code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Optional[int] = 2 class a : """simple docstring""" def __init__( self : int , *, # begin keyword-only arguments lowerCamelCase : List[Any]="<s>" , lowerCamelCase : List[Any]="<pad>" , lowerCamelCase : Union[str, Any]="</s>" , lowerCamelCase : Any="<unk>" , lowerCamelCase : Optional[Any]=None , ) -> Optional[int]: __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = bos, unk, pad, eos __snake_case : Tuple = [] __snake_case : Dict = [] __snake_case : List[str] = {} __snake_case : Tuple = self.add_symbol(lowerCamelCase ) __snake_case : List[Any] = self.add_symbol(lowerCamelCase ) __snake_case : Dict = self.add_symbol(lowerCamelCase ) __snake_case : List[str] = self.add_symbol(lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCamelCase ) __snake_case : Any = len(self.symbols ) def __eq__( self : Any , lowerCamelCase : Optional[Any] ) -> int: return self.indices == other.indices def __getitem__( self : Union[str, Any] , lowerCamelCase : Dict ) -> Any: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ) -> Optional[int]: return len(self.symbols ) def __contains__( self : str , lowerCamelCase : str ) -> Any: return sym in self.indices @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> List[str]: __snake_case : Optional[Any] = cls() d.add_from_file(lowerCamelCase ) return d def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : List[str]=1 , lowerCamelCase : int=False ) -> Union[str, Any]: if word in self.indices and not overwrite: __snake_case : Optional[int] = self.indices[word] __snake_case : Optional[Any] = self.count[idx] + n return idx else: __snake_case : Dict = len(self.symbols ) __snake_case : List[Any] = idx self.symbols.append(lowerCamelCase ) self.count.append(lowerCamelCase ) return idx def __snake_case ( self : Optional[Any] , lowerCamelCase : Tuple ) -> Any: return 0 def __snake_case ( self : str , lowerCamelCase : Tuple ) -> List[str]: if isinstance(lowerCamelCase , lowerCamelCase ): try: with open(lowerCamelCase , "r" , encoding="utf-8" ) as fd: self.add_from_file(lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(lowerCamelCase ) ) return __snake_case : Dict = f.readlines() __snake_case : Dict = self._load_meta(lowerCamelCase ) for line in lines[indices_start_line:]: try: __snake_case , __snake_case : Union[str, Any] = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": __snake_case : int = True __snake_case , __snake_case : List[str] = line.rsplit(" " , 1 ) else: __snake_case : Union[str, Any] = False __snake_case : Union[str, Any] = int(lowerCamelCase ) __snake_case : Dict = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(lowerCamelCase ) ) self.add_symbol(lowerCamelCase , n=lowerCamelCase , overwrite=lowerCamelCase ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def lowerCAmelCase_ ( __lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __snake_case : List[Any] = dict((re.sub(R"@@$" , "" , __lowerCamelCase ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __lowerCamelCase ), v) for k, v in d.items() ) __snake_case : str = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __snake_case : Optional[int] = d[k] # restore return da def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): # prep if not os.path.exists(__lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __snake_case : Dict = os.path.join(__lowerCamelCase , "checkpoint.pt" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __snake_case : str = torch.load(__lowerCamelCase , map_location="cpu" ) __snake_case : List[Any] = chkpt["cfg"]["model"] # dicts __snake_case : str = os.path.join(__lowerCamelCase , "dict.txt" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __snake_case : int = Dictionary.load(__lowerCamelCase ) __snake_case : Tuple = rewrite_dict_keys(src_dict.indices ) __snake_case : Tuple = len(__lowerCamelCase ) __snake_case : Optional[Any] = os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES["vocab_file"] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # merges_file (bpecodes) __snake_case : Dict = os.path.join(__lowerCamelCase , "bpecodes" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __snake_case : List[Any] = os.path.join(__lowerCamelCase , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(__lowerCamelCase , __lowerCamelCase ) # model config __snake_case : List[str] = os.path.join(__lowerCamelCase , "config.json" ) __snake_case : Optional[Any] = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.0_2, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # tokenizer config __snake_case : Tuple = os.path.join(__lowerCamelCase , __lowerCamelCase ) __snake_case : int = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_0_2_4, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__lowerCamelCase , ensure_ascii=__lowerCamelCase , indent=__lowerCamelCase ) ) # model __snake_case : Dict = chkpt["model"] # remove unneeded keys __snake_case : int = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(__lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): __snake_case : str = model_state_dict.pop(__lowerCamelCase ) else: __snake_case : Any = model_state_dict.pop(__lowerCamelCase ) __snake_case : Dict = BioGptConfig.from_pretrained(__lowerCamelCase ) __snake_case : Any = BioGptForCausalLM(__lowerCamelCase ) # check that it loads ok model_new.load_state_dict(__lowerCamelCase ) # save __snake_case : List[str] = os.path.join(__lowerCamelCase , __lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(__lowerCamelCase , __lowerCamelCase ) print("Conversion is done!" ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case : Union[str, Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
81
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(lowerCAmelCase__ ) )] def a__ ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) UpperCAmelCase_ = all_rotations(lowerCAmelCase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCAmelCase_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowerCAmelCase__ ), } return response def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: UpperCAmelCase_ = int(lowerCAmelCase__ ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(lowerCAmelCase__ ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) UpperCAmelCase_ = [""] * len(lowerCAmelCase__ ) for _ in range(len(lowerCAmelCase__ ) ): for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase = """Provide a string that I will generate its BWT transform: """ lowerCamelCase = input(entry_msg).strip() lowerCamelCase = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) lowerCamelCase = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
82
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class __snake_case : def __init__( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = question_encoder _lowerCamelCase : Any = generator _lowerCamelCase : List[str] = self.question_encoder def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : int ): """simple docstring""" if os.path.isfile(__lowerCAmelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) _lowerCamelCase : Tuple = os.path.join(__lowerCAmelCase , '''question_encoder_tokenizer''' ) _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__lowerCAmelCase ) self.generator.save_pretrained(__lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Any ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Dict = kwargs.pop('''config''' , __lowerCAmelCase ) if config is None: _lowerCamelCase : Any = RagConfig.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = AutoTokenizer.from_pretrained( __lowerCAmelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( __lowerCAmelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__lowerCAmelCase , generator=__lowerCAmelCase ) def __call__( self : Any , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" return self.current_tokenizer(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Tuple ): """simple docstring""" return self.generator.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *__lowerCAmelCase : Any , **__lowerCAmelCase : List[Any] ): """simple docstring""" return self.generator.decode(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.question_encoder def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.generator def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : str = "longest" , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = True , **__lowerCAmelCase : int , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __lowerCAmelCase , ) if max_length is None: _lowerCamelCase : Tuple = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , max_length=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , **__lowerCAmelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : Tuple = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[int] = self( text_target=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Dict = labels['''input_ids'''] return model_inputs
83
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = """nllb-moe""" _UpperCamelCase : Optional[int] = ["""past_key_values"""] _UpperCamelCase : Optional[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case=12_8112 , snake_case=1024 , snake_case=12 , snake_case=4096 , snake_case=16 , snake_case=12 , snake_case=4096 , snake_case=16 , snake_case=0.05 , snake_case=0.05 , snake_case=True , snake_case=True , snake_case="relu" , snake_case=1024 , snake_case=0.1 , snake_case=0.1 , snake_case=0.0 , snake_case=0.02 , snake_case=2 , snake_case=True , snake_case=False , snake_case="float32" , snake_case=False , snake_case=128 , snake_case=64 , snake_case=4 , snake_case=4 , snake_case=0.001 , snake_case=0.001 , snake_case="all" , snake_case=False , snake_case=False , snake_case=1.0 , snake_case=0.2 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case=False , **snake_case , ): lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True lowercase = router_z_loss_coef lowercase = router_aux_loss_coef lowercase = decoder_sparse_step lowercase = encoder_sparse_step lowercase = num_experts lowercase = expert_capacity lowercase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase = router_dtype lowercase = router_ignore_padding_tokens lowercase = batch_prioritized_routing lowercase = second_expert_policy lowercase = normalize_router_prob_before_dropping lowercase = moe_eval_capacity_token_fraction lowercase = moe_token_dropout lowercase = output_router_logits super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , **snake_case , )
84
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class snake_case ( unittest.TestCase ): def __lowercase( self : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE__ : Tuple = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a_ ) def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_verbosity() SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE__ : Any = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(a_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def __lowercase( self : List[Any] )-> Union[str, Any]: """simple docstring""" # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE__ : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE__ : int = os.getenv('TRANSFORMERS_VERBOSITY' , a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE__ : str = logging.get_verbosity() self.assertEqual( a_ , a_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level SCREAMING_SNAKE_CASE__ : List[Any] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def __lowercase( self : Any )-> Union[str, Any]: """simple docstring""" # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE__ : int = logging.logging.getLogger() with CaptureLogger(a_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def __lowercase( self : int )-> Tuple: """simple docstring""" # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger('transformers.models.bart.tokenization_bart' ) SCREAMING_SNAKE_CASE__ : Dict = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(a_ ) as cl: logger.warning_advice(a_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a_ ) as cl: logger.warning_advice(a_ ) self.assertEqual(cl.out , msg + '\n' ) def _a ( ): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
85
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = torch.exp(__UpperCamelCase ) A_ = torch.sum(__UpperCamelCase ,dim=1 ) # sum of exp(x_i) A_ = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(__UpperCamelCase ) - B / A class _a ( nn.Module ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : List[Any] ): super().__init__() A_ = config.output_attentions A_ = config.output_hidden_states A_ = nn.ModuleList([BertLayer(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) A_ = nn.ModuleList([BertHighway(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) A_ = [-1 for _ in range(config.num_hidden_layers )] def __A ( self : str , UpperCAmelCase : Dict ): if (type(UpperCAmelCase ) is float) or (type(UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): A_ = x else: A_ = x def __A ( self : Dict , UpperCAmelCase : Optional[Any] ): A_ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , ): A_ = () A_ = () A_ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: A_ = all_hidden_states + (hidden_states,) A_ = layer_module( UpperCAmelCase , UpperCAmelCase , head_mask[i] , UpperCAmelCase , UpperCAmelCase ) A_ = layer_outputs[0] if self.output_attentions: A_ = all_attentions + (layer_outputs[1],) A_ = (hidden_states,) if self.output_hidden_states: A_ = current_outputs + (all_hidden_states,) if self.output_attentions: A_ = current_outputs + (all_attentions,) A_ = self.highway[i](UpperCAmelCase ) # logits, pooled_output if not self.training: A_ = highway_exit[0] A_ = entropy(UpperCAmelCase ) A_ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy A_ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: A_ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase , i + 1 ) else: A_ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: A_ = all_hidden_states + (hidden_states,) A_ = (hidden_states,) if self.output_hidden_states: A_ = outputs + (all_hidden_states,) if self.output_attentions: A_ = outputs + (all_attentions,) A_ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , snake_case_ , ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : Optional[int] ): super().__init__(UpperCAmelCase ) A_ = config A_ = BertEmbeddings(UpperCAmelCase ) A_ = DeeBertEncoder(UpperCAmelCase ) A_ = BertPooler(UpperCAmelCase ) self.init_weights() def __A ( self : Any ): self.encoder.init_highway_pooler(self.pooler ) def __A ( self : Union[str, Any] ): return self.embeddings.word_embeddings def __A ( self : List[Any] , UpperCAmelCase : Optional[int] ): A_ = value def __A ( self : Any , UpperCAmelCase : int ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: A_ = input_ids.size() elif inputs_embeds is not None: A_ = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) A_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: A_ = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if encoder_attention_mask is None: A_ = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if token_type_ids is None: A_ = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. A_ = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: A_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: A_ = encoder_attention_mask[:, None, None, :] A_ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility A_ = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] A_ = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers ) A_ = self.embeddings( input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase ) A_ = self.encoder( UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) A_ = encoder_outputs[0] A_ = self.pooler(UpperCAmelCase ) A_ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ): A_ = message A_ = exit_layer # start from 1! class _a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Any ): super().__init__() A_ = BertPooler(UpperCAmelCase ) A_ = nn.Dropout(config.hidden_dropout_prob ) A_ = nn.Linear(config.hidden_size , config.num_labels ) def __A ( self : str , UpperCAmelCase : str ): # Pooler A_ = encoder_outputs[0] A_ = self.pooler(UpperCAmelCase ) # "return" pooler_output # BertModel A_ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification A_ = bmodel_output[1] A_ = self.dropout(UpperCAmelCase ) A_ = self.classifier(UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , snake_case_ , ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Optional[Any] ): super().__init__(UpperCAmelCase ) A_ = config.num_labels A_ = config.num_hidden_layers A_ = DeeBertModel(UpperCAmelCase ) A_ = nn.Dropout(config.hidden_dropout_prob ) A_ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[str]=-1 , UpperCAmelCase : List[Any]=False , ): A_ = self.num_layers try: A_ = self.bert( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits A_ = outputs[1] A_ = self.dropout(UpperCAmelCase ) A_ = self.classifier(UpperCAmelCase ) A_ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A_ = e.message A_ = e.exit_layer A_ = outputs[0] if not self.training: A_ = entropy(UpperCAmelCase ) A_ = [] A_ = [] if labels is not None: if self.num_labels == 1: # We are doing regression A_ = MSELoss() A_ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: A_ = CrossEntropyLoss() A_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits A_ = [] for highway_exit in outputs[-1]: A_ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A_ = MSELoss() A_ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: A_ = CrossEntropyLoss() A_ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase ) if train_highway: A_ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A_ = (loss,) + outputs if not self.training: A_ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A_ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
86
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
def SCREAMING_SNAKE_CASE ( lowercase_=28_123 ) -> Union[str, Any]: """simple docstring""" A__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i A__ = set() A__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
87
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
"""simple docstring""" import math def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : int = 0 while num > 0: _lowerCamelCase : Any = num % 8 _lowerCamelCase : int = octal + (remainder * math.floor(math.pow(10 , __snake_case ) )) counter += 1 _lowerCamelCase : str = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(__snake_case )}' def _snake_case ( ): """simple docstring""" print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
88
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowercase : List[Any] = dict(zip(lowerCamelCase, range(len(lowerCamelCase)))) _lowercase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowercase : Any = {'unk_token': '<unk>'} _lowercase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase)) _lowercase : Optional[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _lowercase : Optional[int] = os.path.join(self.tmpdirname, lowerCamelCase) with open(self.image_processor_file, 'w', encoding='utf-8') as fp: json.dump(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Optional[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self, **lowerCamelCase) -> Any: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Any = [np.random.randint(2_55, size=(3, 30, 4_00), dtype=np.uinta)] _lowercase : Union[str, Any] = [Image.fromarray(np.moveaxis(lowerCamelCase, 0, -1)) for x in image_inputs] return image_inputs def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Dict = self.get_rust_tokenizer() _lowercase : Dict = self.get_image_processor() _lowercase : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) processor_slow.save_pretrained(self.tmpdirname) _lowercase : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase) _lowercase : List[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) processor_fast.save_pretrained(self.tmpdirname) _lowercase : str = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowercase : str = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)') _lowercase : Union[str, Any] = self.get_image_processor(do_normalize=lowerCamelCase, padding_value=1.0) _lowercase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, lowerCamelCase) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = self.get_image_processor() _lowercase : int = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : Optional[int] = self.prepare_image_inputs() _lowercase : str = image_processor(lowerCamelCase, return_tensors='np') _lowercase : Optional[int] = processor(images=lowerCamelCase, return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : int = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : str = 'lower newer' _lowercase : Dict = processor(text=lowerCamelCase) _lowercase : Union[str, Any] = tokenizer(lowerCamelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : int = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : List[Any] = 'lower newer' _lowercase : Any = self.prepare_image_inputs() _lowercase : Any = processor(text=lowerCamelCase, images=lowerCamelCase) self.assertListEqual(list(inputs.keys()), ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCamelCase): processor() def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = self.get_image_processor() _lowercase : Any = self.get_tokenizer() _lowercase : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : str = self.prepare_image_inputs() _lowercase : str = self.prepare_image_inputs() _lowercase : Union[str, Any] = processor(images=lowerCamelCase, visual_prompt=lowerCamelCase) self.assertListEqual(list(inputs.keys()), ['pixel_values', 'conditional_pixel_values']) # test if it raises when no input is passed with pytest.raises(lowerCamelCase): processor() def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = self.get_image_processor() _lowercase : Dict = self.get_tokenizer() _lowercase : List[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase, image_processor=lowerCamelCase) _lowercase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : Optional[int] = processor.batch_decode(lowerCamelCase) _lowercase : List[str] = tokenizer.batch_decode(lowerCamelCase) self.assertListEqual(lowerCamelCase, lowerCamelCase)
89
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __UpperCAmelCase = True except (ImportError, AttributeError): __UpperCAmelCase = object def _snake_case ( *A , **A ) -> str: pass __UpperCAmelCase = False __UpperCAmelCase = logging.get_logger('''transformers-cli/serving''') def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(A , args.host , args.port , args.workers ) class a__ ( a__ ): '''simple docstring''' lowercase__ : dict class a__ ( a__ ): '''simple docstring''' lowercase__ : List[str] lowercase__ : Optional[List[int]] class a__ ( a__ ): '''simple docstring''' lowercase__ : str class a__ ( a__ ): '''simple docstring''' lowercase__ : Any class a__ ( a__ ): '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = pipeline lowerCAmelCase__ = host lowerCAmelCase__ = port lowerCAmelCase__ = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) lowerCAmelCase__ = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) ) -> List[Any]: try: lowerCAmelCase__ = self._pipeline.tokenizer.tokenize(lowerCamelCase_ ) if return_ids: lowerCAmelCase__ = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) return ServeTokenizeResult(tokens=lowerCamelCase_ , tokens_ids=lowerCamelCase_ ) else: return ServeTokenizeResult(tokens=lowerCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(lowerCamelCase_ )} ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , ) -> Optional[Any]: try: lowerCAmelCase__ = self._pipeline.tokenizer.decode(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(lowerCamelCase_ )} ) async def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=Body(lowerCamelCase_ , embed=lowerCamelCase_ ) ) -> List[str]: # Check we don't have empty string if len(lowerCamelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowerCAmelCase__ = self._pipeline(lowerCamelCase_ ) return ServeForwardResult(output=lowerCamelCase_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(lowerCamelCase_ )} )
90
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) A = AutoTokenizer.from_pretrained('xlm-roberta-base' ) A = 'The dog is cute and lives in the garden house' A = jnp.array([tokenizer.encode(A_ )] ) A = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim A = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) A = model(A_ )['last_hidden_state'] self.assertEqual(output.shape ,A_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,A_ ,atol=1e-3 ) )
91
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : Any ) -> Union[str, Any]: # noqa: E741 lowercase : List[Any] =len(__magic_name__ ) lowercase : List[str] =0 lowercase : List[str] =[0] * n lowercase : List[Any] =[False] * n lowercase : List[str] =[False] * n def dfs(__magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : str ): if parent == root: out_edge_count += 1 lowercase : Dict =True lowercase : int =at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase : Optional[int] =dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase : int =min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase : str =True # AP found via cycle if at == low[to]: lowercase : str =True else: lowercase : Optional[Any] =min(low[at] , __magic_name__ ) return out_edge_count for i in range(__magic_name__ ): if not visited[i]: lowercase : Optional[Any] =0 lowercase : List[Any] =dfs(__magic_name__ , __magic_name__ , -1 , __magic_name__ ) lowercase : int =out_edge_count > 1 for x in range(len(__magic_name__ ) ): if is_art[x] is True: print(__magic_name__ ) # Adjacency list of graph UpperCamelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
92
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def lowercase_ ( __A : str , __A : str = "cpu" , __A : Union[str, None] = None ) -> None: """simple docstring""" lowercase : str =torch.load(__A , map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase : str =v.half() if save_path is None: # overwrite src_path lowercase : Any =src_path torch.save(__A , __A ) if __name__ == "__main__": fire.Fire(convert)
94
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase_ (__A ): __magic_name__ = ['''image_processor''', '''tokenizer'''] __magic_name__ = '''OwlViTImageProcessor''' __magic_name__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> str: UpperCAmelCase_ : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) UpperCAmelCase_ : int = kwargs.pop("feature_extractor" ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : Optional[int] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]="max_length" , lowerCAmelCase_ : Tuple="np" , **lowerCAmelCase_ : List[Any] ) -> List[str]: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): UpperCAmelCase_ : int = [self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): UpperCAmelCase_ : str = [] # Maximum number of queries across batch UpperCAmelCase_ : Union[str, Any] = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: UpperCAmelCase_ : int = t + [" "] * (max_num_queries - len(lowerCAmelCase_ )) UpperCAmelCase_ : List[str] = self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": UpperCAmelCase_ : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Dict = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase_ : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase_ : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) UpperCAmelCase_ : Any = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Optional[Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Any = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) UpperCAmelCase_ : Union[str, Any] = BatchEncoding() UpperCAmelCase_ : List[str] = input_ids UpperCAmelCase_ : Any = attention_mask if query_images is not None: UpperCAmelCase_ : Optional[int] = BatchEncoding() UpperCAmelCase_ : Any = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values UpperCAmelCase_ : str = query_pixel_values if images is not None: UpperCAmelCase_ : Tuple = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: UpperCAmelCase_ : List[str] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase_ : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : int ) -> Optional[Any]: return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ) -> Dict: return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> Tuple: return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> List[str]: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[Any] ) -> int: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
95
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
97
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a__ ( lowercase : str ) -> List[Any]: """simple docstring""" return EnvironmentCommand() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @staticmethod def snake_case__ ( lowerCAmelCase__ : ArgumentParser ) -> str: '''simple docstring''' _UpperCamelCase = parser.add_parser('''env''' ) download_parser.set_defaults(func=lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = huggingface_hub.__version__ _UpperCamelCase = '''not installed''' _UpperCamelCase = '''NA''' if is_torch_available(): import torch _UpperCamelCase = torch.__version__ _UpperCamelCase = torch.cuda.is_available() _UpperCamelCase = '''not installed''' if is_transformers_available(): import transformers _UpperCamelCase = transformers.__version__ _UpperCamelCase = '''not installed''' if is_accelerate_available(): import accelerate _UpperCamelCase = accelerate.__version__ _UpperCamelCase = '''not installed''' if is_xformers_available(): import xformers _UpperCamelCase = xformers.__version__ _UpperCamelCase = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(lowerCAmelCase__ ) ) return info @staticmethod def snake_case__ ( lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
98
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def a (lowerCAmelCase__ = "isbn/0140328726" ): __a = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: __a = f'''{olid} is not a valid Open Library olid''' raise ValueError(lowerCAmelCase__ ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def a (lowerCAmelCase__ ): __a = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } __a = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __a = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] __a = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = """, """.join(lowerCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
99
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A : Any = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any = ["""PoolFormerFeatureExtractor"""] _A : Dict = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
100
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowercase : """simple docstring""" _UpperCAmelCase = BlenderbotConfig _UpperCAmelCase = {} _UpperCAmelCase = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : List[Any] = bos_token_id def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE_ : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TFBlenderbotModel(config=lowerCAmelCase__ ).get_decoder() SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids[:1, :] SCREAMING_SNAKE_CASE_ : List[str] = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE_ : Dict = 1 # first forward pass SCREAMING_SNAKE_CASE_ : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def a__ ( A__, A__, A__, A__=None, A__=None, A__=None, A__=None, A__=None, ): if attention_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.cast(tf.math.not_equal(A__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: SCREAMING_SNAKE_CASE_ : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _UpperCAmelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFBlenderbotModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict = ConfigTester(self , config_class=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_tokenizers @require_tf class __lowercase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ["""My friends are cool but they eat too many carbs."""] _UpperCAmelCase = """facebook/blenderbot-400M-distill""" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.generate( model_inputs.input_ids , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
101
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __magic_name__ : Tuple = logging.getLogger(__name__) @dataclass class lowercase__ : """simple docstring""" __lowerCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether tp freeze the encoder."""} ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowercase__ : """simple docstring""" __lowerCAmelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __lowerCAmelCase : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __lowerCAmelCase : Optional[int] = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __lowerCAmelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __lowerCAmelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __lowerCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Source language id for translation."""} ) __lowerCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Target language id for translation."""} ) __lowerCAmelCase : Optional[int] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """# num_beams to use for evaluation."""} ) __lowerCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , f"""{split}_results.json""" ) ) def UpperCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : Tuple = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase : Optional[Any] = SeqaSeqDataset # Get datasets UpperCamelCase : List[Any] = ( dataset_class( SCREAMING_SNAKE_CASE , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) UpperCamelCase : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase : Optional[Any] = ( dataset_class( SCREAMING_SNAKE_CASE , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase : Tuple = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) UpperCamelCase : Optional[int] = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) UpperCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase : Dict = train_result.metrics UpperCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase : List[str] = trainer.evaluate(metric_key_prefix="""val""" ) UpperCamelCase : int = data_args.n_val UpperCamelCase : Any = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info("""*** Predict ***""" ) UpperCamelCase : List[Any] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE , metric_key_prefix="""test""" ) UpperCamelCase : Union[str, Any] = test_output.metrics UpperCamelCase : List[str] = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase : Dict = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: UpperCamelCase : str = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = lmap(str.strip , SCREAMING_SNAKE_CASE ) write_txt_file(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def UpperCamelCase (SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
102
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[int] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Dict=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCamelCase ) ) _snake_case = np.random.RandomState(__lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # warmup pass to apply optimizations _snake_case = pipe(**self.get_dummy_inputs() ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = ort.SessionOptions() _snake_case = False return options def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) _snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
103
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
104
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase__ : List[Any] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def __UpperCAmelCase ( lowerCamelCase_ : str ) -> str: """simple docstring""" if "://" in dataset_path: SCREAMING_SNAKE_CASE_ : Any = dataset_path.split('://' )[1] return dataset_path def __UpperCAmelCase ( lowerCamelCase_ : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def __UpperCAmelCase ( lowerCamelCase_ : fsspec.AbstractFileSystem , lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = not is_remote_filesystem(lowerCamelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase_ ) , fs._strip_protocol(lowerCamelCase_ ) ) else: fs.mv(lowerCamelCase_ , lowerCamelCase_ , recursive=lowerCamelCase_ ) def __UpperCAmelCase ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : List[str] = threading.Lock()
105
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case :Dict =logging.get_logger(__name__) __snake_case :Any ={'vocab_file': 'sentencepiece.bpe.model'} __snake_case :Union[str, Any] ={ 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } __snake_case :Optional[int] ={ 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } __snake_case :str ='▁' class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Union[str, Any] = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] def __init__( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : List[str]="<s>" , __UpperCamelCase : Optional[int]="</s>" , __UpperCamelCase : Any="</s>" , __UpperCamelCase : int="<s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : str="<mask>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} A = len(self.sp_model ) - 1 A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __UpperCamelCase ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def __UpperCamelCase ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: return len(self.sp_model ) def __UpperCamelCase ( self : Tuple ) -> str: A = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def __UpperCamelCase ( self : Dict , __UpperCamelCase : Any ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(__UpperCamelCase ) return spm_id if spm_id else self.unk_token_id def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__UpperCamelCase ) def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] ) -> Optional[int]: A = [] A = '' A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCamelCase ) + token A = True A = [] else: current_sub_tokens.append(__UpperCamelCase ) A = False out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __getstate__( self : Any ) -> int: A = self.__dict__.copy() A = None return state def __setstate__( self : Any , __UpperCamelCase : Dict ) -> int: A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , 'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
106
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _UpperCAmelCase : int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _UpperCAmelCase : str = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') _UpperCAmelCase : str = [file for file in filepaths if ''' ''' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') _UpperCAmelCase : List[str] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') _UpperCAmelCase : List[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') _UpperCAmelCase : Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
107
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : int=3 , lowerCamelCase : int=18 , lowerCamelCase : Tuple=30 , lowerCamelCase : Dict=400 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=None , lowerCamelCase : List[str]=True , lowerCamelCase : List[Any]=None , lowerCamelCase : Any=True , lowerCamelCase : int=[0.5, 0.5, 0.5] , lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 18} _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = LevitImageProcessor if is_vision_available() else None def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = LevitImageProcessingTester(self ) @property def lowerCamelCase ( self : int ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase ( self : str ) -> int: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
108
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a ( unittest.TestCase ): def __init__( self : Any ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return {} def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" __SCREAMING_SNAKE_CASE = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractionTester(self ) @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE = get_html_strings()[0] __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ) # fmt: off __SCREAMING_SNAKE_CASE = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] __SCREAMING_SNAKE_CASE = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes ,lowerCamelCase ) self.assertEqual(encoding.xpaths ,lowerCamelCase ) # Test batched __SCREAMING_SNAKE_CASE = get_html_strings() __SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase ) # fmt: off __SCREAMING_SNAKE_CASE = expected_nodes + [["""My First Heading""", """My first paragraph."""]] __SCREAMING_SNAKE_CASE = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) ,2 ) self.assertEqual(len(encoding.xpaths ) ,2 ) self.assertEqual(encoding.nodes ,lowerCamelCase ) self.assertEqual(encoding.xpaths ,lowerCamelCase )
109
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase__ = logging.get_logger(__name__) def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : List[Any] = to_pil_image(_snake_case ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = pil_image.size UpperCAmelCase__ : List[str] = pytesseract.image_to_data(_snake_case ,lang=_snake_case ,output_type='dict' ,config=_snake_case ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates UpperCAmelCase__ : Optional[Any] = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] UpperCAmelCase__ : Dict = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] UpperCAmelCase__ : str = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] UpperCAmelCase__ : Union[str, Any] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] UpperCAmelCase__ : int = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] UpperCAmelCase__ : str = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase__ : Any = [] for x, y, w, h in zip(_snake_case ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase__ : List[str] = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes UpperCAmelCase__ : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case ,_snake_case ,_snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a ( lowercase ): UpperCamelCase : List[Any] = ["""pixel_values"""] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 255 , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = "" , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = size if size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ : List[Any] = get_size_dict(UpperCamelCase_ ) UpperCAmelCase__ : Any = do_resize UpperCAmelCase__ : Optional[Any] = size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_value UpperCAmelCase__ : List[str] = do_normalize UpperCAmelCase__ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase__ : Optional[Any] = apply_ocr UpperCAmelCase__ : Optional[Any] = ocr_lang UpperCAmelCase__ : Tuple = tesseract_config def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = PILImageResampling.BILINEAR , UpperCamelCase_ = None , **UpperCamelCase_ , ): UpperCAmelCase__ : Optional[Any] = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCAmelCase__ : List[Any] = (size['height'], size['width']) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): UpperCAmelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[Any] = get_size_dict(UpperCamelCase_ ) UpperCAmelCase__ : Any = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : str = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase__ : Dict = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase__ : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase__ : Any = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : str = [] for image in images: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = apply_tesseract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) words_batch.append(UpperCamelCase_ ) boxes_batch.append(UpperCamelCase_ ) if do_resize: UpperCAmelCase__ : Optional[int] = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: UpperCAmelCase__ : int = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: UpperCAmelCase__ : Optional[Any] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] UpperCAmelCase__ : List[str] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] UpperCAmelCase__ : int = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCamelCase_ ) if apply_ocr: UpperCAmelCase__ : List[Any] = words_batch UpperCAmelCase__ : Any = boxes_batch return data
110
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ) -> int: lowercase__ : Dict = """""" lowercase__ : Dict = """""" lowercase__ : Tuple = [] lowercase__ : Any = 0 lowercase__ : Dict = 256 lowercase__ : Tuple = 0 lowercase__ : Optional[int] = 0 lowercase__ : List[Any] = 0 lowercase__ : str = 0 def UpperCAmelCase__( self , lowerCamelCase__ ) -> str: lowercase__ : Tuple = cva.imread(lowerCamelCase__ , 0 ) lowercase__ : Union[str, Any] = copy.deepcopy(self.img ) lowercase__ , lowercase__ , lowercase__ : int = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) lowercase__ : Optional[Any] = np.sum(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : int = x[i] / self.k self.sk += prk lowercase__ : Optional[int] = (self.L - 1) * self.sk if self.rem != 0: lowercase__ : Union[str, Any] = int(last % last ) lowercase__ : Tuple = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase__ ) lowercase__ : Dict = int(np.ma.count(self.img ) / self.img[1].size ) lowercase__ : List[str] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase__ : int = self.img[j][i] if num != self.last_list[num]: lowercase__ : Dict = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def UpperCAmelCase__( self ) -> Any: plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase__( self ) -> str: cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": __snake_case = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') __snake_case = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
200
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
import os def lowerCamelCase_ ( ) -> Any: """simple docstring""" snake_case_ : int = os.path.dirname(os.path.realpath(a_ ) ) snake_case_ : Union[str, Any] = os.path.join(a_ , '''triangle.txt''' ) with open(a_ ) as f: snake_case_ : List[Any] = f.readlines() snake_case_ : Union[str, Any] = [] for line in triangle: snake_case_ : List[Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): snake_case_ : List[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case_ : Optional[int] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
60
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] = "van" def __init__( self : int , a_ : str=2_24 , a_ : int=3 , a_ : Optional[Any]=[7, 3, 3, 3] , a_ : Tuple=[4, 2, 2, 2] , a_ : Union[str, Any]=[64, 1_28, 3_20, 5_12] , a_ : Optional[int]=[3, 3, 12, 3] , a_ : Optional[int]=[8, 8, 4, 4] , a_ : Any="gelu" , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=1E-6 , a_ : Dict=1E-2 , a_ : str=0.0 , a_ : Optional[int]=0.0 , **a_ : List[Any] , ) -> Any: '''simple docstring''' super().__init__(**a_ ) a__ : Optional[Any] = image_size a__ : Union[str, Any] = num_channels a__ : Optional[Any] = patch_sizes a__ : Any = strides a__ : Union[str, Any] = hidden_sizes a__ : Tuple = depths a__ : int = mlp_ratios a__ : int = hidden_act a__ : Optional[int] = initializer_range a__ : int = layer_norm_eps a__ : Union[str, Any] = layer_scale_init_value a__ : str = drop_path_rate a__ : List[str] = dropout_rate
642
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class a__ : __lowerCAmelCase = None def __magic_name__ ( self ): lowercase : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowercase : str = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _a ) def __magic_name__ ( self ): lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Optional[Any] = os.path.join(_a , "feat_extract.json" ) feat_extract_first.to_json_file(_a ) lowercase : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __magic_name__ ( self ): lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) lowercase : Optional[Any] = self.feature_extraction_class.from_pretrained(_a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __magic_name__ ( self ): lowercase : Dict = self.feature_extraction_class() self.assertIsNotNone(_a )
361
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase : Optional[Any] = logging.get_logger(__name__) class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[str] = question_encoder lowercase : int = generator lowercase : Optional[Any] = self.question_encoder def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if os.path.isfile(snake_case ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(snake_case ,exist_ok=snake_case ) lowercase : Optional[Any] = os.path.join(snake_case ,"""question_encoder_tokenizer""" ) lowercase : List[Any] = os.path.join(snake_case ,"""generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case ) self.generator.save_pretrained(snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,**snake_case ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer lowercase : List[Any] = kwargs.pop("""config""" ,snake_case ) if config is None: lowercase : int = RagConfig.from_pretrained(snake_case ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained( snake_case ,config=config.question_encoder ,subfolder="""question_encoder_tokenizer""" ) lowercase : List[Any] = AutoTokenizer.from_pretrained( snake_case ,config=config.generator ,subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case ,generator=snake_case ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.current_tokenizer(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.generator.batch_decode(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.generator.decode(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.question_encoder def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.generator def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = "longest" ,snake_case = None ,snake_case = True ,**snake_case ,): '''simple docstring''' warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" ,snake_case ,) if max_length is None: lowercase : str = self.current_tokenizer.model_max_length lowercase : int = self( snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,max_length=snake_case ,padding=snake_case ,truncation=snake_case ,**snake_case ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowercase : Any = self.current_tokenizer.model_max_length lowercase : int = self( text_target=snake_case ,add_special_tokens=snake_case ,return_tensors=snake_case ,padding=snake_case ,max_length=snake_case ,truncation=snake_case ,**snake_case ,) lowercase : List[Any] = labels["""input_ids"""] return model_inputs
336
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' __snake_case: Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case: int = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case: List[str] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
577
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" def a_ ( __a ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(a_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
571
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: __SCREAMING_SNAKE_CASE : Optional[Any] = TOKENIZER_CLASSES else: __SCREAMING_SNAKE_CASE : List[Any] = {tokenizer_name: getattr(a_ , tokenizer_name + "Fast" )} logger.info(f'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: __SCREAMING_SNAKE_CASE : Optional[Any] = TOKENIZER_CLASSES[tokenizer_name] __SCREAMING_SNAKE_CASE : Any = True if checkpoint_name is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: __SCREAMING_SNAKE_CASE : Optional[int] = [checkpoint_name] logger.info(f'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(f'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer __SCREAMING_SNAKE_CASE : int = tokenizer_class.from_pretrained(a_ , force_download=a_ ) # Save fast tokenizer logger.info(f'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = checkpoint.split("/" ) __SCREAMING_SNAKE_CASE : Any = os.path.join(a_ , a_ ) elif add_prefix: __SCREAMING_SNAKE_CASE : Any = checkpoint __SCREAMING_SNAKE_CASE : Optional[int] = dump_path else: __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Any = dump_path logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __SCREAMING_SNAKE_CASE : int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __SCREAMING_SNAKE_CASE : Any = file_path.split(a_ )[-1][0] if next_char == "/": __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(a_ , a_ ) __SCREAMING_SNAKE_CASE : int = None logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.save_pretrained( a_ , legacy_format=a_ , filename_prefix=a_ ) logger.info(f'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(a_ ) logger.info(f'=> removing {file_name}' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowercase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
211
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : List[str] = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys snake_case : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
545
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple )-> list: if any(not isinstance(a_ , a_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(a_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
650
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @require_torch def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n """ __SCREAMING_SNAKE_CASE = """\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n """ __SCREAMING_SNAKE_CASE = """\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n """ # Force fetching the files so that we can use the cache __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) BertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) pipeline(task="""fill-mask""" , model=__SCREAMING_SNAKE_CASE ) # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE = """1""" __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = """\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n """ __SCREAMING_SNAKE_CASE = """\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n """ __SCREAMING_SNAKE_CASE = """\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n """ # Force fetching the files so that we can use the cache __SCREAMING_SNAKE_CASE = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) BertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) pipeline(task="""fill-mask""" , model=__SCREAMING_SNAKE_CASE ) # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = """\nfrom transformers import BertConfig, BertModel, BertTokenizer\n """ __SCREAMING_SNAKE_CASE = """\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n """ __SCREAMING_SNAKE_CASE = """\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n """ # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network __SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE = """1""" __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """\nfrom transformers import pipeline\n """ __SCREAMING_SNAKE_CASE = """\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n """ __SCREAMING_SNAKE_CASE = """\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n """ __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = """1""" __SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, mock, run] )] __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """\nfrom transformers import AutoModel\n """ __SCREAMING_SNAKE_CASE = """\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n """ # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE = """1""" __SCREAMING_SNAKE_CASE = subprocess.run(__SCREAMING_SNAKE_CASE , env=__SCREAMING_SNAKE_CASE , check=__SCREAMING_SNAKE_CASE , capture_output=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
627
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _a : Optional[int] = ['''image_processor''', '''tokenizer'''] _a : Union[str, Any] = '''BlipImageProcessor''' _a : List[str] = '''AutoTokenizer''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: super().__init__(lowerCamelCase__ , lowerCamelCase__ ) # add QFormer tokenizer lowercase__ : Optional[int] = qformer_tokenizer def __call__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> List[Any]: if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) lowercase__ : int = BatchFeature() if text is not None: lowercase__ : str = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) encoding.update(lowerCamelCase__ ) lowercase__ : Any = self.qformer_tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ : List[str] = qformer_text_encoding.pop("""input_ids""" ) lowercase__ : Optional[Any] = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: lowercase__ : List[Any] = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) encoding.update(lowerCamelCase__ ) return encoding def UpperCAmelCase__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCAmelCase__( self ) -> Dict: lowercase__ : Any = self.tokenizer.model_input_names lowercase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCAmelCase__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: if os.path.isfile(lowerCamelCase__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowercase__ : int = os.path.join(lowerCamelCase__ , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(lowerCamelCase__ ) return super().save_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) @classmethod def UpperCAmelCase__( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: lowercase__ : int = AutoTokenizer.from_pretrained(lowerCamelCase__ , subfolder="""qformer_tokenizer""" ) lowercase__ : Dict = cls._get_arguments_from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) args.append(lowerCamelCase__ ) return cls(*lowerCamelCase__ )
200
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_ = os.path.join(git_repo_path, '''src''', '''transformers''') lowerCAmelCase_ = '\n{0} = None\n' lowerCAmelCase_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' lowerCAmelCase_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> List[str]: '''simple docstring''' snake_case_ : int = find_backend(''' _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")''' ) self.assertIsNone(__magic_name__ ) snake_case_ : List[str] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__magic_name__ , '''tokenizers''' ) snake_case_ : Optional[int] = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__magic_name__ , '''tensorflow_text''' ) snake_case_ : int = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__magic_name__ , '''sentencepiece_and_tokenizers''' ) snake_case_ : Union[str, Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__magic_name__ , '''sentencepiece_and_tensorflow_text''' ) snake_case_ : str = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__magic_name__ , '''sentencepiece_and_tokenizers_and_vision''' ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[str] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __magic_name__ ) self.assertIn('''tensorflow_text''' , __magic_name__ ) self.assertIn('''sentencepiece_and_tokenizers''' , __magic_name__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__magic_name__ , '''\nCONSTANT = None\n''' ) snake_case_ : Tuple = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __magic_name__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) snake_case_ : Any = '''\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n''' snake_case_ : Optional[int] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n''' snake_case_ : List[str] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __magic_name__ )
60
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" from manim import * class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' a__ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) a__ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ : str = [mem.copy() for i in range(6 )] a__ : Tuple = [mem.copy() for i in range(6 )] a__ : List[str] = VGroup(*a_ ).arrange(a_ , buff=0 ) a__ : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) a__ : Optional[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) a__ : int = Text("CPU" , font_size=24 ) a__ : Any = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) a__ : Tuple = [mem.copy() for i in range(1 )] a__ : Any = VGroup(*a_ ).arrange(a_ , buff=0 ) a__ : Optional[Any] = Text("GPU" , font_size=24 ) a__ : Optional[int] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.align_to(a_ , a_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(a_ ) a__ : int = [mem.copy() for i in range(6 )] a__ : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) a__ : Optional[Any] = Text("Model" , font_size=24 ) a__ : Optional[int] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.play( Create(a_ , run_time=1 ) , Create(a_ , run_time=1 ) , Create(a_ , run_time=1 ) , ) a__ : int = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM." , font_size=24 , ) a__ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ : str = MarkupText( F"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=2.5 ) , Write(a_ ) , Write(a_ ) ) self.add(a_ ) a__ : Any = [] a__ : Union[str, Any] = [] a__ : List[str] = [] for i, rect in enumerate(a_ ): a__ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) cpu_target.move_to(a_ ) cpu_target.generate_target() a__ : Optional[int] = 0.46 / 4 a__ : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=a_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=a_ , buff=0.0 ) cpu_targs.append(a_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(a_ ) ) second_animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(*a_ ) self.wait()
642
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __magic_name__ ( __snake_case : List[Any] ) -> List[Any]: lowercase : int = os.path.join(args.tf_model_dir , "parameters.json" ) lowercase : Dict = json.loads(open(a_ ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): lowercase : List[str] = args.output + ".pt" lowercase : Optional[int] = OrderedDict() with tf.device("/CPU:0" ): lowercase : Tuple = tf.train.load_checkpoint(args.tf_model_dir ) lowercase : Union[str, Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase : List[str] = reader.get_tensor(a_ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): lowercase : Optional[Any] = int(key_name[9] ) elif key_name.startswith("pasts/out" ): lowercase : str = 8 lowercase : List[str] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : List[Any] = torch.tensor(a_ ) elif key_name.startswith("model/moe" ): lowercase : Any = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): lowercase : Dict = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player lowercase : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = torch.tensor(a_ ) elif key_name.endswith("/softmlp/kernel" ): lowercase : Any = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player lowercase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : List[Any] = torch.tensor(a_ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): lowercase : Tuple = key_name[-9:-7] for i in range(16 ): lowercase : Optional[int] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) lowercase : Union[str, Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase : Any = torch.tensor(a_ ) elif key_name.startswith("model/mlp" ): lowercase : List[str] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): lowercase : Optional[Any] = "model.blocks.%d.feed_forward.mlp.wi.weight" % player lowercase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Union[str, Any] = torch.tensor(a_ ) elif key_name.endswith("/p1/bias" ): lowercase : Optional[Any] = "model.blocks.%d.feed_forward.mlp.wi.bias" % player lowercase : List[Any] = vnp.copy() # same because it is one dimensional lowercase : List[Any] = torch.tensor(a_ ) elif key_name.endswith("/p2/kernel" ): lowercase : Tuple = "model.blocks.%d.feed_forward.mlp.wo.weight" % player lowercase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(a_ ) elif key_name.endswith("/p2/bias" ): lowercase : Tuple = "model.blocks.%d.feed_forward.mlp.wo.bias" % player lowercase : Optional[Any] = vnp.copy() # same because it is one dimensional lowercase : List[str] = torch.tensor(a_ ) elif key_name.startswith("model/ln" ): lowercase : List[Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowercase : Tuple = "model.blocks.%d.feed_forward.norm.bias" % player lowercase : int = vnp.copy() # same because it is one dimensional lowercase : int = torch.tensor(a_ ) elif key_name.endswith("/g" ): lowercase : List[Any] = "model.blocks.%d.feed_forward.norm.weight" % player lowercase : str = vnp.copy() # same because it is one dimensional lowercase : List[Any] = torch.tensor(a_ ) elif key_name.startswith("model/att" ): lowercase : Dict = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): lowercase : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase : Tuple = state[:, 0, :, :] lowercase : str = state[:, 1, :, :] lowercase : Optional[int] = state[:, 2, :, :] lowercase : Optional[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : int = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : str = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player lowercase : Optional[Any] = torch.tensor(a_ ) lowercase : List[Any] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player lowercase : Dict = torch.tensor(a_ ) lowercase : List[str] = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player lowercase : Optional[Any] = torch.tensor(a_ ) elif key_name.endswith("/o/kernel" ): lowercase : Optional[int] = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player lowercase : List[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[int] = torch.tensor(a_ ) elif key_name.startswith("model/an" ): lowercase : int = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowercase : Optional[int] = "model.blocks.%d.self_attn.norm.bias" % player lowercase : Union[str, Any] = vnp.copy() # same because it is one dimensional lowercase : Optional[int] = torch.tensor(a_ ) elif key_name.endswith("/g" ): lowercase : int = "model.blocks.%d.self_attn.norm.weight" % player lowercase : int = vnp.copy() # same because it is one dimensional lowercase : Tuple = torch.tensor(a_ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): lowercase : List[str] = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] lowercase : Any = "model.%s.weight" % nlayer lowercase : Union[str, Any] = vnp.copy() # same in embedded lowercase : int = torch.tensor(a_ ) if key_name.startswith("model/wte" ): lowercase : str = "lm_head.weight" lowercase : Union[str, Any] = vnp.copy() # same in embedded lowercase : List[str] = torch.tensor(a_ ) elif key_name.startswith("model/wob" ): lowercase : Tuple = "final_logits_bias" lowercase : Dict = vnp.copy() # same in embedded lowercase : List[Any] = state.reshape((1, -1) ) lowercase : Dict = torch.tensor(a_ ) elif key_name == "model/dense/kernel": lowercase : int = "model.last_project.weight" lowercase : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase : Optional[Any] = torch.tensor(a_ ) elif key_name == "model/dense_1/bias": lowercase : List[str] = "model.last_project.bias" lowercase : int = vnp.copy() # same because it is one dimensional lowercase : Any = torch.tensor(a_ ) torch.save(a_ , args.output ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") _A : Optional[Any] = parser.parse_args() convert_tf_gptsan_to_pt(args)
361
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
lowercase : Optional[Any] = range(2, 20 + 1) lowercase : Optional[int] = [10**k for k in range(ks[-1] + 1)] lowercase : dict[int, dict[int, list[list[int]]]] = {} def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Any = sum(a_i[j] for j in range(a_ , len(a_ ) ) ) lowercase : Any = sum(a_i[j] * base[j] for j in range(min(len(a_ ) , a_ ) ) ) lowercase , lowercase : List[str] = 0, 0 lowercase : Dict = n - i lowercase : List[str] = memo.get(a_ ) if sub_memo is not None: lowercase : Tuple = sub_memo.get(a_ ) if jumps is not None and len(a_ ) > 0: # find and make the largest jump without going over lowercase : str = -1 for _k in range(len(a_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase : Any = _k break if max_jump >= 0: lowercase , lowercase , lowercase : int = jumps[max_jump] # since the difference between jumps is cached, add c lowercase : List[str] = diff + c for j in range(min(a_ , len(a_ ) ) ): lowercase , lowercase : List[str] = divmod(a_ , 10 ) if new_c > 0: add(a_ , a_ , a_ ) else: lowercase : str = [] else: lowercase : List[str] = {c: []} lowercase : List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase , lowercase : Dict = next_term(a_ , k - 1 , i + dn , a_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase , lowercase : Tuple = compute(a_ , a_ , i + dn , a_ ) diff += _diff dn += terms_jumped lowercase : Optional[int] = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase : Any = 0 while j < len(a_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a_ , (diff, dn, k) ) return (diff, dn) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: if i >= n: return 0, i if k > len(a_ ): a_i.extend([0 for _ in range(k - len(a_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase : Any = i lowercase , lowercase , lowercase : Tuple = 0, 0, 0 for j in range(len(a_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase : Optional[Any] = ds_c + ds_b diff += addend lowercase : Dict = 0 for j in range(a_ ): lowercase : List[Any] = a_i[j] + addend lowercase , lowercase : int = divmod(a_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a_ , a_ , a_ ) return diff, i - start_i def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: for j in range(a_ , len(a_ ) ): lowercase : Dict = digits[j] + addend if s >= 10: lowercase , lowercase : Optional[Any] = divmod(a_ , 10 ) lowercase : List[Any] = addend // 10 + quotient else: lowercase : Union[str, Any] = s lowercase : Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: lowercase , lowercase : Union[str, Any] = divmod(a_ , 10 ) digits.append(a_ ) def _snake_case( SCREAMING_SNAKE_CASE__ = 10**15 ) -> int: lowercase : int = [1] lowercase : Any = 1 lowercase : List[str] = 0 while True: lowercase , lowercase : Any = next_term(a_ , 20 , i + dn , a_ ) dn += terms_jumped if dn == n - i: break lowercase : List[str] = 0 for j in range(len(a_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
336
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
'''simple docstring''' def _snake_case ( A_ : Union[str, Any] = 1000 ): """simple docstring""" a_ : str = 3 a_ : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
577
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : str = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
571
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' from math import sqrt def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __SCREAMING_SNAKE_CASE : Tuple = True # 0 and 1 are none primes. if number <= 1: __SCREAMING_SNAKE_CASE : Any = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __SCREAMING_SNAKE_CASE : List[str] = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def __A ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __SCREAMING_SNAKE_CASE : Union[str, Any] = list(range(2 , n + 1 ) ) __SCREAMING_SNAKE_CASE : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __SCREAMING_SNAKE_CASE : Dict = 0 # filters actual prime numbers. __SCREAMING_SNAKE_CASE : Dict = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __SCREAMING_SNAKE_CASE : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __SCREAMING_SNAKE_CASE : Dict = [] # this list will be returns of the function. # potential prime number factors. __SCREAMING_SNAKE_CASE : List[str] = 2 __SCREAMING_SNAKE_CASE : List[str] = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def __A ( _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __SCREAMING_SNAKE_CASE : Optional[Any] = 0 # prime factorization of 'number' __SCREAMING_SNAKE_CASE : List[Any] = prime_factorization(a_ ) __SCREAMING_SNAKE_CASE : Dict = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def __A ( _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __SCREAMING_SNAKE_CASE : int = 0 # prime factorization of 'number' __SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(a_ ) __SCREAMING_SNAKE_CASE : Dict = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __SCREAMING_SNAKE_CASE : Any = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __SCREAMING_SNAKE_CASE : Optional[Any] = get_prime_numbers(a_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = len(a_ ) # run variable for while-loops. __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : Tuple = None # exit variable. for break up the loops __SCREAMING_SNAKE_CASE : Optional[int] = True while i < len_pn and loop: __SCREAMING_SNAKE_CASE : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __SCREAMING_SNAKE_CASE : List[str] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __A ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __SCREAMING_SNAKE_CASE : Optional[Any] = 0 while numbera != 0: __SCREAMING_SNAKE_CASE : Any = numbera % numbera __SCREAMING_SNAKE_CASE : List[Any] = numbera __SCREAMING_SNAKE_CASE : Any = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __A ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __SCREAMING_SNAKE_CASE : str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __SCREAMING_SNAKE_CASE : Optional[Any] = prime_factorization(a_ ) __SCREAMING_SNAKE_CASE : Optional[int] = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __SCREAMING_SNAKE_CASE : str = [] __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : Any = max(a_ , a_ ) __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : List[str] = 0 __SCREAMING_SNAKE_CASE : Dict = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __SCREAMING_SNAKE_CASE : Union[str, Any] = prime_fac_a.count(a_ ) __SCREAMING_SNAKE_CASE : Optional[int] = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __SCREAMING_SNAKE_CASE : List[str] = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __SCREAMING_SNAKE_CASE : Union[str, Any] = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __A ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def __A ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __SCREAMING_SNAKE_CASE : List[str] = p_number_a + 1 # jump to the next number __SCREAMING_SNAKE_CASE : Union[str, Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __SCREAMING_SNAKE_CASE : int = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def __A ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __SCREAMING_SNAKE_CASE : str = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __SCREAMING_SNAKE_CASE : Tuple = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __A ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __SCREAMING_SNAKE_CASE : int = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __A ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Tuple = 1 __SCREAMING_SNAKE_CASE : str = 1 # this will be return for _ in range(n - 1 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ans ans += fiba __SCREAMING_SNAKE_CASE : List[Any] = tmp return ans
211
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
"""simple docstring""" def A ( __snake_case: int = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __magic_name__ = set() # Replace all the whitespace in our sentence __magic_name__ = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(a_ ) == 2_6 def A ( __snake_case: Dict = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __magic_name__ = [False] * 2_6 for char in input_str: if char.islower(): __magic_name__ = True elif char.isupper(): __magic_name__ = True return all(a_ ) def A ( __snake_case: int = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def A ( ) -> None: """simple docstring""" from timeit import timeit __magic_name__ = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=a_ ) ) print(timeit('is_pangram_faster()' , setup=a_ ) ) print(timeit('is_pangram_fastest()' , setup=a_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
545
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
"""simple docstring""" A_ : Union[str, Any] =[0, 2, 4, 6, 8] A_ : Tuple =[1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : List[Any] )-> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _lowerCamelCase = 0 for digit in range(10 ): _lowerCamelCase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , a_ , a_ ) return result _lowerCamelCase = 0 for digita in range(10 ): _lowerCamelCase = digita if (remainder + digita) % 2 == 0: _lowerCamelCase = ODD_DIGITS else: _lowerCamelCase = EVEN_DIGITS for digita in other_parity_digits: _lowerCamelCase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , a_ , a_ , ) return result def SCREAMING_SNAKE_CASE_ ( snake_case : Tuple = 9 )-> int: _lowerCamelCase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a_ , 0 , [0] * length , a_ ) return result if __name__ == "__main__": print(f'{solution() = }')
650
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str=2_000 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[str]=20 , __SCREAMING_SNAKE_CASE : int=1E-3 ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, torch.device] = None ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.linspace(1 , self.config.sampling_eps , __SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None ) -> Tuple: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __SCREAMING_SNAKE_CASE = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __SCREAMING_SNAKE_CASE = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __SCREAMING_SNAKE_CASE = std.flatten() while len(std.shape ) < len(score.shape ): __SCREAMING_SNAKE_CASE = std.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = -score / std # compute __SCREAMING_SNAKE_CASE = -1.0 / len(self.timesteps ) __SCREAMING_SNAKE_CASE = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __SCREAMING_SNAKE_CASE = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __SCREAMING_SNAKE_CASE = beta_t.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE = -0.5 * beta_t * x __SCREAMING_SNAKE_CASE = torch.sqrt(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = drift - diffusion**2 * score __SCREAMING_SNAKE_CASE = x + drift * dt # add noise __SCREAMING_SNAKE_CASE = randn_tensor(x.shape , layout=x.layout , generator=__SCREAMING_SNAKE_CASE , device=x.device , dtype=x.dtype ) __SCREAMING_SNAKE_CASE = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.config.num_train_timesteps
627
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '▁' __snake_case = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } __snake_case = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } __snake_case = { 'facebook/s2t-small-librispeech-asr': 1024, } __snake_case = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] __snake_case = {'mustc': MUSTC_LANGS} class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): """simple docstring""" _a : Optional[Any] = VOCAB_FILES_NAMES _a : Dict = PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = MAX_MODEL_INPUT_SIZES _a : int = ['''input_ids''', '''attention_mask'''] _a : List[Any] = [] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<unk>" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> int: lowercase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , do_upper_case=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , lang_codes=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) lowercase__ : Tuple = do_upper_case lowercase__ : Optional[Any] = do_lower_case lowercase__ : Tuple = load_json(lowerCamelCase__ ) lowercase__ : List[Any] = {v: k for k, v in self.encoder.items()} lowercase__ : Dict = spm_file lowercase__ : Dict = load_spm(lowerCamelCase__ , self.sp_model_kwargs ) if lang_codes is not None: lowercase__ : Dict = lang_codes lowercase__ : str = LANGUAGES[lang_codes] lowercase__ : Optional[int] = [F'''<lang:{lang}>''' for lang in self.langs] lowercase__ : Any = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} lowercase__ : str = self.lang_tokens lowercase__ : Optional[int] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase__ : List[str] = {} @property def UpperCAmelCase__( self ) -> List[str]: return len(self.encoder ) @property def UpperCAmelCase__( self ) -> Any: return self._tgt_lang @tgt_lang.setter def UpperCAmelCase__( self , lowerCamelCase__ ) -> Dict: lowercase__ : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> Union[str, Any]: lowercase__ : str = self.lang_code_to_id[tgt_lang] lowercase__ : str = [lang_code_id] def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.encoder.get(lowerCamelCase__ , self.encoder[self.unk_token] ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]: return self.decoder.get(lowerCamelCase__ , self.unk_token ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> str: lowercase__ : Optional[Any] = [] lowercase__ : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase__ : Optional[Any] = self.sp_model.decode(lowerCamelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase__ : Optional[Any] = [] else: current_sub_tokens.append(lowerCamelCase__ ) lowercase__ : Any = self.sp_model.decode(lowerCamelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Any: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) lowercase__ : List[Any] = [1] * len(self.prefix_tokens ) lowercase__ : int = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : str = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowercase__ : Any = self.__dict__.copy() lowercase__ : Optional[int] = None return state def __setstate__( self , lowerCamelCase__ ) -> Union[str, Any]: lowercase__ : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ : str = {} lowercase__ : List[str] = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple: lowercase__ : Optional[int] = Path(lowerCamelCase__ ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' lowercase__ : str = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) lowercase__ : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , lowerCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase__ , """wb""" ) as fi: lowercase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (str(lowerCamelCase__ ), str(lowerCamelCase__ )) def _lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[str] ): lowercase__ : int = sentencepiece.SentencePieceProcessor(**a_ ) spm.Load(str(a_ ) ) return spm def _lowerCamelCase ( lowerCamelCase__ : Union[str, Any] ): with open(a_ , """r""" ) as f: return json.load(a_ ) def _lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple ): with open(a_ , """w""" ) as f: json.dump(a_ , a_ , indent=2 )
200
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
60
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'spiece.model'} __UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __UpperCAmelCase = { 'google/pegasus-xsum': 512, } __UpperCAmelCase = logging.get_logger(__name__) class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase : Tuple = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self : Tuple , a_ : Union[str, Any] , a_ : List[str]="<pad>" , a_ : Dict="</s>" , a_ : Union[str, Any]="<unk>" , a_ : List[str]="<mask_2>" , a_ : Optional[int]="<mask_1>" , a_ : Union[str, Any]=None , a_ : Optional[Any]=1_03 , a_ : Optional[Dict[str, Any]] = None , **a_ : Dict , ) -> str: '''simple docstring''' a__ : str = offset if additional_special_tokens is not None: if not isinstance(a_ , a_ ): raise TypeError( F"additional_special_tokens should be of type {type(a_ )}, but is" F" {type(a_ )}" ) a__ : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(a_ ) , self.offset - 1 ) ] if len(set(a_ ) ) != len(a_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) a__ : str = additional_special_tokens_extended else: a__ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] a__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a_ , unk_token=a_ , mask_token=a_ , pad_token=a_ , mask_token_sent=a_ , offset=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) a__ : str = mask_token_sent a__ : Tuple = vocab_file a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) # add special tokens to encoder dict a__ : Dict = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) a__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) + self.offset def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Optional[Any]: '''simple docstring''' a__ : Any = self.__dict__.copy() a__ : List[Any] = None return state def __setstate__( self : int , a_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : Optional[int] = {} a__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self : int , a_ : str ) -> Dict: '''simple docstring''' return self.sp_model.encode(a_ , out_type=a_ ) def UpperCAmelCase ( self : Optional[int] , a_ : str ) -> str: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] a__ : Optional[Any] = self.sp_model.piece_to_id(a_ ) return sp_id + self.offset def UpperCAmelCase ( self : int , a_ : int ) -> List[Any]: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: a__ : Optional[int] = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase ( self : Optional[int] , a_ : str ) -> str: '''simple docstring''' a__ : Dict = [] a__ : int = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token a__ : Dict = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def UpperCAmelCase ( self : Union[str, Any] , a_ : Optional[Any]=False ) -> List[Any]: '''simple docstring''' return 1 def UpperCAmelCase ( self : Optional[Any] , a_ : int ) -> int: '''simple docstring''' a__ : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase ( self : Optional[Any] , a_ : List , a_ : Optional[List] = None , a_ : bool = False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(a_ ) elif token_ids_a is None: return self._special_token_mask(a_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase ( self : List[str] , a_ : Any , a_ : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Tuple , a_ : str , a_ : Optional[str] = None ) -> Dict: '''simple docstring''' if not os.path.isdir(a_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return a__ : Union[str, Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: a__ : List[str] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
642
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" def __magic_name__ ( __snake_case : Union[str, Any] ) -> bool: if not isinstance(a_ , a_ ): lowercase : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(a_ ) if number < 0: return False lowercase : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
361
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
import collections import importlib.util import os import re from pathlib import Path lowercase : str = 'src/transformers' # Matches is_xxx_available() lowercase : List[str] = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowercase : Any = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase : Optional[int] = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowercase : List[str] = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowercase : Tuple = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase : List[Any] = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowercase : int = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase : Tuple = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowercase : Union[str, Any] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowercase : Union[str, Any] = re.compile(R"""^\s*try:""") # Catches a line with else: lowercase : Dict = re.compile(R"""^\s*else:""") def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: if _re_test_backend.search(a_ ) is None: return None lowercase : Optional[Any] = [b[0] for b in _re_backend.findall(a_ )] backends.sort() return "_and_".join(a_ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: with open(a_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase : Tuple = f.readlines() lowercase : Any = 0 while line_index < len(a_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a_ ): return None # First grab the objects without a specific backend in _import_structure lowercase : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowercase : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a_ ): lowercase : Any = _re_one_line_import_struct.search(a_ ).groups()[0] lowercase : Any = re.findall("""\[([^\]]+)\]""" , a_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowercase : Union[str, Any] = _re_import_struct_key_value.search(a_ ) if single_line_import_search is not None: lowercase : Optional[Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(a_ ) > 0] objects.extend(a_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowercase : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowercase : Tuple = lines[line_index] if _re_import_struct_add_one.search(a_ ) is not None: objects.append(_re_import_struct_add_one.search(a_ ).groups()[0] ) elif _re_import_struct_add_many.search(a_ ) is not None: lowercase : List[Any] = _re_import_struct_add_many.search(a_ ).groups()[0].split(""", """ ) lowercase : List[str] = [obj[1:-1] for obj in imports if len(a_ ) > 0] objects.extend(a_ ) elif _re_between_brackets.search(a_ ) is not None: lowercase : int = _re_between_brackets.search(a_ ).groups()[0].split(""", """ ) lowercase : str = [obj[1:-1] for obj in imports if len(a_ ) > 0] objects.extend(a_ ) elif _re_quote_object.search(a_ ) is not None: objects.append(_re_quote_object.search(a_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowercase : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase : List[Any] = [] while ( line_index < len(a_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowercase : Optional[Any] = lines[line_index] lowercase : List[str] = _re_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase : Tuple = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(a_ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowercase : Tuple = lines[line_index] lowercase : Dict = _re_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE__ ): return [k for k, v in collections.Counter(a_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase : Union[str, Any] = [] for key in import_dict_objects.keys(): lowercase : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowercase : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase : Tuple = """base imports""" if key == """none""" else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def _snake_case( ) -> str: lowercase : int = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: lowercase : Any = os.path.join(a_ , """__init__.py""" ) lowercase : Optional[Any] = parse_init(a_ ) if objects is not None: lowercase : Union[str, Any] = analyze_results(*a_ ) if len(a_ ) > 0: lowercase : Any = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(a_ ) ) if len(a_ ) > 0: raise ValueError("""\n\n""".join(a_ ) ) def _snake_case( ) -> List[str]: lowercase : Dict = [] for path, directories, files in os.walk(a_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(a_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a_ ) / folder).glob("""*.py""" ) ) ) == 0: continue lowercase : Dict = str((Path(a_ ) / folder).relative_to(a_ ) ) lowercase : Optional[Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(a_ ) for fname in files: if fname == "__init__.py": continue lowercase : List[str] = str((Path(a_ ) / fname).relative_to(a_ ) ) lowercase : List[Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(a_ ) return submodules lowercase : Tuple = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def _snake_case( ) -> Optional[int]: lowercase : int = importlib.util.spec_from_file_location( """transformers""" , os.path.join(a_ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase : Dict = spec.loader.load_module() lowercase : int = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a_ ) > 0: lowercase : Optional[Any] = """\n""".join(f"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
336
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _UpperCAmelCase ( pl.LightningModule ): """simple docstring""" def __init__( self , lowerCAmelCase_ ): '''simple docstring''' super().__init__() a_ : Dict = model a_ : Optional[int] = 2 a_ : Dict = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self ): '''simple docstring''' pass def _snake_case ( A_ : List[Any] , A_ : List[Any] , A_ : Optional[int] ): """simple docstring""" a_ : List[str] = LongformerModel.from_pretrained(a_ ) a_ : List[str] = LightningModel(a_ ) a_ : Optional[int] = torch.load(a_ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model a_ : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": __snake_case: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __snake_case: Optional[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
577
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __snake_case : Union[str, Any] = object() # For specifying empty leaf dict `{}` __snake_case : List[str] = object() def a_ ( __a , __a ): A__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): A__ = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def a_ ( __a ): def replace(__a , __a ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def a_ ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , a_ )), (("transformer", "wte", "embedding"), P('''mp''' , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a_ ( __a ): A__ = _get_partition_rules() A__ = _replacement_rules(a_ ) A__ = {k: _unmatched for k in flatten_dict(a_ )} A__ = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
571
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowerCamelCase : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=False , a__=True , a__=False , a__=False , a__=19 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Optional[int] = batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[int] = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Optional[int] = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size __SCREAMING_SNAKE_CASE : int = type_sequence_label_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : List[Any] = num_choices __SCREAMING_SNAKE_CASE : Optional[int] = scope def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): __SCREAMING_SNAKE_CASE : int = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a__ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : int = EsmForProteinFolding(config=a__ ).float() model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : str = model(a__ , attention_mask=a__ ) __SCREAMING_SNAKE_CASE : str = model(a__ ) __SCREAMING_SNAKE_CASE : int = model(a__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def a_ ( self ): __SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Dict = False snake_case__ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () snake_case__ : int = () snake_case__ : Any = {} if is_torch_available() else {} snake_case__ : Union[str, Any] = False def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = EsmFoldModelTester(self ) __SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) @unittest.skip("Does not support attention outputs" ) def a_ ( self ): pass @unittest.skip def a_ ( self ): pass @unittest.skip("Esm does not support embedding resizing" ) def a_ ( self ): pass @unittest.skip("Esm does not support embedding resizing" ) def a_ ( self ): pass @unittest.skip("ESMFold does not support passing input embeds!" ) def a_ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def a_ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def a_ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def a_ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def a_ ( self ): pass @unittest.skip("ESMFold does not support head pruning." ) def a_ ( self ): pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def a_ ( self ): pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def a_ ( self ): pass @unittest.skip("ESMFold only has one output format." ) def a_ ( self ): pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def a_ ( self ): pass @unittest.skip("ESMFold does not support input chunking." ) def a_ ( self ): pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def a_ ( self ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def a_ ( self ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def a_ ( self ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def a_ ( self ): pass @unittest.skip("ESMFold doesn't support data parallel." ) def a_ ( self ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def a_ ( self ): pass @require_torch class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : int = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ )["positions"] __SCREAMING_SNAKE_CASE : Dict = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a__ , atol=1e-4 ) )
211
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case : List[str] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Tuple = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys snake_case : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
545
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A_ : Optional[int] =logging.get_logger(__name__) A_ : int =[ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] A_ : List[str] =[ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> Optional[int]: _lowerCamelCase = torch.load(a_ , map_location='cpu' ) return sd def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : List[str] , snake_case : int=rename_keys_prefix )-> Dict: _lowerCamelCase = OrderedDict() _lowerCamelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase = key for name_pair in rename_keys_prefix: _lowerCamelCase = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : str )-> Optional[int]: assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _lowerCamelCase = 'pretraining' if "vcr" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 512} _lowerCamelCase = 'multichoice' elif "vqa_advanced" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 2_048} _lowerCamelCase = 'vqa_advanced' elif "vqa" in checkpoint_path: _lowerCamelCase = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} _lowerCamelCase = 'vqa' elif "nlvr" in checkpoint_path: _lowerCamelCase = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } _lowerCamelCase = 'nlvr' _lowerCamelCase = VisualBertConfig(**a_ ) # Load State Dict _lowerCamelCase = load_state_dict(a_ ) _lowerCamelCase = get_new_dict(a_ , a_ ) if model_type == "pretraining": _lowerCamelCase = VisualBertForPreTraining(a_ ) elif model_type == "vqa": _lowerCamelCase = VisualBertForQuestionAnswering(a_ ) elif model_type == "nlvr": _lowerCamelCase = VisualBertForVisualReasoning(a_ ) elif model_type == "multichoice": _lowerCamelCase = VisualBertForMultipleChoice(a_ ) model.load_state_dict(a_ ) # Save Checkpoints Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": A_ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") A_ : Optional[int] =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
650
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase__ : """simple docstring""" @property def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" return self.get_dummy_input() @property def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = (32, 32) __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = torch.device(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = (batch_size, num_channels) + sizes __SCREAMING_SNAKE_CASE = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {"""hidden_states""": hidden_states} if include_temb: __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = randn_tensor((batch_size, temb_channels) , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) if include_res_hidden_states_tuple: __SCREAMING_SNAKE_CASE = torch.manual_seed(1 ) __SCREAMING_SNAKE_CASE = (randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ),) if include_encoder_hidden_states: __SCREAMING_SNAKE_CASE = floats_tensor((batch_size, 32, 32) ).to(__SCREAMING_SNAKE_CASE ) if include_skip_sample: __SCREAMING_SNAKE_CASE = randn_tensor(((batch_size, 3) + sizes) , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) return dummy_input def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": __SCREAMING_SNAKE_CASE = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = self.block_class(**__SCREAMING_SNAKE_CASE ) unet_block.to(__SCREAMING_SNAKE_CASE ) unet_block.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = unet_block(**__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = output[0] self.assertEqual(output.shape , self.output_shape ) __SCREAMING_SNAKE_CASE = output[0, -1, -3:, -3:] __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ) assert torch_all_close(output_slice.flatten() , __SCREAMING_SNAKE_CASE , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = self.block_class(**__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = output[0] __SCREAMING_SNAKE_CASE = torch.device(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = randn_tensor(output.shape , device=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) loss.backward()
627
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __snake_case = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[str] = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _a : int = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _a : List[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _a : List[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _a : Any = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _a : List[Any] = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _a : int = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Any = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input training data file (a text file).'''} ) _a : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _a : str = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _a : Union[str, Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _a : Optional[int] = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _a : List[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) _a : int = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _a : List[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def UpperCAmelCase__( self ) -> List[str]: if self.train_file is not None: lowercase__ : int = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowercase__ : Tuple = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Tuple = 42 _a : Dict = True _a : Union[str, Any] = None _a : Optional[Any] = None def __call__( self , lowerCamelCase__ ) -> Any: lowercase__ : Any = """label""" if """label""" in features[0].keys() else """labels""" lowercase__ : Dict = [feature.pop(lowerCamelCase__ ) for feature in features] lowercase__ : Any = len(lowerCamelCase__ ) lowercase__ : Optional[Any] = len(features[0]["""input_ids"""] ) lowercase__ : Optional[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] lowercase__ : List[str] = list(chain(*lowerCamelCase__ ) ) lowercase__ : List[str] = self.tokenizer.pad( lowerCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten lowercase__ : List[Any] = {k: v.view(lowerCamelCase__ , lowerCamelCase__ , -1 ) for k, v in batch.items()} # Add back labels lowercase__ : str = torch.tensor(lowerCamelCase__ , dtype=torch.intaa ) return batch def _lowerCamelCase ( ): lowercase__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , a_ , a_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowercase__ : Tuple = {} if data_args.train_file is not None: lowercase__ : Optional[int] = data_args.train_file if data_args.validation_file is not None: lowercase__ : Any = data_args.validation_file lowercase__ : Optional[Any] = data_args.train_file.split(""".""" )[-1] lowercase__ : str = load_dataset( a_ , data_files=a_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowercase__ : Optional[int] = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase__ : Any = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowercase__ : Dict = [f'''ending{i}''' for i in range(4 )] lowercase__ : int = """sent1""" lowercase__ : List[Any] = """sent2""" if data_args.max_seq_length is None: lowercase__ : int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) lowercase__ : Optional[int] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase__ : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase__ : Dict ): lowercase__ : Dict = [[context] * 4 for context in examples[context_name]] lowercase__ : Optional[int] = examples[question_header_name] lowercase__ : Union[str, Any] = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out lowercase__ : Optional[int] = list(chain(*a_ ) ) lowercase__ : Union[str, Any] = list(chain(*a_ ) ) # Tokenize lowercase__ : int = tokenizer( a_ , a_ , truncation=a_ , max_length=a_ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(a_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowercase__ : Dict = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowercase__ : Optional[Any] = min(len(a_ ) , data_args.max_train_samples ) lowercase__ : str = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): lowercase__ : str = train_dataset.map( a_ , batched=a_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowercase__ : Optional[Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowercase__ : Optional[int] = min(len(a_ ) , data_args.max_eval_samples ) lowercase__ : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): lowercase__ : Any = eval_dataset.map( a_ , batched=a_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowercase__ : Optional[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase__ : List[str] ): lowercase__ , lowercase__ : List[str] = eval_predictions lowercase__ : int = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowercase__ : Tuple = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a_ , data_collator=a_ , compute_metrics=a_ , ) # Training if training_args.do_train: lowercase__ : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: lowercase__ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ : Dict = last_checkpoint lowercase__ : Tuple = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase__ : int = train_result.metrics lowercase__ : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) lowercase__ : List[Any] = min(a_ , len(a_ ) ) trainer.log_metrics("""train""" , a_ ) trainer.save_metrics("""train""" , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase__ : int = trainer.evaluate() lowercase__ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) lowercase__ : List[str] = min(a_ , len(a_ ) ) trainer.log_metrics("""eval""" , a_ ) trainer.save_metrics("""eval""" , a_ ) lowercase__ : Optional[int] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def _lowerCamelCase ( lowerCamelCase__ : Any ): main() if __name__ == "__main__": main()
200
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ) -> List[Any]: """simple docstring""" snake_case_ : Any = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) snake_case_ : Dict = np.array(pil_image.convert('''RGB''' ) ) snake_case_ : Dict = arr.astype(np.floataa ) / 127.5 - 1 snake_case_ : Any = np.transpose(a_ , [2, 0, 1] ) snake_case_ : Optional[int] = torch.from_numpy(a_ ).unsqueeze(0 ) return image class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=__magic_name__ , scheduler=__magic_name__ , movq=__magic_name__ , ) snake_case_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = min(int(num_inference_steps * strength ) , __magic_name__ ) snake_case_ : Tuple = max(num_inference_steps - init_timestep , 0 ) snake_case_ : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> Optional[int]: '''simple docstring''' if not isinstance(__magic_name__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__magic_name__ )}''' ) snake_case_ : Dict = image.to(device=__magic_name__ , dtype=__magic_name__ ) snake_case_ : int = batch_size * num_images_per_prompt if image.shape[1] == 4: snake_case_ : List[str] = image else: if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__magic_name__ , __magic_name__ ): snake_case_ : Optional[int] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__magic_name__ ) ] snake_case_ : Tuple = torch.cat(__magic_name__ , dim=0 ) else: snake_case_ : int = self.movq.encode(__magic_name__ ).latent_dist.sample(__magic_name__ ) snake_case_ : List[str] = self.movq.config.scaling_factor * init_latents snake_case_ : Optional[int] = torch.cat([init_latents] , dim=0 ) snake_case_ : Union[str, Any] = init_latents.shape snake_case_ : Tuple = randn_tensor(__magic_name__ , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) # get latents snake_case_ : str = self.scheduler.add_noise(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case_ : Any = init_latents return latents def lowerCamelCase (self , __magic_name__=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case_ : Optional[Any] = torch.device(F'''cuda:{gpu_id}''' ) snake_case_ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) def lowerCamelCase (self , __magic_name__=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) snake_case_ : int = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__magic_name__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ , snake_case_ : Optional[int] = cpu_offload_with_hook(__magic_name__ , __magic_name__ , prev_module_hook=__magic_name__ ) # We'll offload the last model manually. snake_case_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase (self ) -> Tuple: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__magic_name__ ) def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 512 , __magic_name__ = 512 , __magic_name__ = 100 , __magic_name__ = 4.0 , __magic_name__ = 0.3 , __magic_name__ = 1 , __magic_name__ = None , __magic_name__ = "pil" , __magic_name__ = True , ) -> Tuple: '''simple docstring''' snake_case_ : str = self._execution_device snake_case_ : int = guidance_scale > 1.0 if isinstance(__magic_name__ , __magic_name__ ): snake_case_ : Dict = torch.cat(__magic_name__ , dim=0 ) snake_case_ : Optional[Any] = image_embeds.shape[0] if isinstance(__magic_name__ , __magic_name__ ): snake_case_ : str = torch.cat(__magic_name__ , dim=0 ) if do_classifier_free_guidance: snake_case_ : Tuple = image_embeds.repeat_interleave(__magic_name__ , dim=0 ) snake_case_ : str = negative_image_embeds.repeat_interleave(__magic_name__ , dim=0 ) snake_case_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__magic_name__ ) if not isinstance(__magic_name__ , __magic_name__ ): snake_case_ : str = [image] if not all(isinstance(__magic_name__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(__magic_name__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) snake_case_ : List[str] = torch.cat([prepare_image(__magic_name__ , __magic_name__ , __magic_name__ ) for i in image] , dim=0 ) snake_case_ : Union[str, Any] = image.to(dtype=image_embeds.dtype , device=__magic_name__ ) snake_case_ : Tuple = self.movq.encode(__magic_name__ )['''latents'''] snake_case_ : List[str] = latents.repeat_interleave(__magic_name__ , dim=0 ) self.scheduler.set_timesteps(__magic_name__ , device=__magic_name__ ) snake_case_ , snake_case_ : Union[str, Any] = self.get_timesteps(__magic_name__ , __magic_name__ , __magic_name__ ) snake_case_ : List[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) snake_case_ , snake_case_ : Optional[int] = downscale_height_and_width(__magic_name__ , __magic_name__ , self.movq_scale_factor ) snake_case_ : Tuple = self.prepare_latents( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , image_embeds.dtype , __magic_name__ , __magic_name__ ) for i, t in enumerate(self.progress_bar(__magic_name__ ) ): # expand the latents if we are doing classifier free guidance snake_case_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : int = {'''image_embeds''': image_embeds} snake_case_ : Union[str, Any] = self.unet( sample=__magic_name__ , timestep=__magic_name__ , encoder_hidden_states=__magic_name__ , added_cond_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ : List[str] = noise_pred.chunk(2 ) snake_case_ , snake_case_ : str = variance_pred.chunk(2 ) snake_case_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ : List[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : Union[str, Any] = self.scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ , )[0] # post-processing snake_case_ : Any = self.movq.decode(__magic_name__ , force_not_quantize=__magic_name__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ : Optional[int] = image * 0.5 + 0.5 snake_case_ : List[Any] = image.clamp(0 , 1 ) snake_case_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ : Optional[Any] = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
60
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import csv import tweepy # Twitter API credentials __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = '' def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> None: '''simple docstring''' a__ : Union[str, Any] = tweepy.OAuthHandler(a_ , a_ ) auth.set_access_token(a_ , a_ ) a__ : Union[str, Any] = tweepy.API(a_ ) # initialize a list to hold all the tweepy Tweets a__ : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) a__ : List[Any] = api.user_timeline(screen_name=a_ , count=2_0_0 ) # save most recent tweets alltweets.extend(a_ ) # save the id of the oldest tweet less one a__ : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a_ ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates a__ : int = api.user_timeline( screen_name=a_ , count=2_0_0 , max_id=a_ ) # save most recent tweets alltweets.extend(a_ ) # update the id of the oldest tweet less one a__ : str = alltweets[-1].id - 1 print(F"...{len(a_ )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv a__ : Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , "w" ) as f: a__ : int = csv.writer(a_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(a_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
642
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : str = logging.get_logger(__name__) def __magic_name__ ( __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: def run_func(__snake_case : str ): @wraps(a_ ) def run_in_eager_mode(*__snake_case : int , **__snake_case : str ): return func(*a_ , **a_ ) @wraps(a_ ) @tf.function(experimental_compile=a_ ) def run_in_graph_mode(*__snake_case : Any , **__snake_case : Any ): return func(*a_ , **a_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __magic_name__ ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> ["tf.Tensor"]: lowercase : Tuple = random.Random() lowercase : Union[str, Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(a_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class a__ ( __SCREAMING_SNAKE_CASE ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = """TensorFlow""" @property def __magic_name__ ( self ): return tf.__version__ def __magic_name__ ( self , _a , _a , _a ): # initialize GPU on separate process lowercase : Optional[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase : Dict = self._prepare_inference_func(_a , _a , _a ) return self._measure_speed(_inference ) def __magic_name__ ( self , _a , _a , _a ): lowercase : Optional[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase : List[str] = self._prepare_train_func(_a , _a , _a ) return self._measure_speed(_train ) def __magic_name__ ( self , _a , _a , _a ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _a ) lowercase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase : List[Any] = self._prepare_inference_func(_a , _a , _a ) return self._measure_memory(_inference ) def __magic_name__ ( self , _a , _a , _a ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _a ) lowercase : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase : Optional[int] = self._prepare_train_func(_a , _a , _a ) return self._measure_memory(_train ) def __magic_name__ ( self , _a , _a , _a ): lowercase : Dict = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowercase : Optional[Any] = ( hasattr(_a , "architectures" ) and isinstance(config.architectures , _a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase : int = __import__("transformers" , fromlist=[model_class] ) lowercase : Dict = getattr(_a , _a ) lowercase : Optional[Any] = model_cls(_a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowercase : str = TF_MODEL_MAPPING[config.__class__](_a ) # encoder-decoder has vocab size saved differently lowercase : List[str] = config.vocab_size if hasattr(_a , "vocab_size" ) else config.encoder.vocab_size lowercase : Optional[int] = random_input_ids(_a , _a , _a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_a , decoder_input_ids=_a , training=_a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_a , training=_a ) lowercase : Union[str, Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __magic_name__ ( self , _a , _a , _a ): lowercase : Union[str, Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowercase : List[Any] = ( hasattr(_a , "architectures" ) and isinstance(config.architectures , _a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase : Optional[int] = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase : Union[str, Any] = __import__("transformers" , fromlist=[model_class] ) lowercase : Optional[Any] = getattr(_a , _a ) lowercase : Tuple = model_cls(_a ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowercase : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_a ) # encoder-decoder has vocab size saved differently lowercase : Union[str, Any] = config.vocab_size if hasattr(_a , "vocab_size" ) else config.encoder.vocab_size lowercase : Optional[Any] = random_input_ids(_a , _a , _a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowercase : Optional[int] = model(_a , decoder_input_ids=_a , labels=_a , training=_a )[0] lowercase : Dict = tf.gradients(_a , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowercase : Any = model(_a , labels=_a , training=_a )[0] lowercase : List[str] = tf.gradients(_a , model.trainable_variables ) return gradients lowercase : Union[str, Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __magic_name__ ( self , _a ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(_a , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowercase : Optional[Any] = timeit.repeat( _a , repeat=self.args.repeat , number=10 , ) return min(_a ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn\'t fit on GPU. {e}""" ) def __magic_name__ ( self , _a ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) lowercase : Union[str, Any] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) lowercase : Tuple = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() lowercase : Dict = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowercase : List[Any] = nvml.nvmlDeviceGetMemoryInfo(_a ) lowercase : List[Any] = meminfo.used lowercase : str = Memory(_a ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) lowercase : int = None else: lowercase : List[Any] = measure_peak_memory_cpu(_a ) lowercase : Optional[Any] = Memory(_a ) if isinstance(_a , _a ) else memory_bytes if self.args.trace_memory_line_by_line: lowercase : List[Any] = stop_memory_tracing(_a ) if memory is None: lowercase : Tuple = summary.total else: lowercase : Dict = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn\'t fit on GPU. {e}""" ) return "N/A", None
361
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self ,snake_case ,snake_case=7 ,snake_case=3 ,snake_case=30 ,snake_case=400 ,snake_case=True ,snake_case=None ,snake_case=0.9 ,snake_case=None ,snake_case=True ,snake_case=[0.5, 0.5, 0.5] ,snake_case=[0.5, 0.5, 0.5] ,): '''simple docstring''' lowercase : Tuple = size if size is not None else {"""shortest_edge""": 30} lowercase : Any = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} lowercase : List[str] = parent lowercase : Tuple = batch_size lowercase : Dict = num_channels lowercase : Dict = min_resolution lowercase : Tuple = max_resolution lowercase : Union[str, Any] = do_resize_and_center_crop lowercase : Tuple = size lowercase : Any = crop_pct lowercase : Optional[int] = crop_size lowercase : Optional[int] = do_normalize lowercase : int = image_mean lowercase : str = image_std def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _a : Any= PoolFormerImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = PoolFormerImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case ,"""do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(snake_case ,"""size""" ) ) self.assertTrue(hasattr(snake_case ,"""crop_pct""" ) ) self.assertTrue(hasattr(snake_case ,"""do_normalize""" ) ) self.assertTrue(hasattr(snake_case ,"""image_mean""" ) ) self.assertTrue(hasattr(snake_case ,"""image_std""" ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size ,{"""height""": 30, """width""": 30} ) lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,Image.Image ) # Test not batched input lowercase : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Any = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,np.ndarray ) # Test not batched input lowercase : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Any = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case ,torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case ,torch.Tensor ) # Test not batched input lowercase : List[Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched lowercase : Optional[int] = image_processing(snake_case ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
336
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
'''simple docstring''' def _snake_case ( A_ : Optional[Any] ): """simple docstring""" a_ : str = abs(a_ ) a_ : Dict = 0 while n > 0: res += n % 10 n //= 10 return res def _snake_case ( A_ : Tuple ): """simple docstring""" a_ : int = abs(a_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _snake_case ( A_ : List[str] ): """simple docstring""" return sum(int(a_ ) for c in str(abs(a_ ) ) ) def _snake_case ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(A_ : Optional[int] , A_ : Optional[Any] ) -> None: a_ : List[str] = f'''{func.__name__}({value})''' a_ : Tuple = timeit(f'''__main__.{call}''' , setup="""import __main__""" ) print(f'''{call:56} = {func(a_ )} -- {timing:.4f} seconds''' ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(a_ , a_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
577
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __snake_case : Optional[int] = 2 class UpperCamelCase : """simple docstring""" def __init__( self : Dict , *, # begin keyword-only arguments _lowerCamelCase : Tuple="<s>" , _lowerCamelCase : Optional[Any]="<pad>" , _lowerCamelCase : Tuple="</s>" , _lowerCamelCase : Tuple="<unk>" , _lowerCamelCase : Union[str, Any]=None , ): A__ , A__ , A__ , A__ = bos, unk, pad, eos A__ = [] A__ = [] A__ = {} A__ = self.add_symbol(_lowerCamelCase ) A__ = self.add_symbol(_lowerCamelCase ) A__ = self.add_symbol(_lowerCamelCase ) A__ = self.add_symbol(_lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCamelCase ) A__ = len(self.symbols ) def __eq__( self : Any , _lowerCamelCase : str ): return self.indices == other.indices def __getitem__( self : int , _lowerCamelCase : Tuple ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Any ): return len(self.symbols ) def __contains__( self : Optional[Any] , _lowerCamelCase : Optional[int] ): return sym in self.indices @classmethod def A__ ( cls : Any , _lowerCamelCase : Union[str, Any] ): A__ = cls() d.add_from_file(_lowerCamelCase ) return d def A__ ( self : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=1 , _lowerCamelCase : int=False ): if word in self.indices and not overwrite: A__ = self.indices[word] A__ = self.count[idx] + n return idx else: A__ = len(self.symbols ) A__ = idx self.symbols.append(_lowerCamelCase ) self.count.append(_lowerCamelCase ) return idx def A__ ( self : Dict , _lowerCamelCase : Optional[int] ): return 0 def A__ ( self : Dict , _lowerCamelCase : List[Any] ): if isinstance(_lowerCamelCase , _lowerCamelCase ): try: with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_lowerCamelCase ) ) return A__ = f.readlines() A__ = self._load_meta(_lowerCamelCase ) for line in lines[indices_start_line:]: try: A__ , A__ = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": A__ = True A__ , A__ = line.rsplit(''' ''' , 1 ) else: A__ = False A__ = int(_lowerCamelCase ) A__ = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_lowerCamelCase ) ) self.add_symbol(_lowerCamelCase , n=_lowerCamelCase , overwrite=_lowerCamelCase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def a_ ( __a ): A__ = dict((re.sub(r'''@@$''' , '''''' , a_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , a_ ), v) for k, v in d.items() ) A__ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] A__ = d[k] # restore return da def a_ ( __a , __a ): if not os.path.exists(a_ ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(a_ , exist_ok=a_ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models A__ = os.path.join(a_ , '''checkpoint.pt''' ) if not os.path.isfile(a_ ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) A__ = torch.load(a_ , map_location='''cpu''' ) A__ = chkpt['''cfg''']['''model'''] # dicts A__ = os.path.join(a_ , '''dict.txt''' ) if not os.path.isfile(a_ ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) A__ = Dictionary.load(a_ ) A__ = rewrite_dict_keys(src_dict.indices ) A__ = len(a_ ) A__ = os.path.join(a_ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) ) # merges_file (bpecodes) A__ = os.path.join(a_ , '''bpecodes''' ) if not os.path.isfile(a_ ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) A__ = os.path.join(a_ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(a_ , a_ ) # model config A__ = os.path.join(a_ , '''config.json''' ) A__ = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) ) # tokenizer config A__ = os.path.join(a_ , a_ ) A__ = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) ) # model A__ = chkpt['''model'''] # remove unneeded keys A__ = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(a_ , a_ ) A__ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): A__ = model_state_dict.pop(a_ ) else: A__ = model_state_dict.pop(a_ ) A__ = BioGptConfig.from_pretrained(a_ ) A__ = BioGptForCausalLM(a_ ) # check that it loads ok model_new.load_state_dict(a_ ) # save A__ = os.path.join(a_ , a_ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(a_ , a_ ) print('''Conversion is done!''' ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : List[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
571
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
211
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def A ( __snake_case: List[str] , __snake_case: Optional[Any] , **__snake_case: int ) -> int: """simple docstring""" __magic_name__ = AutoConfig.from_pretrained(a_ , **a_ ) __magic_name__ = AutoModelForSeqaSeqLM.from_config(a_ ) model.save_pretrained(a_ ) AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
545
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __a : SCREAMING_SNAKE_CASE__ : List[str] = 42 SCREAMING_SNAKE_CASE__ : int = 42 class __a : def __init__( self , a__ ): _lowerCamelCase = [[] for _ in range(a__ )] _lowerCamelCase = size def __getitem__( self , a__ ): return iter(self._graph[vertex] ) @property def snake_case_ ( self ): return self._size def snake_case_ ( self , a__ , a__ , a__ ): if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(a__ , a__ ) ) def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = deque([start_vertex] ) _lowerCamelCase = [None] * self.size _lowerCamelCase = 0 while queue: _lowerCamelCase = queue.popleft() _lowerCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowerCamelCase = current_distance + edge.weight _lowerCamelCase = distances[edge.destination_vertex] if ( isinstance(a__ , a__ ) and new_distance >= dest_vertex_distance ): continue _lowerCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
650
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : int = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
627
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=[30, 30] , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=8 , lowerCamelCase__=10 , ) -> str: lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = image_size lowercase__ : int = patch_size lowercase__ : Optional[int] = num_channels lowercase__ : Any = is_training lowercase__ : Tuple = use_labels lowercase__ : List[str] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : Any = hidden_act lowercase__ : List[Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[Any] = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : Optional[int] = num_labels lowercase__ : Union[str, Any] = scope lowercase__ : List[str] = n_targets lowercase__ : Optional[int] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ : Optional[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ : Tuple = num_patches + 1 + self.num_detection_tokens def UpperCAmelCase__( self ) -> Dict: lowercase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ : Union[str, Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ : str = [] for i in range(self.batch_size ): lowercase__ : Union[str, Any] = {} lowercase__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=lowerCamelCase__ ) lowercase__ : Tuple = torch.rand(self.n_targets , 4 , device=lowerCamelCase__ ) labels.append(lowerCamelCase__ ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self ) -> Union[str, Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: lowercase__ : Dict = YolosModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ : Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: lowercase__ : Optional[int] = YolosForObjectDetection(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ : Union[str, Any] = model(pixel_values=lowerCamelCase__ ) lowercase__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ : str = model(pixel_values=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : str = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _a : Optional[Any] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _a : List[Any] = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) _a : List[Any] = False _a : Tuple = False _a : Any = False _a : Any = False def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: lowercase__ : List[str] = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ : List[Any] = [] for i in range(self.model_tester.batch_size ): lowercase__ : Tuple = {} lowercase__ : int = torch.ones( size=(self.model_tester.n_targets,) , device=lowerCamelCase__ , dtype=torch.long ) lowercase__ : Union[str, Any] = torch.ones( self.model_tester.n_targets , 4 , device=lowerCamelCase__ , dtype=torch.float ) labels.append(lowerCamelCase__ ) lowercase__ : str = labels return inputs_dict def UpperCAmelCase__( self ) -> Dict: lowercase__ : Optional[int] = YolosModelTester(self ) lowercase__ : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase__( self ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase__( self ) -> Tuple: # YOLOS does not use inputs_embeds pass def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCAmelCase__( self ) -> str: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(lowerCamelCase__ ) lowercase__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[Any] = [*signature.parameters.keys()] lowercase__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase__( self ) -> str: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True # in YOLOS, the seq_len is different lowercase__ : int = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ : List[Any] = True lowercase__ : int = False lowercase__ : Optional[Any] = True lowercase__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Dict = True lowercase__ : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Union[str, Any] = len(lowerCamelCase__ ) # Check attention is always last and order is fine lowercase__ : List[str] = True lowercase__ : Dict = True lowercase__ : Optional[int] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ : Any = 1 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase__ ) ) lowercase__ : str = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase__( self ) -> Optional[int]: def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : int = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ : Union[str, Any] = outputs.hidden_states lowercase__ : str = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # YOLOS has a different seq_length lowercase__ : List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Any = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCamelCase__ ) @slow def UpperCAmelCase__( self ) -> Optional[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Tuple = YolosModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _lowerCamelCase ( ): lowercase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__( self ) -> List[str]: return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[str] = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(lowerCamelCase__ ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_img() lowercase__ : str = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowercase__ : int = model(inputs.pixel_values ) # verify outputs lowercase__ : Tuple = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowercase__ : List[Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=lowerCamelCase__ , ) lowercase__ : Optional[int] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) # verify postprocessing lowercase__ : Union[str, Any] = image_processor.post_process_object_detection( lowerCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase__ : Any = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowerCamelCase__ ) lowercase__ : Dict = [75, 75, 17, 63, 17] lowercase__ : List[str] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowerCamelCase__ ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , lowerCamelCase__ , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , lowerCamelCase__ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , lowerCamelCase__ ) )
200
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def lowercase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict = 1_6 ) -> List[Any]: '''simple docstring''' a__ : str = AutoTokenizer.from_pretrained("bert-base-cased" ) a__ : Dict = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase__ : int ): # max_length=None => use the model max length (it's actually the default) a__ : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ : str = datasets.map( a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : List[str] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ : Optional[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ : Dict = 1_6 elif accelerator.mixed_precision != "no": a__ : Optional[int] = 8 else: a__ : Optional[Any] = None return tokenizer.pad( a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , ) # Instantiate dataloaders. a__ : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) a__ : Any = DataLoader( tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1": a__ : Tuple = 2 # New Code # a__ : Any = int(args.gradient_accumulation_steps ) a__ : Optional[Any] = int(args.local_sgd_steps ) # Initialize accelerator a__ : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=a_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : List[Any] = config["lr"] a__ : List[str] = int(config["num_epochs"] ) a__ : List[Any] = int(config["seed"] ) a__ : int = int(config["batch_size"] ) a__ : Dict = evaluate.load("glue" , "mrpc" ) set_seed(a_ ) a__ , a__ : Dict = get_dataloaders(a_ , a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ : Any = model.to(accelerator.device ) # Instantiate optimizer a__ : Union[str, Any] = AdamW(params=model.parameters() , lr=a_ ) # Instantiate scheduler a__ : Tuple = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=1_0_0 , num_training_steps=(len(a_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : Dict = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() with LocalSGD( accelerator=a_ , model=a_ , local_sgd_steps=a_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(a_ ): a__ : List[Any] = model(**a_ ) a__ : str = output.loss accelerator.backward(a_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ : List[str] = model(**a_ ) a__ : Dict = outputs.logits.argmax(dim=-1 ) a__ , a__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=a_ , references=a_ , ) a__ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , a_ ) def lowercase__ ( ) -> int: '''simple docstring''' a__ : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=a_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=a_ , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) a__ : Any = parser.parse_args() a__ : str = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(a_ , a_ ) if __name__ == "__main__": main()
642
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Tuple = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE ): _a : Union[str, Any]= field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) _a : Optional[Any]= Features({"question": Value("string" ), "context": Value("string" )} ) _a : Any= Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) _a : int= "question" _a : int= "context" _a : str= "answers" @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
336
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=30 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=None , lowerCAmelCase_=2 , ): '''simple docstring''' a_ : int = parent a_ : Union[str, Any] = batch_size a_ : Dict = image_size a_ : Any = patch_size a_ : int = num_channels a_ : Union[str, Any] = is_training a_ : Any = use_labels a_ : Any = hidden_size a_ : List[str] = num_hidden_layers a_ : List[str] = num_attention_heads a_ : Optional[Any] = intermediate_size a_ : int = hidden_act a_ : Optional[int] = hidden_dropout_prob a_ : Any = attention_probs_dropout_prob a_ : Tuple = type_sequence_label_size a_ : int = initializer_range a_ : Union[str, Any] = scope a_ : Optional[int] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) a_ : Any = (image_size // patch_size) ** 2 a_ : List[str] = num_patches + 2 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Tuple = None if self.use_labels: a_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : List[str] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] = TFDeiTModel(config=lowerCAmelCase_ ) a_ : Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Any = TFDeiTForMaskedImageModeling(config=lowerCAmelCase_ ) a_ : int = model(lowerCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a_ : int = 1 a_ : Optional[int] = TFDeiTForMaskedImageModeling(lowerCAmelCase_ ) a_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : Union[str, Any] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] = self.type_sequence_label_size a_ : List[str] = TFDeiTForImageClassification(lowerCAmelCase_ ) a_ : List[Any] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : Any = 1 a_ : int = TFDeiTForImageClassification(lowerCAmelCase_ ) a_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : List[Any] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.prepare_config_and_inputs() a_ , a_ , a_ : Dict = config_and_inputs a_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,unittest.TestCase ): """simple docstring""" a_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = False def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = TFDeiTModelTester(self ) a_ : Dict = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def _lowerCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): '''simple docstring''' pass def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[str] = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) a_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , tf.keras.layers.Dense ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(lowerCAmelCase_ ) a_ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Any = [*signature.parameters.keys()] a_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): '''simple docstring''' a_ : int = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowerCAmelCase ( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = TFDeiTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def _snake_case ( ): """simple docstring""" a_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) a_ : int = self.default_image_processor a_ : Optional[int] = prepare_img() a_ : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""tf""" ) # forward pass a_ : Optional[int] = model(**lowerCAmelCase_ ) # verify the logits a_ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) a_ : Tuple = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
577
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
"""simple docstring""" def a_ ( ): A__ = 0 for i in range(1 , 1001 ): total += i**i return str(a_ )[-10:] if __name__ == "__main__": print(solution())
571
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = inspect.getfile(accelerate.test_utils ) __SCREAMING_SNAKE_CASE : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __SCREAMING_SNAKE_CASE : Any = test_metrics @require_cpu def a_ ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def a_ ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def a_ ( self ): self.test_metrics.main() @require_multi_gpu def a_ ( self ): print(f'Found {torch.cuda.device_count()} devices.' ) __SCREAMING_SNAKE_CASE : int = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(a__ , env=os.environ.copy() )
211
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput snake_case : Optional[Any] = 'scheduler_config.json' class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE): """simple docstring""" __UpperCAmelCase = 1 __UpperCAmelCase = 2 __UpperCAmelCase = 3 __UpperCAmelCase = 4 __UpperCAmelCase = 5 __UpperCAmelCase = 6 __UpperCAmelCase = 7 __UpperCAmelCase = 8 __UpperCAmelCase = 9 __UpperCAmelCase = 10 __UpperCAmelCase = 11 __UpperCAmelCase = 12 __UpperCAmelCase = 13 __UpperCAmelCase = 14 @dataclass class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE): """simple docstring""" __UpperCAmelCase = 42 class UpperCamelCase__ : """simple docstring""" __UpperCAmelCase = SCHEDULER_CONFIG_NAME __UpperCAmelCase = [] __UpperCAmelCase = True @classmethod def a__ ( cls : Union[str, Any] , UpperCamelCase_ : Dict[str, Any] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : str=False , **UpperCamelCase_ : List[Any] , ): '''simple docstring''' __magic_name__ , __magic_name__ , __magic_name__ = cls.load_config( pretrained_model_name_or_path=UpperCamelCase_ , subfolder=UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ , return_commit_hash=UpperCamelCase_ , **UpperCamelCase_ , ) return cls.from_config(UpperCamelCase_ , return_unused_kwargs=UpperCamelCase_ , **UpperCamelCase_ ) def a__ ( self : Any , UpperCamelCase_ : Union[str, os.PathLike] , UpperCamelCase_ : bool = False , **UpperCamelCase_ : Dict ): '''simple docstring''' self.save_config(save_directory=UpperCamelCase_ , push_to_hub=UpperCamelCase_ , **UpperCamelCase_ ) @property def a__ ( self : Optional[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def a__ ( cls : List[str] ): '''simple docstring''' __magic_name__ = list(set([cls.__name__] + cls._compatibles ) ) __magic_name__ = importlib.import_module(__name__.split('.' )[0] ) __magic_name__ = [ getattr(UpperCamelCase_ , UpperCamelCase_ ) for c in compatible_classes_str if hasattr(UpperCamelCase_ , UpperCamelCase_ ) ] return compatible_classes
545
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ : int =( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) A_ : Tuple =logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( )-> str: _lowerCamelCase = 'https://pypi.org/pypi/diffusers/json' _lowerCamelCase = json.loads(request.urlopen(a_ ).read() )['releases'].keys() return sorted(a_ , key=lambda snake_case : version.Version(a_ ) ) def SCREAMING_SNAKE_CASE_ ( )-> Tuple: if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_ , exist_ok=a_ ) _lowerCamelCase = Path(a_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE_ ( snake_case : Any )-> Optional[int]: init_hf_modules() _lowerCamelCase = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_ , exist_ok=a_ ) _lowerCamelCase = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] )-> Dict: with open(a_ , 'r' , encoding='utf-8' ) as f: _lowerCamelCase = f.read() # Imports of the form `import .xxx` _lowerCamelCase = re.findall('^\s*import\s+\.(\S+)\s*$' , a_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , a_ , flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] )-> List[Any]: _lowerCamelCase = False _lowerCamelCase = [module_file] _lowerCamelCase = [] # Let's recurse through all relative imports while not no_change: _lowerCamelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) _lowerCamelCase = Path(a_ ).parent _lowerCamelCase = [str(module_path / m ) for m in new_imports] _lowerCamelCase = [f for f in new_import_files if f not in all_relative_imports] _lowerCamelCase = [f'{f}.py' for f in new_import_files] _lowerCamelCase = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> List[Any]: with open(a_ , 'r' , encoding='utf-8' ) as f: _lowerCamelCase = f.read() # Imports of the form `import xxx` _lowerCamelCase = re.findall('^\s*import\s+(\S+)\s*$' , a_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , a_ , flags=re.MULTILINE ) # Only keep the top-level module _lowerCamelCase = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all _lowerCamelCase = list(set(a_ ) ) _lowerCamelCase = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f'{", ".join(a_ )}. Run `pip install {" ".join(a_ )}`' ) return get_relative_imports(a_ ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] , snake_case : Any )-> Optional[int]: _lowerCamelCase = module_path.replace(os.path.sep , '.' ) _lowerCamelCase = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_ , a_ ) def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] )-> Optional[Any]: from ..pipelines import DiffusionPipeline _lowerCamelCase = dict(inspect.getmembers(a_ , inspect.isclass ) ) _lowerCamelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , a_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) _lowerCamelCase = cls return pipeline_class def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : Union[str, Any] , snake_case : Tuple = None , snake_case : Tuple = False , snake_case : Optional[int] = False , snake_case : int = None , snake_case : Optional[int] = None , snake_case : Union[str, Any] = None , snake_case : Dict = False , )-> Optional[Any]: _lowerCamelCase = str(a_ ) _lowerCamelCase = os.path.join(a_ , a_ ) if os.path.isfile(a_ ): _lowerCamelCase = module_file_or_url _lowerCamelCase = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: _lowerCamelCase = get_diffusers_versions() # cut ".dev0" _lowerCamelCase = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: _lowerCamelCase = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: _lowerCamelCase = f'v{revision}' elif revision == "main": _lowerCamelCase = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub _lowerCamelCase = COMMUNITY_PIPELINES_URL.format(revision=a_ , pipeline=a_ ) try: _lowerCamelCase = cached_download( a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) _lowerCamelCase = 'git' _lowerCamelCase = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached _lowerCamelCase = hf_hub_download( a_ , a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , ) _lowerCamelCase = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment _lowerCamelCase = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. _lowerCamelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) _lowerCamelCase = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_ , submodule_path / module_file ) for module_needed in modules_needed: _lowerCamelCase = f'{module_needed}.py' shutil.copy(os.path.join(a_ , a_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_ , a_ ): _lowerCamelCase = use_auth_token elif use_auth_token is True: _lowerCamelCase = HfFolder.get_token() else: _lowerCamelCase = None _lowerCamelCase = model_info(a_ , revision=a_ , token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _lowerCamelCase = submodule_path / commit_hash _lowerCamelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_ , f'{module_needed}.py' , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return os.path.join(a_ , a_ ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] = None , snake_case : str = None , snake_case : List[Any] = False , snake_case : List[str] = False , snake_case : List[str] = None , snake_case : int = None , snake_case : Any = None , snake_case : Tuple = False , **snake_case : List[str] , )-> Any: _lowerCamelCase = get_cached_module_file( a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , ) return get_class_in_module(a_ , final_module.replace('.py' , '' ) )
650
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def a__ ( a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type="""dataset""" ) ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(a_ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = CvtConfig(num_labels=a_ , idalabel=a_ , labelaid=a_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": __SCREAMING_SNAKE_CASE = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": __SCREAMING_SNAKE_CASE = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __SCREAMING_SNAKE_CASE = [2, 2, 20] __SCREAMING_SNAKE_CASE = [3, 12, 16] __SCREAMING_SNAKE_CASE = [1_92, 7_68, 10_24] __SCREAMING_SNAKE_CASE = CvtForImageClassification(a_ ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = torch.load(a_ , map_location=torch.device("""cpu""" ) ) __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __SCREAMING_SNAKE_CASE = list_of_state_dict + cls_token(a_ ) __SCREAMING_SNAKE_CASE = list_of_state_dict + embeddings(a_ ) for cnt in range(config.depth[idx] ): __SCREAMING_SNAKE_CASE = list_of_state_dict + attention(a_ , a_ ) __SCREAMING_SNAKE_CASE = list_of_state_dict + final() for gg in list_of_state_dict: print(a_ ) for i in range(len(a_ ) ): __SCREAMING_SNAKE_CASE = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase : List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
627
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
"""simple docstring""" def _lowerCamelCase ( lowerCamelCase__ : Any = 10_00 ): lowercase__ , lowercase__ : Dict = 1, 1 lowercase__ : List[Any] = [] for i in range(1 , n + 1 ): lowercase__ : str = prev_numerator + 2 * prev_denominator lowercase__ : List[Any] = prev_numerator + prev_denominator if len(str(a_ ) ) > len(str(a_ ) ): result.append(a_ ) lowercase__ : int = numerator lowercase__ : Tuple = denominator return len(a_ ) if __name__ == "__main__": print(F"{solution() = }")
200
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() @dataclass class __lowerCAmelCase : lowerCamelCase_ : Optional[Any] = 42 lowerCamelCase_ : List[Any] = field(default_factory=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : str = field(default_factory=__SCREAMING_SNAKE_CASE ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : Any = len(list(m.modules() ) ) == 1 or isinstance(__magic_name__ , nn.Convad ) or isinstance(__magic_name__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(__magic_name__ ) def __call__(self , __magic_name__ ) -> int: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__magic_name__ ) [x.remove() for x in self.handles] return self @property def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' return list(filter(lambda __magic_name__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __lowerCAmelCase : lowerCamelCase_ : List[str] = 42 lowerCamelCase_ : Tuple = 42 lowerCamelCase_ : List[Any] = 0 lowerCamelCase_ : Any = field(default_factory=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Dict = field(default_factory=__SCREAMING_SNAKE_CASE ) def __call__(self , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : int = Tracker(self.dest )(__magic_name__ ).parametrized snake_case_ : Tuple = Tracker(self.src )(__magic_name__ ).parametrized snake_case_ : Any = list(filter(lambda __magic_name__ : type(__magic_name__ ) not in self.src_skip , __magic_name__ ) ) snake_case_ : Union[str, Any] = list(filter(lambda __magic_name__ : type(__magic_name__ ) not in self.dest_skip , __magic_name__ ) ) if len(__magic_name__ ) != len(__magic_name__ ): raise Exception( F'''Numbers of operations are different. Source module has {len(__magic_name__ )} operations while''' F''' destination module has {len(__magic_name__ )}.''' ) for dest_m, src_m in zip(__magic_name__ , __magic_name__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True ) -> List[str]: """simple docstring""" print(f'''Converting {name}...''' ) with torch.no_grad(): snake_case_ : List[Any] = timm.create_model(a_ , pretrained=a_ ).eval() snake_case_ : Union[str, Any] = ResNetForImageClassification(a_ ).eval() snake_case_ : Tuple = ModuleTransfer(src=a_ , dest=a_ ) snake_case_ : int = torch.randn((1, 3, 224, 224) ) module_transfer(a_ ) assert torch.allclose(from_model(a_ ) , our_model(a_ ).logits ), "The model logits don't match the original one." snake_case_ : List[Any] = f'''resnet{"-".join(name.split("resnet" ) )}''' print(a_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a_ , ) # we can use the convnext one snake_case_ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a_ , ) print(f'''Pushed {checkpoint_name}''' ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True ) -> Tuple: """simple docstring""" snake_case_ : Tuple = '''imagenet-1k-id2label.json''' snake_case_ : List[str] = 1_000 snake_case_ : Optional[int] = (1, num_labels) snake_case_ : Optional[Any] = '''huggingface/label-files''' snake_case_ : List[Any] = num_labels snake_case_ : str = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : List[str] = {int(a_ ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : int = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ ) snake_case_ : Tuple = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(a_ , names_to_config[model_name] , a_ , a_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ , a_ , a_ , a_ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
60
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any=False ) -> Dict: '''simple docstring''' try: a__ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a__ : Any = default else: # KEY is set, convert it to True or False. try: a__ : Tuple = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value __UpperCAmelCase = parse_flag_from_env('''RUN_SLOW''', default=False) __UpperCAmelCase = parse_flag_from_env('''RUN_REMOTE''', default=False) __UpperCAmelCase = parse_flag_from_env('''RUN_LOCAL''', default=True) __UpperCAmelCase = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __UpperCAmelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __UpperCAmelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __UpperCAmelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __UpperCAmelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __UpperCAmelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __UpperCAmelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __UpperCAmelCase = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def lowercase__ ( lowerCAmelCase__ : Dict ) -> int: '''simple docstring''' try: import faiss # noqa except ImportError: a__ : Union[str, Any] = unittest.skip("test requires faiss" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' try: import regex # noqa except ImportError: a__ : Dict = unittest.skip("test requires regex" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' try: import elasticsearch # noqa except ImportError: a__ : str = unittest.skip("test requires elasticsearch" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : Any ) -> str: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: a__ : Tuple = unittest.skip("test requires sqlalchemy" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' if not config.TORCH_AVAILABLE: a__ : Optional[int] = unittest.skip("test requires PyTorch" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : List[str] ) -> Tuple: '''simple docstring''' if not config.TF_AVAILABLE: a__ : int = unittest.skip("test requires TensorFlow" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' if not config.JAX_AVAILABLE: a__ : Union[str, Any] = unittest.skip("test requires JAX" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if not config.PIL_AVAILABLE: a__ : Tuple = unittest.skip("test requires Pillow" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : str ) -> Union[str, Any]: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(a_ ) else: return test_case def lowercase__ ( lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(a_ ) else: return test_case def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(a_ ) else: return test_case def lowercase__ ( lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' def _require_spacy_model(lowerCAmelCase__ : int ): try: import spacy # noqa F401 spacy.load(a_ ) except ImportError: return unittest.skip("test requires spacy" )(a_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(a_ ) )(a_ ) else: return test_case return _require_spacy_model def lowercase__ ( lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(a_ ) else: return test_case def lowercase__ ( lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(a_ ) else: return test_case def lowercase__ ( lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: a__ : Optional[int] = unittest.skip("test is slow" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: a__ : Dict = unittest.skip("test is local" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : int ) -> int: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: a__ : List[Any] = unittest.skip("test is packaged" )(a_ ) return test_case def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: a__ : Any = unittest.skip("test requires remote" )(a_ ) return test_case def lowercase__ ( *lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' def decorate(cls : Union[str, Any] ): for name, fn in cls.__dict__.items(): if callable(a_ ) and name.startswith("test" ): for decorator in decorators: a__ : Optional[int] = decorator(a_ ) setattr(cls , a_ , a_ ) return cls return decorate class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): pass class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase : Dict = 0 __lowerCamelCase : List[str] = 1 __lowerCamelCase : int = 2 @contextmanager def lowercase__ ( lowerCAmelCase__ : Tuple=OfflineSimulationMode.CONNECTION_FAILS , lowerCAmelCase__ : Dict=1E-16 ) -> Any: '''simple docstring''' a__ : Union[str, Any] = requests.Session().request def timeout_request(lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[Any] ): # Change the url to an invalid url so that the connection hangs a__ : Optional[Any] = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) a__ : Dict = timeout try: return online_request(a_ , a_ , **a_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a__ : int = url a__ : List[str] = e.args[0] a__ : Dict = (max_retry_error.args[0].replace("10.255.255.1" , F"OfflineMock[{url}]" ),) a__ : Optional[int] = (max_retry_error,) raise def raise_connection_error(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : str ): raise requests.ConnectionError("Offline mode is enabled." , request=a_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , a_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , a_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , a_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def lowercase__ ( *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' a__ : List[str] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a_ , **a_ ) as tmp_dir: try: os.chdir(a_ ) yield finally: os.chdir(a_ ) @contextmanager def lowercase__ ( ) -> Optional[int]: '''simple docstring''' import gc gc.collect() a__ : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase__ ( ) -> int: '''simple docstring''' import gc gc.collect() a__ : List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' return deepcopy(a_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(a_ ).integers(0 , 1_0_0 , 1_0 ).tolist() def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> Any: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(lowerCAmelCase__ : str , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Union[str, Any] ): try: return func(*a_ , **a_ ) except HTTPError as err: if str(a_ ).startswith("500" ) or str(a_ ).startswith("502" ): pytest.xfail(str(a_ ) ) raise err return decorator.decorator(_wrapper , a_ ) class __UpperCAmelCase : def __init__( self : Any , a_ : Optional[int] , a_ : Union[str, Any] , a_ : List[str] ) -> Any: '''simple docstring''' a__ : List[str] = returncode a__ : Any = stdout a__ : Dict = stderr async def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' while True: a__ : Optional[Any] = await stream.readline() if line: callback(a_ ) else: break async def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=False , lowerCAmelCase__ : int=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: " , " ".join(a_ ) ) a__ : Optional[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a__ : List[Any] = [] a__ : Union[str, Any] = [] def tee(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]="" ): a__ : List[str] = line.decode("utf-8" ).rstrip() sink.append(a_ ) if not quiet: print(a_ , a_ , file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCAmelCase__ : tee(a_ , a_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda lowerCAmelCase__ : tee(a_ , a_ , sys.stderr , label="stderr:" ) ), ] , timeout=a_ , ) return _RunOutput(await p.wait() , a_ , a_ ) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : int=1_8_0 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Any=True ) -> _RunOutput: '''simple docstring''' a__ : Union[str, Any] = asyncio.get_event_loop() a__ : Dict = loop.run_until_complete( _stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) ) a__ : Optional[int] = " ".join(a_ ) if result.returncode > 0: a__ : Optional[Any] = "\n".join(result.stderr ) raise RuntimeError( F"\'{cmd_str}\' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"\'{cmd_str}\' produced no output." ) return result def lowercase__ ( ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) a__ : Optional[int] = re.sub(R"^gw" , "" , a_ , 0 , re.M ) return int(a_ ) def lowercase__ ( ) -> int: '''simple docstring''' a__ : Union[str, Any] = 2_9_5_0_0 a__ : Optional[Any] = pytest_xdist_worker_id() return port + uniq_delta
642
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" from math import factorial class a__ : def __init__( self , _a , _a ): lowercase : Optional[int] = real if isinstance(_a , _a ): lowercase : Dict = [1] * rank else: lowercase : List[Any] = rank def __repr__( self ): return ( f"""{self.real}+""" f"""{"+".join(str(_a )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}""" ) def __magic_name__ ( self ): lowercase : str = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _a ) def __add__( self , _a ): if not isinstance(_a , _a ): return Dual(self.real + other , self.duals ) lowercase : int = self.duals.copy() lowercase : Any = other.duals.copy() if len(_a ) > len(_a ): o_dual.extend([1] * (len(_a ) - len(_a )) ) elif len(_a ) < len(_a ): s_dual.extend([1] * (len(_a ) - len(_a )) ) lowercase : int = [] for i in range(len(_a ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _a ) __lowerCAmelCase = __add__ def __sub__( self , _a ): return self + other * -1 def __mul__( self , _a ): if not isinstance(_a , _a ): lowercase : Tuple = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _a ) lowercase : Any = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _a ) __lowerCAmelCase = __mul__ def __truediv__( self , _a ): if not isinstance(_a , _a ): lowercase : Dict = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _a ) raise ValueError def __floordiv__( self , _a ): if not isinstance(_a , _a ): lowercase : List[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _a ) raise ValueError def __pow__( self , _a ): if n < 0 or isinstance(_a , _a ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self lowercase : List[str] = self for _ in range(n - 1 ): x *= self return x def __magic_name__ ( __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[str] ) -> List[str]: if not callable(a_ ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(a_ , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(a_ , a_ ): raise ValueError("differentiate() requires an int as input for order" ) lowercase : Union[str, Any] = Dual(a_ , 1 ) lowercase : Optional[int] = func(a_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(a_ ) if __name__ == "__main__": import doctest doctest.testmod() def __magic_name__ ( __snake_case : int ) -> Dict: return y**2 * y**4 print(differentiate(f, 9, 2))
361
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case ): lowercase : Union[str, Any] = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case ,snake_case ) lowercase : List[str] = FlaxAutoModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case ,snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case ): lowercase : int = AutoConfig.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case ,snake_case ) lowercase : int = FlaxAutoModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) self.assertIsInstance(snake_case ,snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase : Any = AutoTokenizer.from_pretrained(snake_case ) lowercase : str = FlaxBertModel.from_pretrained(snake_case ) lowercase : Any = tokenizer("""Do you support jax jitted function?""" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case ): return model(**snake_case ) eval(**snake_case ).block_until_ready() @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase : Optional[int] = AutoTokenizer.from_pretrained(snake_case ) lowercase : Tuple = FlaxRobertaModel.from_pretrained(snake_case ) lowercase : str = tokenizer("""Do you support jax jitted function?""" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case ): return model(**snake_case ) eval(**snake_case ).block_until_ready() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case ,"""bert-base is not a local folder and is not a valid model identifier""" ): lowercase : List[Any] = FlaxAutoModel.from_pretrained("""bert-base""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowercase : List[str] = FlaxAutoModel.from_pretrained(snake_case ,revision="""aaaaaa""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex( snake_case ,"""hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" ,): lowercase : Optional[Any] = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaisesRegex(snake_case ,"""Use `from_pt=True` to load this model""" ): lowercase : Any = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
336
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __snake_case: str = logging.get_logger(__name__) __snake_case: Optional[int] = 'Hello, World!' __snake_case: Optional[Any] = 'en_XX' def _snake_case ( A_ : List[Any] , A_ : List[str] , A_ : Union[str, Any] ): """simple docstring""" a_ : Optional[Any] = Path("""data_bin""" ) a_ : Dict = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_ ).parent ) , checkpoint_file=Path(a_ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(a_ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(a_ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(a_ ) a_ : Dict = xmod.model.encoder.sentence_encoder a_ : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: a_ : Any = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , a_ ) a_ : str = XmodForSequenceClassification(a_ ) if classification_head else XmodForMaskedLM(a_ ) model.eval() # Now let's copy all the weights. # Embeddings a_ : List[Any] = xmod_sent_encoder.embed_tokens.weight a_ : Union[str, Any] = xmod_sent_encoder.embed_positions.weight a_ : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. a_ : int = xmod_sent_encoder.layernorm_embedding.weight a_ : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer a_ : Any = model.roberta.encoder.layer[i] a_ : Optional[Any] = xmod_sent_encoder.layers[i] # self attention a_ : Tuple = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) a_ : List[str] = xmod_layer.self_attn.q_proj.weight a_ : Tuple = xmod_layer.self_attn.q_proj.bias a_ : Any = xmod_layer.self_attn.k_proj.weight a_ : int = xmod_layer.self_attn.k_proj.bias a_ : Optional[Any] = xmod_layer.self_attn.v_proj.weight a_ : Any = xmod_layer.self_attn.v_proj.bias # self-attention output a_ : Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) a_ : str = xmod_layer.self_attn.out_proj.weight a_ : Any = xmod_layer.self_attn.out_proj.bias a_ : Optional[int] = xmod_layer.self_attn_layer_norm.weight a_ : Optional[int] = xmod_layer.self_attn_layer_norm.bias # intermediate a_ : Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) a_ : Optional[Any] = xmod_layer.fca.weight a_ : str = xmod_layer.fca.bias # output a_ : Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) a_ : Optional[int] = xmod_layer.fca.weight a_ : Dict = xmod_layer.fca.bias a_ : Optional[int] = xmod_layer.final_layer_norm.weight a_ : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: a_ : Any = xmod_layer.adapter_layer_norm.weight a_ : Dict = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): a_ : List[Any] = bert_output.adapter_modules[lang_code] a_ : Tuple = xmod_layer.adapter_modules[lang_code] a_ : Optional[int] = from_adapter.fca.weight a_ : Any = from_adapter.fca.bias a_ : int = from_adapter.fca.weight a_ : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: a_ : Any = xmod_sent_encoder.layer_norm.weight a_ : List[str] = xmod_sent_encoder.layer_norm.bias if classification_head: a_ : Optional[Any] = xmod.model.classification_heads["""mnli"""].dense.weight a_ : Union[str, Any] = xmod.model.classification_heads["""mnli"""].dense.bias a_ : Optional[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight a_ : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head a_ : Any = xmod.model.encoder.lm_head.dense.weight a_ : Tuple = xmod.model.encoder.lm_head.dense.bias a_ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight a_ : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias a_ : List[str] = xmod.model.encoder.lm_head.weight a_ : Union[str, Any] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. a_ : str = xmod.encode(a_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(a_ ) a_ : Any = model(a_ )[0] if classification_head: a_ : int = xmod.model.classification_heads["""mnli"""](xmod.extract_features(a_ ) ) else: a_ : Union[str, Any] = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) a_ : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 a_ : int = torch.allclose(a_ , a_ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(a_ ).mkdir(parents=a_ , exist_ok=a_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if __name__ == "__main__": __snake_case: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __snake_case: str = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
577
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __snake_case : List[str] = logging.get_logger(__name__) class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : str = None , _lowerCamelCase : uuid.UUID = None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : str=None ): if not conversation_id: A__ = uuid.uuida() if past_user_inputs is None: A__ = [] if generated_responses is None: A__ = [] A__ = conversation_id A__ = past_user_inputs A__ = generated_responses A__ = text def __eq__( self : int , _lowerCamelCase : str ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A__ ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : bool = False ): if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) A__ = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: A__ = text def A__ ( self : List[str] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A__ = None def A__ ( self : int , _lowerCamelCase : str ): self.generated_responses.append(_lowerCamelCase ) def A__ ( self : Dict ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Tuple ): A__ = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): A__ = '''user''' if is_user else '''bot''' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __SCREAMING_SNAKE_CASE , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : List[str] , *_lowerCamelCase : int , **_lowerCamelCase : Any ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) if self.tokenizer.pad_token_id is None: A__ = self.tokenizer.eos_token def A__ ( self : Dict , _lowerCamelCase : Tuple=None , _lowerCamelCase : int=None , _lowerCamelCase : Union[str, Any]=None , **_lowerCamelCase : Dict ): A__ = {} A__ = {} A__ = {} if min_length_for_response is not None: A__ = min_length_for_response if minimum_tokens is not None: A__ = minimum_tokens if "max_length" in generate_kwargs: A__ = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[Any] , _lowerCamelCase : Union[Conversation, List[Conversation]] , _lowerCamelCase : Tuple=0 , **_lowerCamelCase : int ): A__ = super().__call__(_lowerCamelCase , num_workers=_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) == 1: return outputs[0] return outputs def A__ ( self : Tuple , _lowerCamelCase : Conversation , _lowerCamelCase : Union[str, Any]=3_2 ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): A__ = self.tokenizer._build_conversation_input_ids(_lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version A__ = self._legacy_parse_and_tokenize(_lowerCamelCase ) if self.framework == "pt": A__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": A__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def A__ ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]=1_0 , **_lowerCamelCase : Union[str, Any] ): A__ = generate_kwargs.get('''max_length''' , self.model.config.max_length ) A__ = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) A__ = max_length - minimum_tokens A__ = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: A__ = model_inputs['''attention_mask'''][:, -trim:] A__ = model_inputs.pop('''conversation''' ) A__ = max_length A__ = self.model.generate(**_lowerCamelCase , **_lowerCamelCase ) if self.model.config.is_encoder_decoder: A__ = 1 else: A__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A__ ( self : Any , _lowerCamelCase : str , _lowerCamelCase : Tuple=True ): A__ = model_outputs['''output_ids'''] A__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase , ) A__ = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_lowerCamelCase ) return conversation def A__ ( self : Any , _lowerCamelCase : Conversation ): A__ = self.tokenizer.eos_token_id A__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ) if len(_lowerCamelCase ) > self.tokenizer.model_max_length: A__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
571
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets lowercase = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' lowercase = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' lowercase = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def a_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def a_ ( self , a__ , a__ , a__=None , a__=1 , a__="binary" , a__=None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = fa_score( a__ , a__ , labels=a__ , pos_label=a__ , average=a__ , sample_weight=a__ ) return {"f1": float(a__ ) if score.size == 1 else score}
211
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case : int = logging.get_logger(__name__) snake_case : List[str] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE): """simple docstring""" __UpperCAmelCase = """deformable_detr""" __UpperCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Dict , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[Any]=3_0_0 , UpperCamelCase_ : Optional[Any]=1_0_2_4 , UpperCamelCase_ : int=6 , UpperCamelCase_ : Tuple=1_0_2_4 , UpperCamelCase_ : List[Any]=8 , UpperCamelCase_ : Any=6 , UpperCamelCase_ : int=1_0_2_4 , UpperCamelCase_ : int=8 , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : int=True , UpperCamelCase_ : Any="relu" , UpperCamelCase_ : Dict=2_5_6 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Optional[Any]=1.0 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : Optional[Any]="sine" , UpperCamelCase_ : int="resnet50" , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : int=4 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Optional[Any]=3_0_0 , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Tuple=0.25 , UpperCamelCase_ : int=False , **UpperCamelCase_ : Optional[int] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __magic_name__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = backbone_config.get('model_type' ) __magic_name__ = CONFIG_MAPPING[backbone_model_type] __magic_name__ = config_class.from_dict(UpperCamelCase_ ) __magic_name__ = use_timm_backbone __magic_name__ = backbone_config __magic_name__ = num_channels __magic_name__ = num_queries __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = encoder_ffn_dim __magic_name__ = encoder_layers __magic_name__ = encoder_attention_heads __magic_name__ = decoder_ffn_dim __magic_name__ = decoder_layers __magic_name__ = decoder_attention_heads __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = activation_function __magic_name__ = init_std __magic_name__ = init_xavier_std __magic_name__ = encoder_layerdrop __magic_name__ = auxiliary_loss __magic_name__ = position_embedding_type __magic_name__ = backbone __magic_name__ = use_pretrained_backbone __magic_name__ = dilation # deformable attributes __magic_name__ = num_feature_levels __magic_name__ = encoder_n_points __magic_name__ = decoder_n_points __magic_name__ = two_stage __magic_name__ = two_stage_num_proposals __magic_name__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __magic_name__ = class_cost __magic_name__ = bbox_cost __magic_name__ = giou_cost # Loss coefficients __magic_name__ = mask_loss_coefficient __magic_name__ = dice_loss_coefficient __magic_name__ = bbox_loss_coefficient __magic_name__ = giou_loss_coefficient __magic_name__ = eos_coefficient __magic_name__ = focal_alpha __magic_name__ = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def a__ ( self : List[Any] ): '''simple docstring''' return self.encoder_attention_heads @property def a__ ( self : Optional[Any] ): '''simple docstring''' return self.d_model def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __magic_name__ = self.backbone_config.to_dict() __magic_name__ = self.__class__.model_type return output
545
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __a : def snake_case_ ( self ): torch.manual_seed(0 ) _lowerCamelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCamelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _lowerCamelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case_ ( self ): torch.manual_seed(0 ) _lowerCamelCase = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _lowerCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) _lowerCamelCase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _lowerCamelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) _lowerCamelCase = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _lowerCamelCase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case_ ( self ): _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCamelCase = self.get_dummy_inputs(a__ ) _lowerCamelCase = inputs['prompt'] _lowerCamelCase = inputs['generator'] _lowerCamelCase = inputs['num_inference_steps'] _lowerCamelCase = inputs['output_type'] if "image" in inputs: _lowerCamelCase = inputs['image'] else: _lowerCamelCase = None if "mask_image" in inputs: _lowerCamelCase = inputs['mask_image'] else: _lowerCamelCase = None if "original_image" in inputs: _lowerCamelCase = inputs['original_image'] else: _lowerCamelCase = None _lowerCamelCase , _lowerCamelCase = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings _lowerCamelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowerCamelCase = image if mask_image is not None: _lowerCamelCase = mask_image if original_image is not None: _lowerCamelCase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) _lowerCamelCase = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) _lowerCamelCase = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) _lowerCamelCase = self.get_dummy_inputs(a__ ) _lowerCamelCase = inputs['generator'] _lowerCamelCase = inputs['num_inference_steps'] _lowerCamelCase = inputs['output_type'] # inputs with prompt converted to embeddings _lowerCamelCase = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: _lowerCamelCase = image if mask_image is not None: _lowerCamelCase = mask_image if original_image is not None: _lowerCamelCase = original_image _lowerCamelCase = pipe_loaded(**a__ )[0] _lowerCamelCase = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 ) def snake_case_ ( self ): _lowerCamelCase = self.get_dummy_components() _lowerCamelCase = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCamelCase = self.get_dummy_inputs(a__ ) _lowerCamelCase = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) _lowerCamelCase = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _lowerCamelCase = self.get_dummy_inputs(a__ ) _lowerCamelCase = pipe_loaded(**a__ )[0] _lowerCamelCase = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 )
650
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCAmelCase : Dict = logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : GenericTensor ) -> Optional[Any]: """simple docstring""" if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ) else: raise ValueError("""Unsupported framework""" ) return masked_index def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : GenericTensor ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_masked_index(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : GenericTensor ) -> str: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : List[str] ) -> int: """simple docstring""" if return_tensors is None: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) return model_inputs def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""] return model_outputs def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=5 , __SCREAMING_SNAKE_CASE : Optional[int]=None ) -> int: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE = target_ids.shape[0] __SCREAMING_SNAKE_CASE = model_outputs["""input_ids"""][0] __SCREAMING_SNAKE_CASE = model_outputs["""logits"""] if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __SCREAMING_SNAKE_CASE = outputs.numpy() __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: __SCREAMING_SNAKE_CASE = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) __SCREAMING_SNAKE_CASE = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) __SCREAMING_SNAKE_CASE = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ) if target_ids is not None: __SCREAMING_SNAKE_CASE = probs[..., target_ids] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = probs.topk(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __SCREAMING_SNAKE_CASE = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE = target_ids[p].tolist() __SCREAMING_SNAKE_CASE = p # Filter padding out: __SCREAMING_SNAKE_CASE = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int=None ) -> int: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [targets] try: __SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] for target in targets: __SCREAMING_SNAKE_CASE = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if id_ is None: __SCREAMING_SNAKE_CASE = self.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )["""input_ids"""] if len(__SCREAMING_SNAKE_CASE ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' """We cannot replace it with anything meaningful, ignoring it""" ) continue __SCREAMING_SNAKE_CASE = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) __SCREAMING_SNAKE_CASE = list(set(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ) return target_ids def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if targets is not None: __SCREAMING_SNAKE_CASE = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
627
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __snake_case = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def _lowerCamelCase ( lowerCamelCase__ : Optional[int] = "mumbai" ): lowercase__ : Dict = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowercase__ : int = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowercase__ : Dict = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(F"Job {i:>2} is {job[0]} at {job[1]}")
200
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1_024 , _UpperCamelCase=1_024 , _UpperCamelCase=False , **_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(a_ ) snake_case_ : Union[str, Any] = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path='''train''' , **a_ ) snake_case_ : Union[str, Any] = tok.pad_token_id def get_lens(_UpperCamelCase ): snake_case_ : Any = tqdm( DataLoader(a_ , batch_size=512 , num_workers=8 , shuffle=a_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) snake_case_ : int = [] for batch in dl: snake_case_ : Tuple = batch['''input_ids'''].ne(a_ ).sum(1 ).tolist() snake_case_ : List[Any] = batch['''labels'''].ne(a_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a_ , a_ ): max_lens.append(max(a_ , a_ ) ) else: max_lens.extend(a_ ) return max_lens snake_case_ : List[Any] = get_lens(a_ ) snake_case_ : Tuple = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path='''val''' , **a_ ) snake_case_ : Optional[Any] = get_lens(a_ ) pickle_save(a_ , train_ds.len_file ) pickle_save(a_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
60
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" __UpperCAmelCase = {str(digit): digit**5 for digit in range(10)} def lowercase__ ( lowerCAmelCase__ : int ) -> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def lowercase__ ( ) -> int: '''simple docstring''' return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
642
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
361
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0