray: """simple docstring""" assert len(lowercase__ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase__ ) - x.ndim) ) , lowercase__ ) def _a (lowercase__ : int , lowercase__ : Optional[Any]=0.9_99 , lowercase__ : Dict=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(lowercase__ : Union[str, Any] ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 __snake_case = [] for i in range(lowercase__ ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase__ ) / alpha_bar(lowercase__ ) , lowercase__ ) ) return jnp.array(lowercase__ , dtype=lowercase__ ) @flax.struct.dataclass class _lowercase : _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray _SCREAMING_SNAKE_CASE : jnp.ndarray @classmethod def a ( cls : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: __snake_case = scheduler.config if config.trained_betas is not None: __snake_case = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case = 1.0 - betas __snake_case = jnp.cumprod(SCREAMING_SNAKE_CASE_ , axis=0 ) return cls( alphas=SCREAMING_SNAKE_CASE_ , betas=SCREAMING_SNAKE_CASE_ , alphas_cumprod=SCREAMING_SNAKE_CASE_ , ) def _a (lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ) -> Optional[int]: """simple docstring""" __snake_case = state.alphas_cumprod __snake_case = alphas_cumprod[timesteps] ** 0.5 __snake_case = sqrt_alpha_prod.flatten() __snake_case = broadcast_to_shape_from_left(lowercase__ , original_samples.shape ) __snake_case = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case = sqrt_one_minus_alpha_prod.flatten() __snake_case = broadcast_to_shape_from_left(lowercase__ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _a (lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ) -> int: """simple docstring""" __snake_case , __snake_case = get_sqrt_alpha_prod(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __snake_case = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _a (lowercase__ : CommonSchedulerState , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray , lowercase__ : jnp.ndarray ) -> List[Any]: """simple docstring""" __snake_case , __snake_case = get_sqrt_alpha_prod(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __snake_case = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = (DDPMScheduler,) def a ( self : Any , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Tuple: __snake_case = { 'num_train_timesteps': 1000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def a ( self : List[Any] ) -> Dict: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] ) -> Dict: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Any: self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def a ( self : List[Any] ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> Optional[int]: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def a ( self : Union[str, Any] ) -> int: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter __snake_case = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE_ ) ): # 1. predict noise residual __snake_case = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 __snake_case = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __snake_case = pred_prev_sample __snake_case = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def a ( self : Any ) -> int: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(prediction_type='v_prediction' ) __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter __snake_case = torch.manual_seed(0 ) for t in reversed(range(SCREAMING_SNAKE_CASE_ ) ): # 1. predict noise residual __snake_case = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict previous mean of sample x_t-1 __snake_case = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __snake_case = pred_prev_sample __snake_case = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def a ( self : Union[str, Any] ) -> List[Any]: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) __snake_case = scheduler.timesteps for i, timestep in enumerate(SCREAMING_SNAKE_CASE_ ): if i == len(SCREAMING_SNAKE_CASE_ ) - 1: __snake_case = -1 else: __snake_case = timesteps[i + 1] __snake_case = scheduler.previous_timestep(SCREAMING_SNAKE_CASE_ ) __snake_case = prev_t.item() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> Tuple: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = [100, 87, 50, 51, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Any: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = [100, 87, 50, 1, 0] __snake_case = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> str: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _a : str = False class _lowercase ( unittest.TestCase ): def a ( self : List[str] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a ( self : Union[str, Any] ) -> Dict: return 12 @property def a ( self : Dict ) -> Tuple: return 12 @property def a ( self : List[Any] ) -> List[str]: return 32 @property def a ( self : int ) -> List[str]: torch.manual_seed(0 ) __snake_case = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def a ( self : List[Any] ) -> Optional[int]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE_ ) @property def a ( self : Tuple ) -> Any: torch.manual_seed(0 ) __snake_case = 12 __snake_case = 12 __snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __snake_case = TransformeraDModel(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : List[str] ) -> str: __snake_case = 'cpu' __snake_case = self.dummy_vqvae __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_transformer __snake_case = VQDiffusionScheduler(self.num_embed ) __snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=SCREAMING_SNAKE_CASE_ ) __snake_case = VQDiffusionPipeline( vqvae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , transformer=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE_ , ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 'teddy bear playing in the pool' __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='np' ) __snake_case = output.images __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , return_dict=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> Dict: __snake_case = 'cpu' __snake_case = self.dummy_vqvae __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_transformer __snake_case = VQDiffusionScheduler(self.num_embed ) __snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=SCREAMING_SNAKE_CASE_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __snake_case = VQDiffusionPipeline( vqvae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , transformer=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE_ , ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 'teddy bear playing in the pool' __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='np' ) __snake_case = output.images __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , return_dict=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : str ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Tuple ) -> Dict: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __snake_case = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : list[int] , lowercase__ : int ) -> list[int]: """simple docstring""" __snake_case = 0 __snake_case = len(lowercase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __snake_case = i + 1 else: __snake_case = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) _a : int = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _a : str = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _a (lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Dict ) -> int: """simple docstring""" for attribute in key.split('.' ): __snake_case = getattr(lowercase__ , lowercase__ ) if weight_type is not None: __snake_case = getattr(lowercase__ , lowercase__ ).shape else: __snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value else: __snake_case = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a (lowercase__ : Any , lowercase__ : List[Any] ) -> int: """simple docstring""" __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == 'group' , ) __snake_case = True else: for key, mapped_key in MAPPING.items(): __snake_case = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue __snake_case = True if "*" in mapped_key: __snake_case = name.split(lowercase__ )[0].split('.' )[-2] __snake_case = mapped_key.replace('*' , lowercase__ ) if "weight_g" in name: __snake_case = 'weight_g' elif "weight_v" in name: __snake_case = 'weight_v' elif "bias" in name: __snake_case = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case = 'weight' else: __snake_case = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def _a (lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = full_name.split('conv_layers.' )[-1] __snake_case = name.split('.' ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __snake_case = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __snake_case = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) __snake_case = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __snake_case = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple=None , lowercase__ : Any=None , lowercase__ : List[str]=True ) -> Dict: """simple docstring""" if config_path is not None: __snake_case = UniSpeechSatConfig.from_pretrained(lowercase__ ) else: __snake_case = UniSpeechSatConfig() __snake_case = '' if is_finetuned: __snake_case = UniSpeechSatForCTC(lowercase__ ) else: __snake_case = UniSpeechSatForPreTraining(lowercase__ ) __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __snake_case = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": _a : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _a : Union[str, Any] = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : Dict = {"vocab_file": "spm_char.model"} _a : Optional[int] = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } _a : List[Any] = { "microsoft/speecht5_asr": 1_024, "microsoft/speecht5_tts": 1_024, "microsoft/speecht5_vc": 1_024, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Dict="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : List[str]="<pad>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> None: __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def a ( self : int ) -> Dict: return self.sp_model.get_piece_size() def a ( self : List[str] ) -> Dict: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> str: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: __snake_case = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: __snake_case = [] __snake_case = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = [1] if token_ids_a is None: return ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones return ([0] * len(SCREAMING_SNAKE_CASE_ )) + ([0] * len(SCREAMING_SNAKE_CASE_ )) + suffix_ones def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def _a (lowercase__ : List[Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) __snake_case = DatasetInfosDict.from_directory(lowercase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=4_2 , ), ] , ) def _a (lowercase__ : Optional[int] , lowercase__ : DatasetInfo ) -> int: """simple docstring""" __snake_case = str(lowercase__ ) dataset_info.write_to_directory(lowercase__ ) __snake_case = DatasetInfo.from_directory(lowercase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase__ , 'dataset_info.json' ) ) def _a () -> Any: """simple docstring""" __snake_case = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) __snake_case = dataset_info._to_yaml_dict() assert sorted(lowercase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __snake_case = yaml.safe_dump(lowercase__ ) __snake_case = yaml.safe_load(lowercase__ ) assert dataset_info_yaml_dict == reloaded def _a () -> Optional[Any]: """simple docstring""" __snake_case = DatasetInfo() __snake_case = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=4_2 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=4_2 ), 'v2': DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def _a (lowercase__ : Tuple , lowercase__ : DatasetInfosDict ) -> str: """simple docstring""" __snake_case = str(lowercase__ ) dataset_infos_dict.write_to_directory(lowercase__ ) __snake_case = DatasetInfosDict.from_directory(lowercase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __snake_case = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __snake_case = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase__ , 'README.md' ) )
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _a : List[Any] = logging.get_logger(__name__) # General docstring _a : Union[str, Any] = "MobileNetV1Config" # Base docstring _a : int = "google/mobilenet_v1_1.0_224" _a : Any = [1, 1_024, 7, 7] # Image classification docstring _a : Any = "google/mobilenet_v1_1.0_224" _a : Tuple = "tabby, tabby cat" _a : Tuple = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Tuple=None ) -> Optional[int]: """simple docstring""" __snake_case = {} if isinstance(lowercase__ , lowercase__ ): __snake_case = model.mobilenet_va else: __snake_case = model __snake_case = 'MobilenetV1/Conv2d_0/' __snake_case = backbone.conv_stem.convolution.weight __snake_case = backbone.conv_stem.normalization.bias __snake_case = backbone.conv_stem.normalization.weight __snake_case = backbone.conv_stem.normalization.running_mean __snake_case = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __snake_case = i + 1 __snake_case = i * 2 __snake_case = backbone.layer[pt_index] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var __snake_case = backbone.layer[pt_index + 1] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): __snake_case = 'MobilenetV1/Logits/Conv2d_1c_1x1/' __snake_case = model.classifier.weight __snake_case = model.classifier.bias return tf_to_pt_map def _a (lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> str: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model __snake_case = tf.train.list_variables(lowercase__ ) __snake_case = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) __snake_case = tf.train.load_variable(lowercase__ , lowercase__ ) __snake_case = array # Build TF to PyTorch weights loading map __snake_case = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue __snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) __snake_case = np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer __snake_case = array.squeeze().transpose() else: __snake_case = np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) __snake_case = torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + '/RMSProp' , lowercase__ ) tf_weights.pop(name + '/RMSProp_1' , lowercase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , lowercase__ ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def _a (lowercase__ : torch.Tensor , lowercase__ : nn.Convad ) -> torch.Tensor: """simple docstring""" __snake_case , __snake_case = features.shape[-2:] __snake_case , __snake_case = conv_layer.stride __snake_case , __snake_case = conv_layer.kernel_size if in_height % stride_height == 0: __snake_case = max(kernel_height - stride_height , 0 ) else: __snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __snake_case = max(kernel_width - stride_width , 0 ) else: __snake_case = max(kernel_width - (in_width % stride_width) , 0 ) __snake_case = pad_along_width // 2 __snake_case = pad_along_width - pad_left __snake_case = pad_along_height // 2 __snake_case = pad_along_height - pad_top __snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , 'constant' , 0.0 ) class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool or str] = True , ) -> None: super().__init__() __snake_case = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) __snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __snake_case = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , padding_mode='zeros' , ) if use_normalization: __snake_case = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE_ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=SCREAMING_SNAKE_CASE_ , track_running_stats=SCREAMING_SNAKE_CASE_ , ) else: __snake_case = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[config.hidden_act] else: __snake_case = config.hidden_act else: __snake_case = None def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: __snake_case = apply_tf_padding(SCREAMING_SNAKE_CASE_ , self.convolution ) __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) if self.normalization is not None: __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) if self.activation is not None: __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return features class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = MobileNetVaConfig _SCREAMING_SNAKE_CASE : Optional[Any] = load_tf_weights_in_mobilenet_va _SCREAMING_SNAKE_CASE : Any = "mobilenet_v1" _SCREAMING_SNAKE_CASE : Optional[Any] = "pixel_values" _SCREAMING_SNAKE_CASE : List[Any] = False def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _a : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : bool = True ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config __snake_case = 32 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) __snake_case = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=2 , ) __snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __snake_case = nn.ModuleList() for i in range(13 ): __snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE_ , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=1 , ) ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __snake_case = self.conv_stem(SCREAMING_SNAKE_CASE_ ) __snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __snake_case = layer_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __snake_case = all_hidden_states + (hidden_states,) __snake_case = hidden_states if self.pooler is not None: __snake_case = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE_ ) , start_dim=1 ) else: __snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig ) -> None: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config.num_labels __snake_case = MobileNetVaModel(SCREAMING_SNAKE_CASE_ ) __snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE_ ) __snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.mobilenet_va(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(self.dropout(SCREAMING_SNAKE_CASE_ ) ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , )
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Optional[int] = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowercase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = StableUnCLIPPipeline _SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE : Any = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _SCREAMING_SNAKE_CASE : Optional[int] = False def a ( self : Tuple ) -> Any: __snake_case = 32 __snake_case = embedder_hidden_size # prior components torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __snake_case = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE_ , projection_dim=SCREAMING_SNAKE_CASE_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __snake_case = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=SCREAMING_SNAKE_CASE_ , num_layers=1 , ) torch.manual_seed(0 ) __snake_case = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) __snake_case = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE_ ) __snake_case = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __snake_case = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=SCREAMING_SNAKE_CASE_ , layers_per_block=1 , upcast_attention=SCREAMING_SNAKE_CASE_ , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL() __snake_case = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0 ) -> Optional[Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a ( self : int ) -> str: __snake_case = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[Any]: __snake_case = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Any ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> List[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) __snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = torch.Generator(device='cpu' ).manual_seed(0 ) __snake_case = pipe('anime turle' , generator=SCREAMING_SNAKE_CASE_ , output_type='np' ) __snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _a : str = TypeVar("T") _a : Dict = Union[List[T], Tuple[T, ...]] _a : str = Union[T, List[T], Dict[str, T]] _a : Union[str, Any] = Union[str, bytes, os.PathLike]
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _a : int = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def _a (lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = test_results.split(' ' ) __snake_case = 0 __snake_case = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __snake_case = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = {} __snake_case = None __snake_case = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , lowercase__ ): __snake_case = True __snake_case = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): __snake_case = line __snake_case = False return failures class _lowercase : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ) -> str: __snake_case = title __snake_case = doc_test_results['time_spent'].split(',' )[0] __snake_case = doc_test_results['success'] __snake_case = doc_test_results['failures'] __snake_case = self.n_success + self.n_failures # Failures and success of the modeling tests __snake_case = doc_test_results @property def a ( self : List[str] ) -> str: __snake_case = [self._time_spent] __snake_case = 0 for time in time_spent: __snake_case = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE_ ) == 1: __snake_case = [0, 0, time_parts[0]] __snake_case , __snake_case , __snake_case = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds __snake_case , __snake_case , __snake_case = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'{int(SCREAMING_SNAKE_CASE_ )}h{int(SCREAMING_SNAKE_CASE_ )}m{int(SCREAMING_SNAKE_CASE_ )}s' @property def a ( self : Any ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def a ( self : Tuple ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def a ( self : List[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def a ( self : Optional[int] ) -> Dict: __snake_case = 40 __snake_case = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} __snake_case = '' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE_ ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def a ( self : Union[str, Any] ) -> str: __snake_case = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE_ ) @staticmethod def a ( ) -> Union[str, Any]: __snake_case = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE_ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE_ , ) def a ( self : Optional[Any] ) -> Dict: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) __snake_case = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' __snake_case = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE_ , ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: __snake_case = '' for key, value in failures.items(): __snake_case = value[:200] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE_ ) > 250 else value failures_text += f'*{key}*\n_{value}_\n\n' __snake_case = job_name __snake_case = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: __snake_case = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def a ( self : int ) -> Dict: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) __snake_case = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) __snake_case = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): __snake_case = f'*Num failures* :{len(job_result["failed"] )} \n' __snake_case = job_result['failures'] __snake_case = self.get_reply_blocks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def _a () -> Tuple: """simple docstring""" __snake_case = os.environ['GITHUB_RUN_ID'] __snake_case = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' __snake_case = requests.get(lowercase__ ).json() __snake_case = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) __snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): __snake_case = requests.get(url + f'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , lowercase__ ) return {} def _a (lowercase__ : str ) -> int: """simple docstring""" __snake_case = {} if os.path.exists(lowercase__ ): __snake_case = os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding='utf-8' ) as f: __snake_case = f.read() except UnicodeDecodeError as e: raise ValueError(f'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def _a () -> List[str]: """simple docstring""" class _lowercase : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> int: __snake_case = name __snake_case = [] def __str__( self : Optional[int] ) -> Union[str, Any]: return self.name def a ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> Any: self.paths.append({'name': self.name, 'path': path} ) __snake_case = {} __snake_case = filter(os.path.isdir , os.listdir() ) for directory in directories: __snake_case = directory if artifact_name not in _available_artifacts: __snake_case = Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": _a : Any = get_job_links() _a : Optional[int] = retrieve_available_artifacts() _a : Dict = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _a : Dict = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _a : Optional[int] = github_actions_job_links.get("run_doctests") _a : str = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _a : Union[str, Any] = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _a , _a , _a : Optional[Any] = handle_test_results(artifact["stats"]) _a : Optional[int] = failed _a : Tuple = success _a : Dict = time_spent[1:-1] + ", " _a : int = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _a : Tuple = line.replace("FAILED ", "") _a : List[str] = line.split()[0].replace("\n", "") if "::" in line: _a , _a : List[Any] = line.split("::") else: _a , _a : List[str] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _a : int = docs[file_regex] doc_test_results[category]["failed"].append(test) _a : Optional[int] = all_failures[test] if test in all_failures else "N/A" _a : Tuple = failure break _a : Any = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _a (lowercase__ : Dict , lowercase__ : Any ) -> Any: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = torch.permute(lowercase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase__ ): # linear layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _a (lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Optional[int] ) -> List[Any]: """simple docstring""" if "metadata" in layer: __snake_case = layer.split('metadata' ) __snake_case = ''.join(split_layer[0] )[:-1] __snake_case = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __snake_case = layer.split('kvstore' ) __snake_case = ''.join(split_layer[0] )[:-1] __snake_case = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __snake_case = layer.split('/' ) __snake_case = '/'.join(split_layer[:-1] ) __snake_case = (split_layer[-1],) if "kvstore/path" in layer: __snake_case = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: __snake_case = 'file' else: __snake_case = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _a (lowercase__ : Optional[int] , lowercase__ : Dict ) -> Any: """simple docstring""" __snake_case = rename_keys(lowercase__ ) __snake_case = {} for k, v in current_block.items(): __snake_case = v __snake_case = new_current_block torch.save(lowercase__ , lowercase__ ) def _a (lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : str = WEIGHTS_NAME ) -> str: """simple docstring""" __snake_case = convert_file_size_to_int(lowercase__ ) __snake_case = [] __snake_case = {} __snake_case = 0 __snake_case = 0 os.makedirs(lowercase__ , exist_ok=lowercase__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __snake_case = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __snake_case = flatten_dict(lowercase__ , sep='/' ) __snake_case = {} for layer in checkpoint_info.keys(): __snake_case , __snake_case , __snake_case = get_key_and_tensorstore_dict( lowercase__ , lowercase__ , lowercase__ ) if curr_real_layer_name in all_layers: __snake_case = content else: __snake_case = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __snake_case = torch.tensor(lowercase__ ) __snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __snake_case , __snake_case = rename_base_flax_keys(tuple(key.split('/' ) ) , lowercase__ ) __snake_case = '/'.join(lowercase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __snake_case = os.path.join( lowercase__ , weights_name.replace('.bin' , f'-{len(lowercase__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(lowercase__ , lowercase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __snake_case = {} __snake_case = 0 __snake_case = raw_weights.to(getattr(lowercase__ , lowercase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __snake_case = os.path.join(lowercase__ , weights_name.replace('.bin' , f'-{len(lowercase__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(lowercase__ , lowercase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __snake_case = {} __snake_case = {} for idx, shard in enumerate(lowercase__ ): __snake_case = weights_name.replace( '.bin' , f'-{idx+1:05d}-of-{len(lowercase__ ):05d}.bin' ) # len(sharded_state_dicts):05d} __snake_case = os.path.join(lowercase__ , weights_name.replace('.bin' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) __snake_case = shard for key in shard: __snake_case = shard_file # Add the metadata __snake_case = {'total_size': total_size} __snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowercase__ , lowercase__ ) , 'w' , encoding='utf-8' ) as f: __snake_case = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + '\n' f.write(lowercase__ ) return metadata, index if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) _a : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _a () -> Tuple: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __snake_case = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __snake_case = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __snake_case = TaTokenizer.from_pretrained('t5-small' ) __snake_case = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __snake_case = tokenizer(lowercase__ , return_tensors='pt' ).input_ids __snake_case = model.generate(lowercase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _a : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( __lowercase ): def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : str ) -> None: warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _a : str = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _a : str = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _a : int = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _a : int = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _a : Optional[int] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _a : Union[str, Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _a : Any = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def _a () -> str: """simple docstring""" __snake_case , __snake_case = randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) __snake_case = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __snake_case , __snake_case = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _a (lowercase__ : int = 1_0_0 ) -> Optional[int]: """simple docstring""" return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : Optional[int] , lowercase__ : Any ) -> Dict: """simple docstring""" assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> List[Any]: """simple docstring""" assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowercase__ ) def _a (lowercase__ : int , lowercase__ : Tuple , lowercase__ : List[str] ) -> str: """simple docstring""" __snake_case = PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : str , lowercase__ : int ) -> Any: """simple docstring""" assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _a (lowercase__ : List[str] , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowercase__ ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> str: """simple docstring""" assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _a (lowercase__ : int , lowercase__ : int , lowercase__ : List[str] ) -> str: """simple docstring""" assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def _a () -> Any: """simple docstring""" __snake_case = [PokerHand(lowercase__ ) for hand in SORTED_HANDS] __snake_case = poker_hands.copy() shuffle(lowercase__ ) __snake_case = chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def _a () -> str: """simple docstring""" # Test that five high straights are compared correctly. __snake_case = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _a () -> Dict: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. __snake_case = PokerHand('2C 4S AS 3D 5C' ) __snake_case = True __snake_case = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _a () -> Any: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file __snake_case = 0 __snake_case = os.path.abspath(os.path.dirname(lowercase__ ) ) __snake_case = os.path.join(lowercase__ , 'poker_hands.txt' ) with open(lowercase__ ) as file_hand: for line in file_hand: __snake_case = line[:1_4].strip() __snake_case = line[1_5:].strip() __snake_case , __snake_case = PokerHand(lowercase__ ), PokerHand(lowercase__ ) __snake_case = player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' from collections import namedtuple _a : Optional[Any] = namedtuple("from_to", "from_ to") _a : List[Any] = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00_454, 264.172), "cubicyard": from_to(0.76_455, 1.30_795), "cubicfoot": from_to(0.028, 35.3_147), "cup": from_to(0.000_236_588, 4_226.75), } def _a (lowercase__ : float , lowercase__ : str , lowercase__ : str ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(lowercase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(lowercase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=13 , SCREAMING_SNAKE_CASE_ : Any=10 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Any=5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4 , SCREAMING_SNAKE_CASE_ : Tuple=37 , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=10 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.9 , SCREAMING_SNAKE_CASE_ : List[Any]=None , ) -> Union[str, Any]: __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = patch_size __snake_case = tubelet_size __snake_case = num_frames __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = mask_ratio __snake_case = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __snake_case = (image_size // patch_size) ** 2 __snake_case = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __snake_case = int(mask_ratio * self.seq_length ) def a ( self : List[str] ) -> Optional[Any]: __snake_case = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def a ( self : Union[str, Any] ) -> Optional[Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: __snake_case = VideoMAEModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = VideoMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case = torch.ones((self.num_masks,) ) __snake_case = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __snake_case = mask.expand(self.batch_size , -1 ).bool() __snake_case = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # model only returns predictions for masked patches __snake_case = mask.sum().item() __snake_case = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def a ( self : List[str] ) -> Any: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : int = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Tuple = False def a ( self : List[str] ) -> Union[str, Any]: __snake_case = VideoMAEModelTester(self ) __snake_case = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ) -> Any: __snake_case = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __snake_case = torch.ones((self.model_tester.num_masks,) ) __snake_case = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __snake_case = mask.expand(self.model_tester.batch_size , -1 ).bool() __snake_case = bool_masked_pos.to(SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in [ *get_values(SCREAMING_SNAKE_CASE_ ), ]: __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def a ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def a ( self : Tuple ) -> str: pass def a ( self : Optional[Any] ) -> Optional[int]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def a ( self : List[Any] ) -> Tuple: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> Optional[int]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) @slow def a ( self : Dict ) -> Any: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = VideoMAEModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Optional[Any]: if not self.has_attentions: pass else: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True for model_class in self.all_model_classes: __snake_case = self.model_tester.seq_length - self.model_tester.num_masks __snake_case = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __snake_case = True __snake_case = False __snake_case = True __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case = True __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __snake_case = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine __snake_case = True __snake_case = True __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def a ( self : List[str] ) -> str: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.hidden_states __snake_case = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = self.model_tester.seq_length - self.model_tester.num_masks __snake_case = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self : Dict ) -> Optional[int]: pass def _a () -> Tuple: """simple docstring""" __snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) __snake_case = np.load(lowercase__ ) return list(lowercase__ ) @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def a ( self : Any ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def a ( self : Any ) -> Dict: __snake_case = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( SCREAMING_SNAKE_CASE_ ) __snake_case = self.default_image_processor __snake_case = prepare_video() __snake_case = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def a ( self : Dict ) -> Optional[int]: __snake_case = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = self.default_image_processor __snake_case = prepare_video() __snake_case = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # add boolean mask, indicating which patches to mask __snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) __snake_case = torch.load(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case = torch.Size([1, 1408, 1536] ) __snake_case = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=SCREAMING_SNAKE_CASE_ ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __snake_case = torch.tensor([0.5_1_4_2] , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.loss , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __snake_case = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=SCREAMING_SNAKE_CASE_ ).to( SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.loss , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _a : str = logging.getLogger(__name__) class _lowercase ( __lowercase ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int]=-1 ) -> List[Any]: # in NER datasets, the last column is usually reserved for NER label __snake_case = label_idx def a ( self : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[Split, str] ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = mode.value __snake_case = os.path.join(SCREAMING_SNAKE_CASE_ , f'{mode}.txt' ) __snake_case = 1 __snake_case = [] with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as f: __snake_case = [] __snake_case = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) ) guid_index += 1 __snake_case = [] __snake_case = [] else: __snake_case = line.split(' ' ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) ) return examples def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : TextIO , SCREAMING_SNAKE_CASE_ : TextIO , SCREAMING_SNAKE_CASE_ : List ) -> List[Any]: __snake_case = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __snake_case = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(SCREAMING_SNAKE_CASE_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE_ , 'r' ) as f: __snake_case = f.read().splitlines() if "O" not in labels: __snake_case = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _lowercase ( __lowercase ): def __init__( self : int ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE_ , 'r' ) as f: __snake_case = f.read().splitlines() if "O" not in labels: __snake_case = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _lowercase ( __lowercase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[Split, str] ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = mode.value __snake_case = os.path.join(SCREAMING_SNAKE_CASE_ , f'{mode}.txt' ) __snake_case = 1 __snake_case = [] with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE_ ): __snake_case = [] __snake_case = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) ) guid_index += 1 return examples def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : TextIO , SCREAMING_SNAKE_CASE_ : TextIO , SCREAMING_SNAKE_CASE_ : List ) -> List[Any]: __snake_case = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE_ ): __snake_case = preds_list[example_id] __snake_case = '' for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(SCREAMING_SNAKE_CASE_ ) example_id += 1 def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _a : Any = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class _lowercase ( unittest.TestCase ): def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : list = None ) -> Optional[Any]: __snake_case = None __snake_case = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) __snake_case = os.path.abspath('examples' ) for item in os.listdir(SCREAMING_SNAKE_CASE_ ): if item not in EXCLUDE_EXAMPLES: __snake_case = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE_ , feature_script=SCREAMING_SNAKE_CASE_ , tested_section='main()' if parser_only else 'training_function()' , ): __snake_case = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '\n'.join(SCREAMING_SNAKE_CASE_ ) if special_strings is not None: for string in special_strings: __snake_case = diff.replace(SCREAMING_SNAKE_CASE_ , '' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '' ) def a ( self : List[str] ) -> Tuple: self.one_complete_example('complete_nlp_example.py' , SCREAMING_SNAKE_CASE_ ) self.one_complete_example('complete_nlp_example.py' , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> Optional[int]: __snake_case = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) __snake_case = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.one_complete_example('complete_cv_example.py' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : str = False @classmethod def a ( cls : str ) -> List[str]: super().setUpClass() __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __snake_case = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def a ( cls : Union[str, Any] ) -> Dict: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def a ( self : Any ) -> Tuple: __snake_case = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __snake_case = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def a ( self : str ) -> Tuple: __snake_case = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __snake_case = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) self.assertNotIn('epoch 0:' , SCREAMING_SNAKE_CASE_ ) self.assertIn('epoch 1:' , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __snake_case = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() else: __snake_case = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , SCREAMING_SNAKE_CASE_ ) self.assertIn('epoch 1:' , SCREAMING_SNAKE_CASE_ ) else: self.assertIn('epoch 0:' , SCREAMING_SNAKE_CASE_ ) self.assertIn('epoch 1:' , SCREAMING_SNAKE_CASE_ ) @slow def a ( self : List[str] ) -> str: __snake_case = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): __snake_case = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) __snake_case = re.findall('({.+})' , SCREAMING_SNAKE_CASE_ ) __snake_case = [r for r in results if 'accuracy' in r][-1] __snake_case = ast.literal_eval(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(results['accuracy'] , 0.7_5 ) def a ( self : List[Any] ) -> Union[str, Any]: __snake_case = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def a ( self : Any ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: __snake_case = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , 'tracking' ) ) ) def a ( self : List[str] ) -> List[str]: __snake_case = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def a ( self : str ) -> Dict: __snake_case = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( __lowercase ): def a ( self : Any ) -> int: __snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'tf_padding' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'depth_multiplier' ) ) class _lowercase : def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]=13 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : str=32 , SCREAMING_SNAKE_CASE_ : Tuple=0.2_5 , SCREAMING_SNAKE_CASE_ : Tuple=8 , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Dict=1024 , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Optional[int]="relu6" , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Any=10 , SCREAMING_SNAKE_CASE_ : List[str]=None , ) -> int: __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = min_depth __snake_case = tf_padding __snake_case = int(last_hidden_size * depth_multiplier ) __snake_case = output_stride __snake_case = hidden_act __snake_case = classifier_dropout_prob __snake_case = use_labels __snake_case = is_training __snake_case = num_labels __snake_case = initializer_range __snake_case = scope def a ( self : int ) -> List[str]: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels, pixel_labels def a ( self : List[Any] ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: __snake_case = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ) -> int: __snake_case = self.num_labels __snake_case = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __snake_case = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Optional[Any] ) -> Dict: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : str = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False def a ( self : str ) -> str: __snake_case = MobileNetVaModelTester(self ) __snake_case = MobileNetVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def a ( self : Tuple ) -> Dict: pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def a ( self : Any ) -> Dict: pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def a ( self : Dict ) -> Any: pass def a ( self : int ) -> Any: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> List[str]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> List[str]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __snake_case = outputs.hidden_states __snake_case = 26 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def a ( self : Union[str, Any] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _a () -> int: """simple docstring""" __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def a ( self : List[Any] ) -> int: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def a ( self : Dict ) -> List[str]: __snake_case = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __snake_case = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __snake_case = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' from math import factorial _a : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def _a (lowercase__ : int ) -> int: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase__ ) ) def _a (lowercase__ : int = 6_0 , lowercase__ : int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length __snake_case = 0 # the cached sizes of the previous chains __snake_case = {} for start_chain_element in range(1 , lowercase__ ): # The temporary set will contain the elements of the chain __snake_case = set() __snake_case = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __snake_case = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase__ ) chain_set_length += 1 __snake_case = digit_factorial_sum(lowercase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __snake_case = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _a : Dict = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _a (lowercase__ : List[Any] , lowercase__ : Tuple=None ) -> int: """simple docstring""" require_version(deps[pkg] , lowercase__ )
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : torch.FloatTensor _SCREAMING_SNAKE_CASE : torch.FloatTensor class _lowercase ( __lowercase , __lowercase ): _SCREAMING_SNAKE_CASE : int = 1 @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int = 2000 , SCREAMING_SNAKE_CASE_ : float = 0.1_5 , SCREAMING_SNAKE_CASE_ : float = 0.0_1 , SCREAMING_SNAKE_CASE_ : float = 1_3_4_8.0 , SCREAMING_SNAKE_CASE_ : float = 1e-5 , SCREAMING_SNAKE_CASE_ : int = 1 , ) -> str: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: return sample def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Any: __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : float = None ) -> str: __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(SCREAMING_SNAKE_CASE_ ) , math.log(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device ) __snake_case = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case = self.get_adjacent_sigma(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(sample.device ) __snake_case = torch.zeros_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case = diffusion.unsqueeze(-1 ) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ , device=sample.device , dtype=sample.dtype ) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=SCREAMING_SNAKE_CASE_ , prev_sample_mean=SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case = step_size.unsqueeze(-1 ) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device ) __snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(SCREAMING_SNAKE_CASE_ ) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self : Union[str, Any] ) -> Optional[Any]: return self.config.num_train_timesteps
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : List[Any] = "▁" _a : str = {"vocab_file": "spiece.model"} _a : List[Any] = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } _a : Optional[Any] = { "google/reformer-crime-and-punishment": 524_288, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple="</s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]=[] , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> None: __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def a ( self : List[str] ) -> Dict: return self.sp_model.get_piece_size() def a ( self : Union[str, Any] ) -> Dict[str, int]: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: if index < self.sp_model.get_piece_size(): __snake_case = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: __snake_case = [] __snake_case = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _a : Optional[Any] = logging.get_logger(__name__) # General docstring _a : Optional[Any] = "RegNetConfig" # Base docstring _a : int = "facebook/regnet-y-040" _a : Tuple = [1, 1_088, 7, 7] # Image classification docstring _a : List[str] = "facebook/regnet-y-040" _a : Any = "tabby, tabby cat" _a : Tuple = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _lowercase ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , ) -> List[str]: super().__init__() __snake_case = nn.Convad( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , ) __snake_case = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) __snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : RegNetConfig ) -> Dict: super().__init__() __snake_case = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __snake_case = config.num_channels def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: __snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __snake_case = self.embedder(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 ) -> List[str]: super().__init__() __snake_case = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __snake_case = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Tensor: __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: super().__init__() __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) __snake_case = nn.Sequential( nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , nn.Sigmoid() , ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: # b c h w -> b c 1 1 __snake_case = self.pooler(SCREAMING_SNAKE_CASE_ ) __snake_case = self.attention(SCREAMING_SNAKE_CASE_ ) __snake_case = hidden_state * attention return hidden_state class _lowercase ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Tuple: super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = max(1 , out_channels // config.groups_width ) __snake_case = ( RegNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = ACTaFN[config.hidden_act] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: __snake_case = hidden_state __snake_case = self.layer(SCREAMING_SNAKE_CASE_ ) __snake_case = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Optional[Any]: super().__init__() __snake_case = in_channels != out_channels or stride != 1 __snake_case = max(1 , out_channels // config.groups_width ) __snake_case = ( RegNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __snake_case = nn.Sequential( RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , RegNetSELayer(SCREAMING_SNAKE_CASE_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = ACTaFN[config.hidden_act] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = hidden_state __snake_case = self.layer(SCREAMING_SNAKE_CASE_ ) __snake_case = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , ) -> Any: super().__init__() __snake_case = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , ) , *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(depth - 1 )] , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Any: __snake_case = self.layers(SCREAMING_SNAKE_CASE_ ) return hidden_state class _lowercase ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : RegNetConfig ) -> Union[str, Any]: super().__init__() __snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ): self.stages.append(RegNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ ) ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ) -> BaseModelOutputWithNoAttention: __snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __snake_case = hidden_states + (hidden_state,) __snake_case = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = RegNetConfig _SCREAMING_SNAKE_CASE : Optional[int] = "regnet" _SCREAMING_SNAKE_CASE : int = "pixel_values" _SCREAMING_SNAKE_CASE : Optional[int] = True def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=False ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = value _a : Union[str, Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _lowercase ( __lowercase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config __snake_case = RegNetEmbeddings(SCREAMING_SNAKE_CASE_ ) __snake_case = RegNetEncoder(SCREAMING_SNAKE_CASE_ ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.embedder(SCREAMING_SNAKE_CASE_ ) __snake_case = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = encoder_outputs[0] __snake_case = self.pooler(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _lowercase ( __lowercase ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config.num_labels __snake_case = RegNetModel(SCREAMING_SNAKE_CASE_ ) # classification head __snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.regnet(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(SCREAMING_SNAKE_CASE_ ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' from typing import Any def _a (lowercase__ : list , lowercase__ : list , lowercase__ : dict , lowercase__ : dict , lowercase__ : dict , ) -> list: """simple docstring""" _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step __snake_case = {} __snake_case = {} for state in states_space: __snake_case = observations_space[0] __snake_case = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __snake_case = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): __snake_case = observations_space[o] __snake_case = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __snake_case = '' __snake_case = -1 for k_state in states_space: __snake_case = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __snake_case = probability __snake_case = k_state # Update probabilities and pointers dicts __snake_case = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __snake_case = arg_max # The final observation __snake_case = observations_space[len(lowercase__ ) - 1] # argmax for given final observation __snake_case = '' __snake_case = -1 for k_state in states_space: __snake_case = probabilities[(k_state, final_observation)] if probability > max_probability: __snake_case = probability __snake_case = k_state __snake_case = arg_max # Process pointers backwards __snake_case = last_state __snake_case = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) __snake_case = pointers[previous, observations_space[o]] result.reverse() return result def _a (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: """simple docstring""" _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def _a (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def _a (lowercase__ : Any , lowercase__ : Any ) -> None: """simple docstring""" _validate_list(lowercase__ , 'observations_space' ) _validate_list(lowercase__ , 'states_space' ) def _a (lowercase__ : Any , lowercase__ : str ) -> None: """simple docstring""" if not isinstance(_object , lowercase__ ): __snake_case = f'{var_name} must be a list' raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): __snake_case = f'{var_name} must be a list of strings' raise ValueError(lowercase__ ) def _a (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None: """simple docstring""" _validate_dict(lowercase__ , 'initial_probabilities' , lowercase__ ) _validate_nested_dict(lowercase__ , 'transition_probabilities' ) _validate_nested_dict(lowercase__ , 'emission_probabilities' ) def _a (lowercase__ : Any , lowercase__ : str ) -> None: """simple docstring""" _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _a (lowercase__ : Any , lowercase__ : str , lowercase__ : type , lowercase__ : bool = False ) -> None: """simple docstring""" if not isinstance(_object , lowercase__ ): __snake_case = f'{var_name} must be a dict' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): __snake_case = f'{var_name} all keys must be strings' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): __snake_case = 'nested dictionary ' if nested else '' __snake_case = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _a : List[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _a : int = typing.Union[np.floataa, int, float] # noqa: UP007 def _a (lowercase__ : Vector , lowercase__ : Vector ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase__ ) - np.asarray(lowercase__ )) ** 2 ) ) def _a (lowercase__ : Vector , lowercase__ : Vector ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase__ , lowercase__ ) ) ** (1 / 2) if __name__ == "__main__": def _a () -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0_0_0_0 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a : str = logging.get_logger(__name__) _a : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _a : Any = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } _a : str = { "gpt-neox-20b": 2_048, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Tuple = ["input_ids", "attention_mask"] def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : str="<|endoftext|>" , SCREAMING_SNAKE_CASE_ : Any="<|endoftext|>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE_ : List[str]=False , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: __snake_case = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = add_prefix_space def a ( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: __snake_case = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def a ( self : int , SCREAMING_SNAKE_CASE_ : "Conversation" ) -> List[int]: __snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] return input_ids
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _a : int = logging.get_logger(__name__) # pylint: disable=invalid-name def _a (lowercase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Optional[int]: """simple docstring""" warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , lowercase__ , ) if isinstance(lowercase__ , torch.Tensor ): return image elif isinstance(lowercase__ , PIL.Image.Image ): __snake_case = [image] if isinstance(image[0] , PIL.Image.Image ): __snake_case , __snake_case = image[0].size __snake_case , __snake_case = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __snake_case = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __snake_case = np.concatenate(lowercase__ , axis=0 ) __snake_case = np.array(lowercase__ ).astype(np.floataa ) / 2_55.0 __snake_case = image.transpose(0 , 3 , 1 , 2 ) __snake_case = 2.0 * image - 1.0 __snake_case = torch.from_numpy(lowercase__ ) elif isinstance(image[0] , torch.Tensor ): __snake_case = torch.cat(lowercase__ , dim=0 ) return image def _a (lowercase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Dict: """simple docstring""" if isinstance(lowercase__ , torch.Tensor ): return mask elif isinstance(lowercase__ , PIL.Image.Image ): __snake_case = [mask] if isinstance(mask[0] , PIL.Image.Image ): __snake_case , __snake_case = mask[0].size __snake_case , __snake_case = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __snake_case = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __snake_case = np.concatenate(lowercase__ , axis=0 ) __snake_case = mask.astype(np.floataa ) / 2_55.0 __snake_case = 0 __snake_case = 1 __snake_case = torch.from_numpy(lowercase__ ) elif isinstance(mask[0] , torch.Tensor ): __snake_case = torch.cat(lowercase__ , dim=0 ) return mask class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : UNetaDModel _SCREAMING_SNAKE_CASE : RePaintScheduler def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE_ : int = 250 , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : int = 10 , SCREAMING_SNAKE_CASE_ : int = 10 , SCREAMING_SNAKE_CASE_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __snake_case = image __snake_case = _preprocess_image(SCREAMING_SNAKE_CASE_ ) __snake_case = original_image.to(device=self.device , dtype=self.unet.dtype ) __snake_case = _preprocess_mask(SCREAMING_SNAKE_CASE_ ) __snake_case = mask_image.to(device=self.device , dtype=self.unet.dtype ) __snake_case = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __snake_case = original_image.shape __snake_case = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) __snake_case = eta __snake_case = self.scheduler.timesteps[0] + 1 __snake_case = generator[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __snake_case = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute previous image: x_t -> x_t-1 __snake_case = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t __snake_case = self.scheduler.undo_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = t __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' class _lowercase : def __init__( self : Any ) -> Union[str, Any]: __snake_case = '' __snake_case = '' __snake_case = [] def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __snake_case = self.__min_dist_top_down_dp(SCREAMING_SNAKE_CASE_ , n - 1 ) __snake_case = self.__min_dist_top_down_dp(m - 1 , SCREAMING_SNAKE_CASE_ ) __snake_case = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __snake_case = 1 + min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self.dp[m][n] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> int: __snake_case = worda __snake_case = worda __snake_case = [[-1 for _ in range(len(SCREAMING_SNAKE_CASE_ ) )] for _ in range(len(SCREAMING_SNAKE_CASE_ ) )] return self.__min_dist_top_down_dp(len(SCREAMING_SNAKE_CASE_ ) - 1 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> int: __snake_case = worda __snake_case = worda __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = len(SCREAMING_SNAKE_CASE_ ) __snake_case = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __snake_case = j elif j == 0: # second string is empty __snake_case = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __snake_case = self.dp[i - 1][j - 1] else: __snake_case = self.dp[i][j - 1] __snake_case = self.dp[i - 1][j] __snake_case = self.dp[i - 1][j - 1] __snake_case = 1 + min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return self.dp[m][n] if __name__ == "__main__": _a : Optional[Any] = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() _a : Any = input("Enter the first string: ").strip() _a : str = input("Enter the second string: ").strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
56
'''simple docstring''' from __future__ import annotations from typing import Any def _a (lowercase__ : list ) -> int: """simple docstring""" if not postfix_notation: return 0 __snake_case = {'+', '-', '*', '/'} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any=7 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Tuple=18 , SCREAMING_SNAKE_CASE_ : str=30 , SCREAMING_SNAKE_CASE_ : Optional[int]=400 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]=True , ) -> int: __snake_case = size if size is not None else {'height': 18, 'width': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize def a ( self : Optional[int] ) -> List[str]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = ImageGPTImageProcessor if is_vision_available() else None def a ( self : str ) -> Union[str, Any]: __snake_case = ImageGPTImageProcessingTester(self ) @property def a ( self : Optional[int] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def a ( self : Any ) -> List[Any]: __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'clusters' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) ) def a ( self : str ) -> List[str]: __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.image_processing_class(**self.image_processor_dict ) __snake_case = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , obj[key] ) ) else: self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> Dict: __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = os.path.join(SCREAMING_SNAKE_CASE_ , 'image_processor.json' ) image_processor_first.to_json_file(SCREAMING_SNAKE_CASE_ ) __snake_case = self.image_processing_class.from_json_file(SCREAMING_SNAKE_CASE_ ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> List[Any]: __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = self.image_processing_class.from_pretrained(SCREAMING_SNAKE_CASE_ ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , SCREAMING_SNAKE_CASE_ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def a ( self : List[Any] ) -> List[Any]: pass def _a () -> Any: """simple docstring""" __snake_case = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) __snake_case = Image.open(dataset[4]['file'] ) __snake_case = Image.open(dataset[5]['file'] ) __snake_case = [imagea, imagea] return images @require_vision @require_torch class _lowercase ( unittest.TestCase ): @slow def a ( self : Any ) -> List[Any]: __snake_case = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) __snake_case = prepare_images() # test non-batched __snake_case = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) __snake_case = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , SCREAMING_SNAKE_CASE_ ) # test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) __snake_case = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(lowercase__ : int , lowercase__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case = update_area_of_max_square(lowercase__ , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , col + 1 ) __snake_case = update_area_of_max_square(row + 1 , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) return sub_problem_sol else: return 0 __snake_case = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case = update_area_of_max_square_using_dp_array(lowercase__ , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase__ ) __snake_case = update_area_of_max_square_using_dp_array(row + 1 , lowercase__ , lowercase__ ) if mat[row][col]: __snake_case = 1 + min([right, diagonal, down] ) __snake_case = max(largest_square_area[0] , lowercase__ ) __snake_case = sub_problem_sol return sub_problem_sol else: return 0 __snake_case = [0] __snake_case = [[-1] * cols for _ in range(lowercase__ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase__ ) return largest_square_area[0] def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = dp_array[row][col + 1] __snake_case = dp_array[row + 1][col + 1] __snake_case = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(dp_array[row][col] , lowercase__ ) else: __snake_case = 0 return largest_square_area def _a (lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> int: """simple docstring""" __snake_case = [0] * (cols + 1) __snake_case = [0] * (cols + 1) __snake_case = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case = current_row[col + 1] __snake_case = next_row[col + 1] __snake_case = next_row[col] if mat[row][col] == 1: __snake_case = 1 + min(lowercase__ , lowercase__ , lowercase__ ) __snake_case = max(current_row[col] , lowercase__ ) else: __snake_case = 0 __snake_case = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
56
1
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = 1_0 __snake_case = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __snake_case = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Dict ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files _a : Union[str, Any] = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt' __snake_case = FILE_CONTENT with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __snake_case = bytes(lowercase__ , 'utf-8' ) with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __snake_case = bytes(lowercase__ , 'utf-8' ) with gzip.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __snake_case = bytes(lowercase__ , 'utf-8' ) with lza.frame.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Tuple ) -> Tuple: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowercase__ , 'w' ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> Tuple: """simple docstring""" import tarfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" import lzma __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __snake_case = bytes(lowercase__ , 'utf-8' ) with lzma.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : str ) -> Union[str, Any]: """simple docstring""" import zipfile __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> int: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __snake_case = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __snake_case = bytes(lowercase__ , 'utf-8' ) with zstd.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'file.xml' __snake_case = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowercase__ , 'w' ) as f: f.write(lowercase__ ) return filename _a : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] _a : List[str] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] _a : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } _a : Optional[int] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] _a : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def _a () -> Optional[Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case = datasets.Dataset.from_dict(lowercase__ ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> Dict: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: __snake_case = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowercase__ , 'w' , newline='' ) as f: __snake_case = csv.DictWriter(lowercase__ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" import bza __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowercase__ , 'rb' ) as f: __snake_case = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int ) -> int: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __snake_case = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowercase__ , 'wb' ) as f: __snake_case = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) __snake_case = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __snake_case = {'data': DATA_DICT_OF_LISTS} with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int ) -> Tuple: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict ) -> int: """simple docstring""" __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowercase__ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : int , lowercase__ : List[Any] ) -> Dict: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" import gzip __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowercase__ , 'rb' ) as orig_file: with gzip.open(lowercase__ , 'wb' ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : str , lowercase__ : str ) -> Optional[int]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : List[Any] ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : str ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : int ) -> Optional[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowercase__ , 'w' ) as f: f.add(lowercase__ , arcname=os.path.join('nested' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] ) -> List[Any]: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[int] ) -> Dict: """simple docstring""" __snake_case = ['0', '1', '2', '3'] __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowercase__ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Any ) -> str: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join('main_dir' , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowercase__ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : Any ) -> List[Any]: """simple docstring""" __snake_case = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __snake_case = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope='session' ) def _a () -> int: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _a () -> Optional[int]: """simple docstring""" return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _a (lowercase__ : List[Any] , lowercase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowercase__ , 'w' ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _a (lowercase__ : str ) -> List[Any]: """simple docstring""" __snake_case = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
56
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _a (lowercase__ : Dict="ro" , lowercase__ : Any="en" , lowercase__ : Dict="wmt16" , lowercase__ : str=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) __snake_case = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) __snake_case = datasets.load_dataset(lowercase__ , lowercase__ ) if save_dir is None: __snake_case = f'{dataset}-{pair}' __snake_case = Path(lowercase__ ) save_dir.mkdir(exist_ok=lowercase__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets __snake_case = 'val' if split == 'validation' else split __snake_case = save_dir.joinpath(f'{fn}.source' ) __snake_case = save_dir.joinpath(f'{fn}.target' ) __snake_case = src_path.open('w+' ) __snake_case = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __snake_case = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
56
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Tuple = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "camembert" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_0522 , SCREAMING_SNAKE_CASE_ : str=768 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE_ : Dict=12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=512 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=0.0_2 , SCREAMING_SNAKE_CASE_ : Tuple=1e-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Dict="absolute" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class _lowercase ( __lowercase ): @property def a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
56
1
'''simple docstring''' def _a (lowercase__ : str , lowercase__ : str ) -> str: """simple docstring""" __snake_case = len(lowercase__ ) __snake_case = len(lowercase__ ) __snake_case = ( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case = [] for char_count in range(lowercase__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowercase__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[str] = logging.get_logger(__name__) _a : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : int = "timesformer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = num_frames __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = qkv_bias __snake_case = attention_type __snake_case = drop_path_rate
56
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _a : Dict = "pt" elif is_tf_available(): _a : Any = "tf" else: _a : Any = "jax" class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ByTaTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def a ( self : int ) -> int: super().setUp() __snake_case = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a ( self : Any ) -> Optional[int]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Dict=20 , SCREAMING_SNAKE_CASE_ : List[str]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): try: __snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case = list(filter(lambda SCREAMING_SNAKE_CASE_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE_ ) ) __snake_case = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: __snake_case = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: __snake_case = toks + toks # toks_str = [t[1] for t in toks] __snake_case = [t[0] for t in toks] # Ensure consistency __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: __snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: __snake_case = ' ' + output_txt __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def a ( self : Optional[int] ) -> Optional[int]: __snake_case = self.ta_base_tokenizer __snake_case = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __snake_case = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def a ( self : Any ) -> List[Any]: __snake_case = self.ta_base_tokenizer __snake_case = 'Unicode €.' __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) __snake_case = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE_ ) # decoding __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'Unicode €.</s>' ) __snake_case = tokenizer('e è é ê ë' ) __snake_case = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE_ ) # decoding __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def a ( self : int ) -> Union[str, Any]: __snake_case = self.ta_base_tokenizer __snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if FRAMEWORK != "jax": __snake_case = list(batch.input_ids.numpy()[0] ) else: __snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def a ( self : Optional[Any] ) -> Union[str, Any]: __snake_case = self.ta_base_tokenizer __snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE_ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Optional[Any]: __snake_case = self.ta_base_tokenizer __snake_case = [ 'Summary of the text.', 'Another summary.', ] __snake_case = tokenizer( text_target=SCREAMING_SNAKE_CASE_ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = self.ta_base_tokenizer __snake_case = ['A long paragraph for summarization. </s>'] __snake_case = ['Summary of the text. </s>'] # fmt: off __snake_case = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __snake_case = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , text_target=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch['labels'][0] ) def a ( self : Tuple ) -> Optional[int]: # safety check on max_len default value so we are sure the test works __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = ' He is very happy, UNwant\u00E9d,running' __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = after_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = after_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: __snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case = json.load(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case = json.load(SCREAMING_SNAKE_CASE_ ) __snake_case = [f'<extra_id_{i}>' for i in range(125 )] __snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE_ )] __snake_case = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def a ( self : Tuple ) -> List[Any]: __snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def a ( self : Optional[int] ) -> Optional[int]: pass def a ( self : Optional[Any] ) -> Any: pass def a ( self : Any ) -> Union[str, Any]: pass def a ( self : Dict ) -> Union[str, Any]: pass def a ( self : List[str] ) -> Any: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __snake_case = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __snake_case = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __snake_case = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : List[str] ) -> Union[str, Any]: __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __snake_case = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __snake_case = 0 __snake_case = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE_ , attr + '_id' , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , attr + '_id' ) , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , attr + '_id' , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , attr + '_id' ) , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
56
'''simple docstring''' from typing import Any class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Any: __snake_case = data __snake_case = None class _lowercase : def __init__( self : List[Any] ) -> Tuple: __snake_case = None def a ( self : int ) -> Union[str, Any]: __snake_case = self.head while temp is not None: print(temp.data , end=' ' ) __snake_case = temp.next print() def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: __snake_case = Node(SCREAMING_SNAKE_CASE_ ) __snake_case = self.head __snake_case = new_node def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: if node_data_a == node_data_a: return else: __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next __snake_case = self.head while node_a is not None and node_a.data != node_data_a: __snake_case = node_a.next if node_a is None or node_a is None: return __snake_case , __snake_case = node_a.data, node_a.data if __name__ == "__main__": _a : Dict = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
56
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = ["onnx"] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: requires_backends(self , ['onnx'] ) @classmethod def a ( cls : Tuple , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: requires_backends(cls , ['onnx'] ) @classmethod def a ( cls : List[str] , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: requires_backends(cls , ['onnx'] )
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : int = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
1
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = BertJapaneseTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Any = True def a ( self : Tuple ) -> List[Any]: super().setUp() __snake_case = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[int]: __snake_case = 'こんにちは、世界。 \nこんばんは、世界。' __snake_case = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: __snake_case , __snake_case = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def a ( self : int ) -> Union[str, Any]: pass # TODO add if relevant def a ( self : Dict ) -> Union[str, Any]: pass # TODO add if relevant def a ( self : str ) -> int: pass # TODO add if relevant def a ( self : List[Any] ) -> List[Any]: __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def a ( self : List[str] ) -> Optional[int]: __snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) __snake_case = 'こんにちは、世界。\nこんばんは、世界。' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as handle: pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as handle: __snake_case = pickle.load(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_new.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def a ( self : Optional[Any] ) -> Tuple: try: __snake_case = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def a ( self : int ) -> Optional[Any]: try: __snake_case = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def a ( self : List[Any] ) -> Optional[Any]: __snake_case = MecabTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def a ( self : Union[str, Any] ) -> int: try: __snake_case = MecabTokenizer( do_lower_case=SCREAMING_SNAKE_CASE_ , normalize_text=SCREAMING_SNAKE_CASE_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def a ( self : List[str] ) -> Union[str, Any]: __snake_case = MecabTokenizer(normalize_text=SCREAMING_SNAKE_CASE_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def a ( self : Tuple ) -> List[Any]: __snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) __snake_case = 'こんにちは、世界。\nこんばんは、世界。' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as handle: pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as handle: __snake_case = pickle.load(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_new.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_sudachi def a ( self : Tuple ) -> Optional[int]: __snake_case = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def a ( self : List[Any] ) -> List[str]: __snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def a ( self : Optional[Any] ) -> Any: __snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def a ( self : Dict ) -> Optional[Any]: __snake_case = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def a ( self : int ) -> Tuple: __snake_case = SudachiTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def a ( self : str ) -> Tuple: __snake_case = SudachiTokenizer(normalize_text=SCREAMING_SNAKE_CASE_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def a ( self : str ) -> Union[str, Any]: __snake_case = SudachiTokenizer(trim_whitespace=SCREAMING_SNAKE_CASE_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def a ( self : Union[str, Any] ) -> List[str]: __snake_case = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) __snake_case = 'こんにちは、世界。\nこんばんは、世界。' __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __snake_case = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as handle: pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as handle: __snake_case = pickle.load(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_new.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_jumanpp def a ( self : Union[str, Any] ) -> Dict: __snake_case = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def a ( self : Any ) -> Optional[int]: __snake_case = JumanppTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def a ( self : List[Any] ) -> Any: __snake_case = JumanppTokenizer(normalize_text=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def a ( self : Any ) -> int: __snake_case = JumanppTokenizer(trim_whitespace=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def a ( self : Dict ) -> Dict: __snake_case = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def a ( self : Optional[Any] ) -> int: __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] __snake_case = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): __snake_case = i __snake_case = WordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) __snake_case = tokenizer.subword_tokenizer __snake_case = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) __snake_case = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def a ( self : Any ) -> Any: __snake_case = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) __snake_case = tokenizer.encode('ありがとう。' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode('どういたしまして。' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = BertJapaneseTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def a ( self : Any ) -> int: super().setUp() __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **SCREAMING_SNAKE_CASE_ ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: __snake_case = 'こんにちは、世界。 \nこんばんは、世界。' __snake_case = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def a ( self : Optional[Any] ) -> List[Any]: pass # TODO add if relevant def a ( self : int ) -> Any: pass # TODO add if relevant def a ( self : Dict ) -> List[str]: pass # TODO add if relevant def a ( self : Optional[int] ) -> int: __snake_case = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) __snake_case = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def a ( self : Union[str, Any] ) -> List[str]: __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __snake_case = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): __snake_case = i __snake_case = CharacterTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def a ( self : Any ) -> Any: __snake_case = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) __snake_case = tokenizer.encode('ありがとう。' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode('どういたしまして。' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowercase ( unittest.TestCase ): def a ( self : Dict ) -> int: __snake_case = 'cl-tohoku/bert-base-japanese' __snake_case = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> int: __snake_case = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) __snake_case = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowercase ( __lowercase , __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL _SCREAMING_SNAKE_CASE : Union[str, Any] = "sample" _SCREAMING_SNAKE_CASE : Union[str, Any] = 1e-2 @property def a ( self : List[str] ) -> Optional[int]: __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def a ( self : List[Any] ) -> List[Any]: return (3, 32, 32) @property def a ( self : int ) -> int: return (3, 32, 32) def a ( self : Tuple ) -> Union[str, Any]: __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ) -> Any: pass def a ( self : Tuple ) -> List[Any]: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def a ( self : List[str] ) -> int: # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def a ( self : int ) -> int: __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1e-2 ) ) @slow class _lowercase ( unittest.TestCase ): def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy' def a ( self : Optional[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_ : str=False ) -> int: __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ) -> List[str]: __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> str: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a ( self : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[str, Any]: __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3e-3 if torch_device != 'mps' else 1e-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Union[str, Any] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline _SCREAMING_SNAKE_CASE : Union[str, Any] = ["prompt"] _SCREAMING_SNAKE_CASE : Any = ["prompt"] _SCREAMING_SNAKE_CASE : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self : Any ) -> Optional[int]: return 32 @property def a ( self : List[Any] ) -> List[Any]: return 32 @property def a ( self : Tuple ) -> List[str]: return self.time_input_dim * 4 @property def a ( self : Dict ) -> Union[str, Any]: return 8 @property def a ( self : List[Any] ) -> Optional[Any]: __snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self : Dict ) -> Any: torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def a ( self : str ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def a ( self : Optional[Any] ) -> Dict: torch.manual_seed(0 ) __snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def a ( self : Tuple ) -> Dict: __snake_case = self.dummy_prior __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_renderer __snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , ) __snake_case = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __snake_case = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a ( self : Optional[Any] ) -> str: __snake_case = 'cpu' __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) __snake_case = output.images[0] __snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a ( self : Dict ) -> Any: __snake_case = torch_device == 'cpu' __snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , ) def a ( self : Union[str, Any] ) -> str: __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = 1 __snake_case = 2 __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case = batch_size * [inputs[key]] __snake_case = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ) -> Optional[Any]: __snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = pipe( 'a shark' , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' from __future__ import annotations import queue class _lowercase : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Any ) -> int: __snake_case = data __snake_case = None __snake_case = None def _a () -> TreeNode: """simple docstring""" print('\n********Press N to stop entering at any point of time********\n' ) __snake_case = input('Enter the value of the root node: ' ).strip().lower() __snake_case = queue.Queue() __snake_case = TreeNode(int(lowercase__ ) ) q.put(lowercase__ ) while not q.empty(): __snake_case = q.get() __snake_case = f'Enter the left node of {node_found.data}: ' __snake_case = input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node __snake_case = TreeNode(int(lowercase__ ) ) __snake_case = left_node q.put(lowercase__ ) __snake_case = f'Enter the right node of {node_found.data}: ' __snake_case = input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node __snake_case = TreeNode(int(lowercase__ ) ) __snake_case = right_node q.put(lowercase__ ) raise def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return __snake_case = queue.Queue() q.put(lowercase__ ) while not q.empty(): __snake_case = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return __snake_case = queue.Queue() q.put(lowercase__ ) while not q.empty(): __snake_case = [] while not q.empty(): __snake_case = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase__ ) def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return __snake_case = [] __snake_case = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(lowercase__ ) __snake_case = n.left # end of while means current node doesn't have left child __snake_case = stack.pop() # start to traverse its right child __snake_case = n.right def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return __snake_case = [] __snake_case = node while n or stack: while n: stack.append(lowercase__ ) __snake_case = n.left __snake_case = stack.pop() print(n.data , end=',' ) __snake_case = n.right def _a (lowercase__ : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ) or not node: return __snake_case , __snake_case = [], [] __snake_case = node stacka.append(lowercase__ ) while stacka: # to find the reversed order of post order, store it in stack2 __snake_case = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def _a (lowercase__ : str = "" , lowercase__ : Tuple=5_0 , lowercase__ : Optional[Any]="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char __snake_case , __snake_case = divmod(width - len(lowercase__ ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _a : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
56
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : List[Any] = {"vocab_file": "spiece.model"} _a : Tuple = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } _a : Optional[Any] = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int="<unk>" , SCREAMING_SNAKE_CASE_ : Any="<s>" , SCREAMING_SNAKE_CASE_ : List[str]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE_ : Any="[MASK]" , SCREAMING_SNAKE_CASE_ : Dict="[CLS]" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> None: __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def a ( self : List[str] ) -> int: return self.sp_model.get_piece_size() def a ( self : Dict ) -> str: __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> str: __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[int]: __snake_case = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : Any ) -> str: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ) -> List[str]: __snake_case = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) return token def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: __snake_case = [] __snake_case = '' __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __snake_case = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : int , ) -> str: __snake_case = kwargs.pop('use_source_tokenizer' , SCREAMING_SNAKE_CASE_ ) __snake_case = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case = [] __snake_case = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) ) __snake_case = [] sub_texts.append(SCREAMING_SNAKE_CASE_ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __snake_case = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(SCREAMING_SNAKE_CASE_ ) ) else: __snake_case = ''.join(SCREAMING_SNAKE_CASE_ ) __snake_case = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case = self.clean_up_tokenization(SCREAMING_SNAKE_CASE_ ) return clean_text else: return text def a ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,) def a ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
56
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _a () -> Dict: """simple docstring""" __snake_case = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __snake_case = get_sagemaker_input() else: __snake_case = get_cluster_input() return config def _a (lowercase__ : Union[str, Any]=None ) -> int: """simple docstring""" if subparsers is not None: __snake_case = subparsers.add_parser('config' , description=lowercase__ ) else: __snake_case = argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _a (lowercase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __snake_case = get_user_input() if args.config_file is not None: __snake_case = args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __snake_case = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(f'accelerate configuration saved at {config_file}' ) def _a () -> int: """simple docstring""" __snake_case = config_command_parser() __snake_case = parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
56
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) def _a (lowercase__ : Tuple ) -> Optional[int]: """simple docstring""" __snake_case = torch.load(lowercase__ , map_location='cpu' ) if "model" in sd.keys(): __snake_case = torch.load(lowercase__ , map_location='cpu' )['model'] # pop unnecessary weights __snake_case = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) __snake_case = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __snake_case = sd.pop(lowercase__ ) __snake_case = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __snake_case = sd[key] # We split QKV in separate Q,K,V __snake_case = key.replace('.qkv_proj.' , '.q_proj.' ) __snake_case = key.replace('.qkv_proj.' , '.k_proj.' ) __snake_case = key.replace('.qkv_proj.' , '.v_proj.' ) __snake_case = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __snake_case , __snake_case , __snake_case = torch.split(lowercase__ , depth // 3 , dim=0 ) __snake_case = q __snake_case = k __snake_case = v del sd[key] return sd @torch.no_grad() def _a (lowercase__ : str , lowercase__ : Tuple , lowercase__ : List[Any]=None ) -> Optional[int]: """simple docstring""" __snake_case = load_checkpoint(lowercase__ ) if config is not None: __snake_case = OPTConfig.from_pretrained(lowercase__ ) else: __snake_case = OPTConfig() __snake_case = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": _a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _a : List[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
56
'''simple docstring''' from __future__ import annotations import math def _a (lowercase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Dict = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _a (lowercase__ : int ) -> list[int]: """simple docstring""" if not isinstance(lowercase__ , lowercase__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case = [] for num in range(len(lowercase__ ) ): __snake_case = 0 while 2 * i * i <= odd_composites[num]: __snake_case = odd_composites[num] - 2 * i * i if is_prime(lowercase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowercase__ ) == n: return list_nums return [] def _a () -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
56
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Dict = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _a : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Union[str, Any] = 16 _a : Optional[Any] = 32 def _a (lowercase__ : Accelerator , lowercase__ : int = 1_6 ) -> Union[str, Any]: """simple docstring""" __snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) __snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case = 1_6 elif accelerator.mixed_precision != "no": __snake_case = 8 else: __snake_case = None return tokenizer.pad( lowercase__ , padding='longest' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='pt' , ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['train'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) __snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : Optional[int] = mocked_dataloaders # noqa: F811 def _a (lowercase__ : str , lowercase__ : Dict ) -> Optional[Any]: """simple docstring""" # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowercase__ ) == "1": __snake_case = 2 # Initialize accelerator __snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['lr'] __snake_case = int(config['num_epochs'] ) __snake_case = int(config['seed'] ) __snake_case = int(config['batch_size'] ) __snake_case = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case = batch_size // MAX_GPU_BATCH_SIZE __snake_case = MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) __snake_case , __snake_case = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case = model.to(accelerator.device ) # Instantiate optimizer __snake_case = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler __snake_case = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case = model(**lowercase__ ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __snake_case = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**lowercase__ ) __snake_case = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowercase__ ) def _a () -> Union[str, Any]: """simple docstring""" __snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase__ , default=lowercase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __snake_case = parser.parse_args() __snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
56
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowercase ( __lowercase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1000 ) -> Tuple: __snake_case = p_stop __snake_case = max_length def __iter__( self : Any ) -> Union[str, Any]: __snake_case = 0 __snake_case = False while not stop and count < self.max_length: yield count count += 1 __snake_case = random.random() < self.p_stop class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str=True ) -> Union[str, Any]: __snake_case = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] __snake_case = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : str ) -> str: # Check the shards when the dataset is a round multiple of total batch size. __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(20 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(24 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(22 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(21 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) __snake_case = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Tuple: __snake_case = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __snake_case = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: random.seed(SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) __snake_case = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __snake_case = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) __snake_case = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __snake_case = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) __snake_case = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def a ( self : Dict ) -> Tuple: __snake_case = 42 __snake_case = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset __snake_case = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> str: __snake_case = BatchSampler(range(16 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) __snake_case = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : str ) -> Union[str, Any]: __snake_case = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Any ) -> str: __snake_case = DataLoader(list(range(16 ) ) , batch_size=4 ) __snake_case = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a ( self : Dict ) -> Optional[Any]: __snake_case = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a ( self : Tuple ) -> Dict: Accelerator() __snake_case = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
56
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a : Tuple = 0 _a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a : Any = tuple[int, int] class _lowercase : def __init__( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Node | None , ) -> None: __snake_case = pos_x __snake_case = pos_y __snake_case = (pos_y, pos_x) __snake_case = goal_x __snake_case = goal_y __snake_case = g_cost __snake_case = parent __snake_case = self.calculate_heuristic() __snake_case = self.g_cost + self.h_cost def a ( self : Optional[int] ) -> float: __snake_case = self.pos_x - self.goal_x __snake_case = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Node ) -> bool: return self.f_cost < other.f_cost class _lowercase : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : TPosition , SCREAMING_SNAKE_CASE_ : TPosition ) -> List[str]: __snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) __snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , SCREAMING_SNAKE_CASE_ ) __snake_case = [self.start] __snake_case = [] __snake_case = False def a ( self : int ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.start.pos] def a ( self : Dict , SCREAMING_SNAKE_CASE_ : Node ) -> list[Node]: __snake_case = [] for action in delta: __snake_case = parent.pos_x + action[1] __snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Node | None ) -> list[TPosition]: __snake_case = node __snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case = current_node.parent path.reverse() return path class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : TPosition , SCREAMING_SNAKE_CASE_ : TPosition ) -> None: __snake_case = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = False def a ( self : Optional[int] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __snake_case = self.fwd_astar.open_nodes.pop(0 ) __snake_case = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = current_bwd_node __snake_case = current_fwd_node __snake_case = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE_ ) return [self.fwd_astar.start.pos] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Node , SCREAMING_SNAKE_CASE_ : Node ) -> list[TPosition]: __snake_case = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) __snake_case = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ ) bwd_path.pop() bwd_path.reverse() __snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a : Any = (0, 0) _a : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a : Union[str, Any] = time.time() _a : Dict = AStar(init, goal) _a : Optional[int] = a_star.search() _a : int = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _a : Tuple = time.time() _a : Union[str, Any] = BidirectionalAStar(init, goal) _a : Optional[int] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a : int = get_tests_dir("fixtures/test_sentencepiece.model") _a : Dict = {"target_lang": "fi", "source_lang": "en"} _a : Optional[int] = ">>zh<<" _a : List[str] = "Helsinki-NLP/" if is_torch_available(): _a : List[str] = "pt" elif is_tf_available(): _a : Dict = "tf" else: _a : Union[str, Any] = "jax" @require_sentencepiece class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : int = MarianTokenizer _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : int ) -> int: super().setUp() __snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(SCREAMING_SNAKE_CASE_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) __snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: return ( "This is a test", "This is a test", ) def a ( self : int ) -> Optional[Any]: __snake_case = '</s>' __snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> List[str]: __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 9 ) def a ( self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a ( self : Any ) -> Optional[int]: __snake_case = MarianTokenizer.from_pretrained(f'{ORG_NAME}opus-mt-en-de' ) __snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(SCREAMING_SNAKE_CASE_ , batch.input_ids[0] ) __snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = [x.name for x in Path(SCREAMING_SNAKE_CASE_ ).glob('*' )] self.assertIn('source.spm' , SCREAMING_SNAKE_CASE_ ) MarianTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> Any: __snake_case = self.get_tokenizer() __snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a ( self : Tuple ) -> Dict: __snake_case = self.get_tokenizer() __snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a ( self : int ) -> int: # fmt: off __snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a ( self : Dict ) -> str: __snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) __snake_case = 'Tämä on testi' __snake_case = 'This is a test' __snake_case = [76, 7, 2047, 2] __snake_case = [69, 12, 11, 940, 2] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(text_target=SCREAMING_SNAKE_CASE_ ).input_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1
'''simple docstring''' def _a (lowercase__ : int = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" __snake_case = set(range(3 , lowercase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowercase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase__ , lowercase__ ) ) ) __snake_case = [float(lowercase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase__ , limit + 1 , lowercase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' from collections.abc import Generator from math import sin def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" if len(lowercase__ ) != 3_2: raise ValueError('Input must be of length 32' ) __snake_case = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _a (lowercase__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '08x' )[-8:] __snake_case = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = B'' for char in message: bit_string += format(lowercase__ , '08b' ).encode('utf-8' ) __snake_case = format(len(lowercase__ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowercase__ ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def _a (lowercase__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(lowercase__ ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(lowercase__ ) , 5_1_2 ): __snake_case = bit_string[pos : pos + 5_1_2] __snake_case = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def _a (lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __snake_case = format(lowercase__ , '032b' ) __snake_case = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(lowercase__ , 2 ) def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" return (a + b) % 2**3_2 def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def _a (lowercase__ : bytes ) -> bytes: """simple docstring""" __snake_case = preprocess(lowercase__ ) __snake_case = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states __snake_case = 0x6_7_4_5_2_3_0_1 __snake_case = 0xE_F_C_D_A_B_8_9 __snake_case = 0x9_8_B_A_D_C_F_E __snake_case = 0x1_0_3_2_5_4_7_6 __snake_case = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowercase__ ): __snake_case = aa __snake_case = ba __snake_case = ca __snake_case = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __snake_case = d ^ (b & (c ^ d)) __snake_case = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __snake_case = c ^ (d & (b ^ c)) __snake_case = (5 * i + 1) % 1_6 elif i <= 4_7: __snake_case = b ^ c ^ d __snake_case = (3 * i + 5) % 1_6 else: __snake_case = c ^ (b | not_aa(lowercase__ )) __snake_case = (7 * i) % 1_6 __snake_case = (f + a + added_consts[i] + block_words[g]) % 2**3_2 __snake_case = d __snake_case = c __snake_case = b __snake_case = sum_aa(lowercase__ , left_rotate_aa(lowercase__ , shift_amounts[i] ) ) # Add hashed chunk to running total __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = sum_aa(lowercase__ , lowercase__ ) __snake_case = reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) + reformat_hex(lowercase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = (1 - _cos) / 2 __snake_case = 1 - _cos __snake_case = 1 + alpha __snake_case = -2 * _cos __snake_case = 1 - alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = (1 + _cos) / 2 __snake_case = -1 - _cos __snake_case = 1 + alpha __snake_case = -2 * _cos __snake_case = 1 - alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = _sin / 2 __snake_case = 0 __snake_case = -ba __snake_case = 1 + alpha __snake_case = -2 * _cos __snake_case = 1 - alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = 1 - alpha __snake_case = -2 * _cos __snake_case = 1 + alpha __snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float , lowercase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = 1_0 ** (gain_db / 4_0) __snake_case = 1 + alpha * big_a __snake_case = -2 * _cos __snake_case = 1 - alpha * big_a __snake_case = 1 + alpha / big_a __snake_case = -2 * _cos __snake_case = 1 - alpha / big_a __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float , lowercase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = 1_0 ** (gain_db / 4_0) __snake_case = (big_a + 1) - (big_a - 1) * _cos __snake_case = (big_a + 1) + (big_a - 1) * _cos __snake_case = (big_a - 1) - (big_a + 1) * _cos __snake_case = (big_a - 1) + (big_a + 1) * _cos __snake_case = 2 * sqrt(lowercase__ ) * alpha __snake_case = big_a * (pmc + aaa) __snake_case = 2 * big_a * mpc __snake_case = big_a * (pmc - aaa) __snake_case = ppmc + aaa __snake_case = -2 * pmpc __snake_case = ppmc - aaa __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _a (lowercase__ : int , lowercase__ : int , lowercase__ : float , lowercase__ : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" __snake_case = tau * frequency / samplerate __snake_case = sin(lowercase__ ) __snake_case = cos(lowercase__ ) __snake_case = _sin / (2 * q_factor) __snake_case = 1_0 ** (gain_db / 4_0) __snake_case = (big_a + 1) - (big_a - 1) * _cos __snake_case = (big_a + 1) + (big_a - 1) * _cos __snake_case = (big_a - 1) - (big_a + 1) * _cos __snake_case = (big_a - 1) + (big_a + 1) * _cos __snake_case = 2 * sqrt(lowercase__ ) * alpha __snake_case = big_a * (ppmc + aaa) __snake_case = -2 * big_a * pmpc __snake_case = big_a * (ppmc - aaa) __snake_case = pmc + aaa __snake_case = 2 * mpc __snake_case = pmc - aaa __snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
56
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
1
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((__snake_case) , (__snake_case)) = extended_euclid(lowercase__ , a % b ) __snake_case = a // b return (y, x - k * y) def _a (lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" ((__snake_case) , (__snake_case)) = extended_euclid(lowercase__ , lowercase__ ) __snake_case = na * na __snake_case = ra * x * na + ra * y * na return (n % m + m) % m def _a (lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" ((__snake_case) , (__snake_case)) = extended_euclid(lowercase__ , lowercase__ ) if b < 0: __snake_case = (b % n + n) % n return b def _a (lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: """simple docstring""" __snake_case , __snake_case = invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) __snake_case = na * na __snake_case = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
56
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _a (lowercase__ : Optional[Any] ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowercase ( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : int ) -> str: super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) , nn.Linear(SCREAMING_SNAKE_CASE_ , module.out_features , bias=SCREAMING_SNAKE_CASE_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: return self.module(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) + self.adapter(SCREAMING_SNAKE_CASE_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _SCREAMING_SNAKE_CASE : Tuple = "bigscience/bloom-1b7" # Constant values _SCREAMING_SNAKE_CASE : Union[str, Any] = 2.109659552692574 _SCREAMING_SNAKE_CASE : Optional[Any] = "Hello my name is" _SCREAMING_SNAKE_CASE : List[str] = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) _SCREAMING_SNAKE_CASE : Dict = 1_0 def a ( self : Optional[Any] ) -> List[Any]: # Models and tokenizer __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class _lowercase ( __lowercase ): def a ( self : Union[str, Any] ) -> List[str]: super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : Optional[Any] ) -> Any: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a ( self : Optional[Any] ) -> int: __snake_case = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'quantization_config' ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def a ( self : Optional[Any] ) -> str: from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a ( self : Union[str, Any] ) -> Optional[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a ( self : Union[str, Any] ) -> int: __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : Optional[Any] ) -> Dict: __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) def a ( self : List[Any] ) -> str: with self.assertRaises(SCREAMING_SNAKE_CASE_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Union[str, Any]: __snake_case = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE_ , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a ( self : Tuple ) -> Dict: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def a ( self : Tuple ) -> Union[str, Any]: __snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): @classmethod def a ( cls : Union[str, Any] ) -> Dict: __snake_case = 't5-small' __snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = 'Translate in German: Hello, my dog is cute' def a ( self : List[Any] ) -> str: gc.collect() torch.cuda.empty_cache() def a ( self : int ) -> Optional[Any]: from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) __snake_case = modules def a ( self : List[str] ) -> Any: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __snake_case = model.generate(**SCREAMING_SNAKE_CASE_ ) class _lowercase ( __lowercase ): def a ( self : Dict ) -> str: super().setUp() # model_name __snake_case = 'bigscience/bloom-560m' __snake_case = 't5-small' # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='auto' ) def a ( self : int ) -> Dict: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a ( self : Any ) -> Optional[Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowercase ( __lowercase ): def a ( self : str ) -> Union[str, Any]: super().setUp() def a ( self : Optional[Any] ) -> str: del self.pipe gc.collect() torch.cuda.empty_cache() def a ( self : Optional[int] ) -> List[str]: __snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowercase ( __lowercase ): def a ( self : Optional[int] ) -> Union[str, Any]: super().setUp() def a ( self : Optional[int] ) -> List[Any]: __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) , self.EXPECTED_OUTPUTS ) class _lowercase ( __lowercase ): def a ( self : Any ) -> str: __snake_case = 'facebook/opt-350m' super().setUp() def a ( self : int ) -> List[Any]: if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**SCREAMING_SNAKE_CASE_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "gpt2-xl" _SCREAMING_SNAKE_CASE : Optional[int] = 3.3191854854152187
56
1
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowercase ( unittest.TestCase ): def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=56 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : int=99 , SCREAMING_SNAKE_CASE_ : Optional[int]=32 , SCREAMING_SNAKE_CASE_ : Tuple=2 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : Any=7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu_new" , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=512 , SCREAMING_SNAKE_CASE_ : Tuple=16 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : str=0.0_2 , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : Tuple="block_sparse" , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Any=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , ) -> Union[str, Any]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices __snake_case = rescale_embeddings __snake_case = attention_type __snake_case = use_bias __snake_case = block_size __snake_case = num_random_blocks def a ( self : Dict ) -> Tuple: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def a ( self : int ) -> Optional[int]: __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : int = False def a ( self : Any ) -> Tuple: __snake_case = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a ( self : List[str] ) -> Tuple: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a ( self : Optional[Any] ) -> Tuple: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a ( self : List[str] ) -> Tuple: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a ( self : Union[str, Any] ) -> Dict: super().test_hidden_states_output() @slow def a ( self : int ) -> Dict: for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def a ( self : Tuple ) -> Dict: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any=None , **SCREAMING_SNAKE_CASE_ : str ): return model(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __snake_case = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __snake_case = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) def a ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str]=1e-5 , SCREAMING_SNAKE_CASE_ : List[Any]="outputs" , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ) -> Dict: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _a : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _a : List[str] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _a : str = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) _a : Optional[int] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _a : Union[str, Any] = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _a : str = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _a : Optional[Any] = tf.keras.preprocessing.image.img_to_array(test_image) _a : int = np.expand_dims(test_image, axis=0) _a : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _a : int = "Normal" if result[0][0] == 1: _a : List[Any] = "Abnormality detected"
56
'''simple docstring''' def _a (lowercase__ : int , lowercase__ : int ) -> float: """simple docstring""" return base * power(lowercase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") _a : Union[str, Any] = int(input("Enter the base: ").strip()) _a : Any = int(input("Enter the exponent: ").strip()) _a : List[str] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _a : List[Any] = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
56
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm _a : List[Any] = 2_048 _a : Tuple = 4_096 _a : int = 42 _a : str = os.environ.pop("PROCESS_TRAIN", "false") _a : List[str] = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def _a (lowercase__ : Tuple ) -> Optional[Any]: """simple docstring""" def choose_first(lowercase__ : Optional[int] , lowercase__ : int=False ): assert isinstance(lowercase__ , lowercase__ ) if len(lowercase__ ) == 1: __snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a __snake_case = {'id': example['id']} __snake_case = example['annotations'] __snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: __snake_case = ['yes'] if 1 in yes_no_answer else ['no'] __snake_case = __snake_case = [] __snake_case = __snake_case = [] __snake_case = ['<cls>'] else: __snake_case = ['short'] __snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available __snake_case = ['long'] __snake_case = choose_first(annotation['long_answer'] , is_long_answer=lowercase__ ) __snake_case = [] answer.update(lowercase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: __snake_case = True else: __snake_case = False __snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , lowercase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def _a (lowercase__ : List[str] , lowercase__ : Optional[int]=False ) -> str: """simple docstring""" __snake_case = _get_single_answer(lowercase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case = example['document']['tokens'] __snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __snake_case = example['document']['tokens'] __snake_case = answer['start_token'] __snake_case = answer['end_token'] __snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: __snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] __snake_case = doc['token'][answer['start_token'] : answer['end_token']] __snake_case = ' '.join([old[i] for i in range(len(lowercase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , lowercase__ , end='\n' ) print('Old:' , lowercase__ , end='\n\n' ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _a (lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : Dict=2_0_4_8 , lowercase__ : List[str]=4_0_9_6 , lowercase__ : Tuple=True ) -> Optional[int]: """simple docstring""" # overlap will be of doc_stride - q_len __snake_case = get_context_and_ans(lowercase__ , assertion=lowercase__ ) __snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids __snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __snake_case = [] __snake_case = [] __snake_case = input_ids[:q_len] __snake_case = range(lowercase__ , len(lowercase__ ) , max_length - doc_stride ) for i in doc_start_indices: __snake_case = i + max_length - q_len __snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowercase__ ), "end_token": [-1_0_0] * len(lowercase__ ), "category": category, }, } __snake_case = out['context'].split() __snake_case = splitted_context[answer['end_token']] __snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=lowercase__ , ).input_ids ) __snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=lowercase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __snake_case = len(tokenizer(lowercase__ , add_special_tokens=lowercase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive __snake_case = answer['start_token'] __snake_case = answer['end_token'] if assertion: __snake_case = tokenizer.decode(lowercase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , lowercase__ , end='\n\n' ) if len(lowercase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __snake_case = input_ids[:q_len] __snake_case = range(lowercase__ , len(lowercase__ ) , max_length - doc_stride ) __snake_case = [] __snake_case = [] __snake_case = [] __snake_case = [] # null, yes, no, long, short for i in doc_start_indices: __snake_case = i + max_length - q_len __snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __snake_case = start_token - i + q_len __snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: __snake_case = -1_0_0 __snake_case = -1_0_0 answers_category.append('null' ) __snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase__ ) answers_end_token.append(lowercase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(lowercase__ ) ) print('Old:' , tokenizer.decode(lowercase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _a (lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : int=2_0_4_8 , lowercase__ : Optional[int]=4_0_9_6 , lowercase__ : List[Any]=False ) -> Union[str, Any]: """simple docstring""" __snake_case = get_strided_contexts_and_ans( lowercase__ , lowercase__ , doc_stride=lowercase__ , max_length=lowercase__ , assertion=lowercase__ , ) return example def _a (lowercase__ : Any , lowercase__ : Optional[Any] ) -> List[Any]: """simple docstring""" with jsonlines.open(lowercase__ , 'a' ) as writer: for example in tqdm(lowercase__ , total=len(lowercase__ ) , desc='Saving samples ... ' ): __snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _a : List[str] = load_dataset("natural_questions") _a : Dict = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") _a : Any = data["train" if PROCESS_TRAIN == "true" else "validation"] _a : Union[str, Any] = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } _a : List[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _a : List[str] = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) _a : Union[str, Any] = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
56
'''simple docstring''' import math from collections.abc import Callable def _a (lowercase__ : Callable[[float], float] , lowercase__ : float , lowercase__ : float ) -> float: """simple docstring""" __snake_case = xa __snake_case = xa while True: if x_n == x_na or function(lowercase__ ) == function(lowercase__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __snake_case = x_na - ( function(lowercase__ ) / ((function(lowercase__ ) - function(lowercase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na __snake_case = x_na __snake_case = x_na def _a (lowercase__ : float ) -> float: """simple docstring""" return math.pow(lowercase__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
56
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowercase ( unittest.TestCase ): def a ( self : Any ) -> Any: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __snake_case = TextStreamer(SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Any: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(greedy_ids[0] ) __snake_case = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ ) __snake_case = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __snake_case = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() __snake_case = '' for new_text in streamer: streamer_text += new_text self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) __snake_case = greedy_ids[:, input_ids.shape[1] :] __snake_case = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __snake_case = TextStreamer(SCREAMING_SNAKE_CASE_ , skip_prompt=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> int: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __snake_case = AutoTokenizer.from_pretrained('distilgpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = torch.ones((1, 5) , device=SCREAMING_SNAKE_CASE_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __snake_case = TextStreamer(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=1 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __snake_case = cs.out[:-1] # Remove the final "\n" __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : List[Any] ) -> Union[str, Any]: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ , timeout=0.0_0_1 ) __snake_case = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __snake_case = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = '' for new_text in streamer: streamer_text += new_text
56
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[Any] ) -> Any: super().setUp() __snake_case = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a ( self : List[Any] ) -> Dict: __snake_case = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __snake_case = '今天天气真好!' __snake_case = ['今天', '天气', '真', '好', '!'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = '今天天气真好!' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
56
1