code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image SCREAMING_SNAKE_CASE :str = ['text', 'image', 'audio'] def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(a_ , a_ ): inputs.append(create_inputs(a_ ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" __A = [] for output in outputs: if isinstance(a_ , (str, AgentText) ): output_types.append("text" ) elif isinstance(a_ , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(a_ , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class UpperCAmelCase : '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) __A = self.tool.inputs for _input in inputs: if isinstance(_input ,A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __A = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCamelCase_ ( self : int ): __A = create_inputs(self.tool.inputs ) __A = self.tool(*A ) # There is a single output if len(self.tool.outputs ) == 1: __A = [outputs] self.assertListEqual(output_types(A ) ,self.tool.outputs ) def UpperCamelCase_ ( self : str ): self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCamelCase_ ( self : List[str] ): __A = create_inputs(self.tool.inputs ) __A = self.tool(*A ) if not isinstance(A ,A ): __A = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) ) for output, output_type in zip(A ,self.tool.outputs ): __A = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(A ,A ) ) def UpperCamelCase_ ( self : str ): __A = create_inputs(self.tool.inputs ) __A = [] for _input, input_type in zip(A ,self.tool.inputs ): if isinstance(A ,A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __A = self.tool(*A ) if not isinstance(A ,A ): __A = [outputs] self.assertEqual(len(A ) ,len(self.tool.outputs ) )
55
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
1
def UpperCAmelCase ( a_ ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(a_ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
55
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) snake_case_ = "CIDAS/clipseg-rd64-refined" snake_case_ = "image_segmenter" snake_case_ = CLIPSegForImageSegmentation snake_case_ = ["image", "text"] snake_case_ = ["image"] def __init__( self : List[Any] ,*A : List[Any] ,**A : Dict ): requires_backends(self ,["vision"] ) super().__init__(*A ,**A ) def UpperCamelCase_ ( self : int ,A : "Image" ,A : str ): return self.pre_processor(text=[label] ,images=[image] ,padding=A ,return_tensors="pt" ) def UpperCamelCase_ ( self : str ,A : List[Any] ): with torch.no_grad(): __A = self.model(**A ).logits return logits def UpperCamelCase_ ( self : List[str] ,A : str ): __A = outputs.cpu().detach().numpy() __A = 0 __A = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
from collections import Counter from timeit import timeit def UpperCAmelCase ( a_ = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def UpperCAmelCase ( a_ = "" ) -> bool: """simple docstring""" if len(a_ ) == 0: return True __A = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __A = {} for character in lower_case_input_str: __A = character_freq_dict.get(a_ , 0 ) + 1 __A = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def UpperCAmelCase ( a_ = "" ) -> None: """simple docstring""" print("\nFor string = " , a_ , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(a_ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(a_ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) SCREAMING_SNAKE_CASE :str = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
55
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[int] = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification SCREAMING_SNAKE_CASE :List[str] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co SCREAMING_SNAKE_CASE :str = 'main' # Default branch name SCREAMING_SNAKE_CASE :Optional[int] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) SCREAMING_SNAKE_CASE :List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. SCREAMING_SNAKE_CASE :Any = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes SCREAMING_SNAKE_CASE :Tuple = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def UpperCAmelCase ( ) -> int: """simple docstring""" print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def UpperCAmelCase ( ) -> Any: """simple docstring""" print("Bonjour!" ) yield print("Au revoir!" ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch("sys.stdout" ,new_callable=io.StringIO ) def UpperCamelCase_ ( self : int ,A : str ): with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,"Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" ,new_callable=io.StringIO ) def UpperCamelCase_ ( self : Optional[Any] ,A : int ): with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,"Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" ,new_callable=io.StringIO ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ): with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,"Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def UpperCamelCase_ ( self : List[Any] ): self.assertEqual(find_labels(A ) ,["labels"] ) self.assertEqual(find_labels(A ) ,["labels", "next_sentence_label"] ) self.assertEqual(find_labels(A ) ,["start_positions", "end_positions"] ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(A ) ,["labels"] ) @require_tf def UpperCamelCase_ ( self : str ): self.assertEqual(find_labels(A ) ,["labels"] ) self.assertEqual(find_labels(A ) ,["labels", "next_sentence_label"] ) self.assertEqual(find_labels(A ) ,["start_positions", "end_positions"] ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(A ) ,["labels"] ) @require_flax def UpperCamelCase_ ( self : List[Any] ): # Flax models don't have labels self.assertEqual(find_labels(A ) ,[] ) self.assertEqual(find_labels(A ) ,[] ) self.assertEqual(find_labels(A ) ,[] ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(A ) ,[] )
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = CLIPConfig snake_case_ = ["CLIPEncoderLayer"] def __init__( self : Tuple ,A : CLIPConfig ): super().__init__(A ) __A = CLIPVisionModelWithProjection(config.vision_config ) __A = nn.Linear(config.vision_config.projection_dim ,1 ) __A = nn.Linear(config.vision_config.projection_dim ,1 ) @torch.no_grad() def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : Any ,A : Optional[Any]=0.5 ,A : List[Any]=0.5 ): __A = self.vision_model(A )[0] __A = self.p_head(A ) __A = nsfw_detected.flatten() __A = nsfw_detected > p_threshold __A = nsfw_detected.tolist() if any(A ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(A ): if nsfw_detected_: __A = np.zeros(images[idx].shape ) __A = self.w_head(A ) __A = watermark_detected.flatten() __A = watermark_detected > w_threshold __A = watermark_detected.tolist() if any(A ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(A ): if watermark_detected_: __A = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
55
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
1
SCREAMING_SNAKE_CASE :Optional[Any] = range(2, 20 + 1) SCREAMING_SNAKE_CASE :Optional[int] = [10**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE :dict[int, dict[int, list[list[int]]]] = {} def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" __A = sum(a_i[j] for j in range(a_ , len(a_ ) ) ) __A = sum(a_i[j] * base[j] for j in range(min(len(a_ ) , a_ ) ) ) __A , __A = 0, 0 __A = n - i __A = memo.get(a_ ) if sub_memo is not None: __A = sub_memo.get(a_ ) if jumps is not None and len(a_ ) > 0: # find and make the largest jump without going over __A = -1 for _k in range(len(a_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __A = _k break if max_jump >= 0: __A , __A , __A = jumps[max_jump] # since the difference between jumps is cached, add c __A = diff + c for j in range(min(a_ , len(a_ ) ) ): __A , __A = divmod(a_ , 1_0 ) if new_c > 0: add(a_ , a_ , a_ ) else: __A = [] else: __A = {c: []} __A = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __A , __A = next_term(a_ , k - 1 , i + dn , a_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __A , __A = compute(a_ , a_ , i + dn , a_ ) diff += _diff dn += terms_jumped __A = sub_memo[c] # keep jumps sorted by # of terms skipped __A = 0 while j < len(a_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a_ , (diff, dn, k) ) return (diff, dn) def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" if i >= n: return 0, i if k > len(a_ ): a_i.extend([0 for _ in range(k - len(a_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __A = i __A , __A , __A = 0, 0, 0 for j in range(len(a_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __A = ds_c + ds_b diff += addend __A = 0 for j in range(a_ ): __A = a_i[j] + addend __A , __A = divmod(a_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a_ , a_ , a_ ) return diff, i - start_i def UpperCAmelCase ( a_ , a_ , a_ ) -> Any: """simple docstring""" for j in range(a_ , len(a_ ) ): __A = digits[j] + addend if s >= 1_0: __A , __A = divmod(a_ , 1_0 ) __A = addend // 1_0 + quotient else: __A = s __A = addend // 1_0 if addend == 0: break while addend > 0: __A , __A = divmod(a_ , 1_0 ) digits.append(a_ ) def UpperCAmelCase ( a_ = 1_0**1_5 ) -> int: """simple docstring""" __A = [1] __A = 1 __A = 0 while True: __A , __A = next_term(a_ , 2_0 , i + dn , a_ ) dn += terms_jumped if dn == n - i: break __A = 0 for j in range(len(a_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
55
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE :int = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ = 10000 snake_case_ = None snake_case_ = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ = ParquetConfig def UpperCamelCase_ ( self : Dict ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self : str ,A : Tuple ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __A = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A ,(str, list, tuple) ): __A = data_files if isinstance(A ,A ): __A = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"files": files} )] __A = [] for split_name, files in data_files.items(): if isinstance(A ,A ): __A = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A = [dl_manager.iter_files(A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A ): with open(A ,"rb" ) as f: __A = datasets.Features.from_arrow_schema(pq.read_schema(A ) ) break splits.append(datasets.SplitGenerator(name=A ,gen_kwargs={"files": files} ) ) return splits def UpperCamelCase_ ( self : Optional[int] ,A : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A = table_cast(A ,self.info.features.arrow_schema ) return pa_table def UpperCamelCase_ ( self : int ,A : Optional[int] ): __A = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): with open(A ,"rb" ) as f: __A = pq.ParquetFile(A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size ,columns=self.config.columns ) ): __A = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(A ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(A )}: {e}''' ) raise
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCAmelCase ( a_ = "laptop" ) -> DataFrame: """simple docstring""" __A = F'''https://www.amazon.in/laptop/s?k={product}''' __A = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __A = BeautifulSoup(requests.get(a_ , headers=a_ ).text ) # Initialize a Pandas dataframe with the column titles __A = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: __A = item.ha.text __A = "https://www.amazon.in/" + item.ha.a["href"] __A = item.find("span" , attrs={"class": "a-offscreen"} ).text try: __A = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: __A = "Not available" try: __A = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __A = "" try: __A = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 1_0_0 ) except ValueError: __A = float("nan" ) except AttributeError: pass __A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __A = " " __A = " " data_frame.index += 1 return data_frame if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :List[str] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 SCREAMING_SNAKE_CASE :Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') SCREAMING_SNAKE_CASE :Dict = get_tests_dir('fixtures/vocab.json') SCREAMING_SNAKE_CASE :Optional[int] = get_tests_dir('fixtures') class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def UpperCamelCase_ ( self : Optional[int] ): __A = 0 def UpperCamelCase_ ( self : Tuple ): __A = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __A = WavaVecaConfig() __A = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(A ) processor.save_pretrained(A ) __A = AutoProcessor.from_pretrained(A ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(A ,os.path.join(A ,A ) ) copyfile(A ,os.path.join(A ,"vocab.json" ) ) __A = AutoProcessor.from_pretrained(A ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __A = WavaVecaFeatureExtractor() __A = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) __A = WavaVecaProcessor(A ,A ) # save in new folder processor.save_pretrained(A ) # drop `processor_class` in tokenizer with open(os.path.join(A ,A ) ,"r" ) as f: __A = json.load(A ) config_dict.pop("processor_class" ) with open(os.path.join(A ,A ) ,"w" ) as f: f.write(json.dumps(A ) ) __A = AutoProcessor.from_pretrained(A ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: __A = WavaVecaFeatureExtractor() __A = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) __A = WavaVecaProcessor(A ,A ) # save in new folder processor.save_pretrained(A ) # drop `processor_class` in feature extractor with open(os.path.join(A ,A ) ,"r" ) as f: __A = json.load(A ) config_dict.pop("processor_class" ) with open(os.path.join(A ,A ) ,"w" ) as f: f.write(json.dumps(A ) ) __A = AutoProcessor.from_pretrained(A ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: __A = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(A ) # copy relevant files copyfile(A ,os.path.join(A ,"vocab.json" ) ) # create emtpy sample processor with open(os.path.join(A ,A ) ,"w" ) as f: f.write("{}" ) __A = AutoProcessor.from_pretrained(A ) self.assertIsInstance(A ,A ) def UpperCamelCase_ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A ): __A = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(A ): __A = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" ,trust_remote_code=A ) __A = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ,trust_remote_code=A ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ ,"NewProcessor" ) __A = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ ,"NewFeatureExtractor" ) __A = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __A = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" ,trust_remote_code=A ,use_fast=A ) __A = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ ,"NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) def UpperCamelCase_ ( self : Optional[int] ): try: AutoConfig.register("custom" ,A ) AutoFeatureExtractor.register(A ,A ) AutoTokenizer.register(A ,slow_tokenizer_class=A ) AutoProcessor.register(A ,A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A ): AutoProcessor.register(A ,A ) # Now that the config is registered, it can be used as any other config with the auto-API __A = CustomFeatureExtractor.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(A ,"vocab.txt" ) with open(A ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __A = CustomTokenizer(A ) __A = CustomProcessor(A ,A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(A ) __A = AutoProcessor.from_pretrained(A ) self.assertIsInstance(A ,A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : Optional[Any] ): class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = False class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = False class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "AutoFeatureExtractor" snake_case_ = "AutoTokenizer" snake_case_ = False try: AutoConfig.register("custom" ,A ) AutoFeatureExtractor.register(A ,A ) AutoTokenizer.register(A ,slow_tokenizer_class=A ) AutoProcessor.register(A ,A ) # If remote code is not set, the default is to use local classes. __A = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ ,"NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __A = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" ,trust_remote_code=A ) self.assertEqual(processor.__class__.__name__ ,"NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __A = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" ,trust_remote_code=A ) self.assertEqual(processor.__class__.__name__ ,"NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : str ): __A = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ ,"BertTokenizerFast" ) def UpperCamelCase_ ( self : int ): __A = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ ,"ConvNextImageProcessor" ) @is_staging_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCamelCase_ ( cls : Any ): __A = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token ,repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-processor" ) except HTTPError: pass def UpperCamelCase_ ( self : Optional[int] ): __A = WavaVecaProcessor.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(A ,"test-processor" ) ,push_to_hub=A ,use_auth_token=self._token ) __A = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(A ,getattr(new_processor.feature_extractor ,A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def UpperCamelCase_ ( self : List[str] ): __A = WavaVecaProcessor.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(A ,"test-processor-org" ) ,push_to_hub=A ,use_auth_token=self._token ,organization="valid_org" ,) __A = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(A ,getattr(new_processor.feature_extractor ,A ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() ,processor.tokenizer.get_vocab() ) def UpperCamelCase_ ( self : str ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __A = CustomFeatureExtractor.from_pretrained(A ) with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(A ,"vocab.txt" ) with open(A ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __A = CustomTokenizer(A ) __A = CustomProcessor(A ,A ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' ,token=self._token ) __A = Repository(A ,clone_from=f'''{USER}/test-dynamic-processor''' ,token=self._token ) processor.save_pretrained(A ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map ,{ "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } ,) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(A ,"tokenizer_config.json" ) ) as f: __A = json.load(A ) self.assertDictEqual( tokenizer_config["auto_map"] ,{ "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } ,) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(A ,"custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(A ,"custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(A ,"custom_processing.py" ) ) ) repo.push_to_hub() __A = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' ,trust_remote_code=A ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ ,"CustomProcessor" )
55
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" return sum(e for e in range(3 , a_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
55
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" def run_func(a_ ): @wraps(a_ ) def run_in_eager_mode(*a_ , **a_ ): return func(*a_ , **a_ ) @wraps(a_ ) @tf.function(experimental_compile=a_ ) def run_in_graph_mode(*a_ , **a_ ): return func(*a_ , **a_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def UpperCAmelCase ( a_ , a_ , a_ ) -> ["tf.Tensor"]: """simple docstring""" __A = random.Random() __A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(a_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = "TensorFlow" @property def UpperCamelCase_ ( self : Tuple ): return tf.__version__ def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : int ,A : int ): # initialize GPU on separate process __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_inference_func(A ,A ,A ) return self._measure_speed(_inference ) def UpperCamelCase_ ( self : str ,A : str ,A : int ,A : int ): __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_train_func(A ,A ,A ) return self._measure_speed(_train ) def UpperCamelCase_ ( self : Dict ,A : str ,A : int ,A : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,A ) __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_inference_func(A ,A ,A ) return self._measure_memory(_inference ) def UpperCamelCase_ ( self : int ,A : str ,A : int ,A : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,A ) __A = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __A = self._prepare_train_func(A ,A ,A ) return self._measure_memory(_train ) def UpperCamelCase_ ( self : Tuple ,A : str ,A : int ,A : int ): __A = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __A = ( hasattr(A ,"architectures" ) and isinstance(config.architectures ,A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __A = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __A = __import__("transformers" ,fromlist=[model_class] ) __A = getattr(A ,A ) __A = model_cls(A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __A = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently __A = config.vocab_size if hasattr(A ,"vocab_size" ) else config.encoder.vocab_size __A = random_input_ids(A ,A ,A ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(A ,decoder_input_ids=A ,training=A ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(A ,training=A ) __A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : int ,A : int ): __A = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __A = ( hasattr(A ,"architectures" ) and isinstance(config.architectures ,A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __A = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __A = __import__("transformers" ,fromlist=[model_class] ) __A = getattr(A ,A ) __A = model_cls(A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently __A = config.vocab_size if hasattr(A ,"vocab_size" ) else config.encoder.vocab_size __A = random_input_ids(A ,A ,A ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): __A = model(A ,decoder_input_ids=A ,labels=A ,training=A )[0] __A = tf.gradients(A ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): __A = model(A ,labels=A ,training=A )[0] __A = tf.gradients(A ,model.trainable_variables ) return gradients __A = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase_ ( self : str ,A : List[Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(A ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __A = timeit.repeat( A ,repeat=self.args.repeat ,number=10 ,) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def UpperCamelCase_ ( self : Optional[Any] ,A : Callable[[], None] ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) __A = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) __A = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() __A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __A = nvml.nvmlDeviceGetMemoryInfo(A ) __A = meminfo.used __A = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) __A = None else: __A = measure_peak_memory_cpu(A ) __A = Memory(A ) if isinstance(A ,A ) else memory_bytes if self.args.trace_memory_line_by_line: __A = stop_memory_tracing(A ) if memory is None: __A = summary.total else: __A = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
55
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() __A = dict(zip(A ,range(len(A ) ) ) ) __A = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } __A = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_60_00, "return_attention_mask": False, "do_normalize": True, } __A = tempfile.mkdtemp() __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) __A = os.path.join(self.tmpdirname ,A ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.feature_extraction_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) # load decoder from hub __A = "hf-internal-testing/ngram-beam-search-decoder" def UpperCamelCase_ ( self : Optional[Any] ,**A : Optional[int] ): __A = self.add_kwargs_tokens_map.copy() kwargs.update(A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : str ,**A : Dict ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[int] ,**A : Optional[Any] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**A ) def UpperCamelCase_ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_tokenizer() __A = self.get_feature_extractor() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) processor.save_pretrained(self.tmpdirname ) __A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,A ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(A ,"include" ): WavaVecaProcessorWithLM( tokenizer=A ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def UpperCamelCase_ ( self : int ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) __A = floats_list((3, 10_00) ) __A = feature_extractor(A ,return_tensors="np" ) __A = processor(A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) __A = "This is a test string" __A = processor(text=A ) __A = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : List[str] ,A : str=(2, 10, 16) ,A : Tuple=77 ): np.random.seed(A ) return np.random.rand(*A ) def UpperCamelCase_ ( self : List[str] ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) __A = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) __A = processor.decode(A ) __A = decoder.decode_beams(A )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual("</s> <s> </s>" ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def UpperCamelCase_ ( self : Any ,A : Optional[Any] ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) __A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __A = processor.batch_decode(A ) else: with get_context(A ).Pool() as pool: __A = processor.batch_decode(A ,A ) __A = list(A ) with get_context("fork" ).Pool() as p: __A = decoder.decode_beams_batch(A ,A ) __A , __A , __A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A ,decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] ,decoded_processor.text ) self.assertListEqual(A ,decoded_processor.logit_score ) self.assertListEqual(A ,decoded_processor.lm_score ) def UpperCamelCase_ ( self : str ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) __A = self._get_dummy_logits() __A = 15 __A = -20.0 __A = -4.0 __A = processor.batch_decode( A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) __A = decoded_processor_out.text __A = list(A ) with get_context("fork" ).Pool() as pool: __A = decoder.decode_beams_batch( A ,A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) __A = [d[0][0] for d in decoded_decoder_out] __A = [d[0][2] for d in decoded_decoder_out] __A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] ,A ) self.assertTrue(np.array_equal(A ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] ,A ,atol=1E-3 ) ) self.assertTrue(np.array_equal(A ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] ,A ,atol=1E-3 ) ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) __A = self._get_dummy_logits() __A = 2.0 __A = 5.0 __A = -20.0 __A = True __A = processor.batch_decode( A ,alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) __A = decoded_processor_out.text __A = list(A ) decoder.reset_params( alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) with get_context("fork" ).Pool() as pool: __A = decoder.decode_beams_batch( A ,A ,) __A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] ,A ) __A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-20.0 ) self.assertEqual(lm_model.score_boundary ,A ) def UpperCamelCase_ ( self : str ): __A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A = processor.decoder.model_container[processor.decoder._model_key] __A = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __A = os.listdir(A ) __A = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Any ): __A = snapshot_download("hf-internal-testing/processor_with_lm" ) __A = WavaVecaProcessorWithLM.from_pretrained(A ) __A = processor.decoder.model_container[processor.decoder._model_key] __A = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() __A = os.listdir(A ) __A = os.listdir(A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) __A = floats_list((3, 10_00) ) __A = processor_wavaveca(A ,return_tensors="np" ) __A = processor_auto(A ,return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1E-2 ) __A = self._get_dummy_logits() __A = processor_wavaveca.batch_decode(A ) __A = processor_auto.batch_decode(A ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.get_feature_extractor() __A = self.get_tokenizer() __A = self.get_decoder() __A = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg="`processor` and `feature_extractor` model input names do not match" ,) @staticmethod def UpperCamelCase_ ( A : Optional[Any] ,A : Tuple ): __A = [d[key] for d in offsets] return retrieved_list def UpperCamelCase_ ( self : str ): __A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A = self._get_dummy_logits()[0] __A = processor.decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] ,"word" ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] ,"word" ) ,["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] ,"start_offset" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] ,"end_offset" ) ,[1, 3, 5] ) def UpperCamelCase_ ( self : Dict ): __A = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) __A = self._get_dummy_logits() __A = processor.batch_decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertListEqual( [" ".join(self.get_from_offsets(A ,"word" ) ) for o in outputs["word_offsets"]] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] ,"word" ) ,["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] ,"start_offset" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] ,"end_offset" ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCamelCase_ ( self : Tuple ): import torch __A = load_dataset("common_voice" ,"en" ,split="train" ,streaming=A ) __A = ds.cast_column("audio" ,datasets.Audio(sampling_rate=1_60_00 ) ) __A = iter(A ) __A = next(A ) __A = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) __A = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __A = processor(sample["audio"]["array"] ,return_tensors="pt" ).input_values with torch.no_grad(): __A = model(A ).logits.cpu().numpy() __A = processor.decode(logits[0] ,output_word_offsets=A ) __A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __A = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] __A = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(A ,"word" ) ) ,A ) self.assertEqual(" ".join(self.get_from_offsets(A ,"word" ) ) ,output.text ) # output times __A = torch.tensor(self.get_from_offsets(A ,"start_time" ) ) __A = torch.tensor(self.get_from_offsets(A ,"end_time" ) ) # fmt: off __A = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) __A = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A ,A ,atol=0.01 ) ) self.assertTrue(torch.allclose(A ,A ,atol=0.01 ) )
55
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
from math import factorial SCREAMING_SNAKE_CASE :dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not isinstance(a_ , a_ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(a_ ) ) def UpperCAmelCase ( a_ = 6_0 , a_ = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" if not isinstance(a_ , a_ ) or not isinstance(a_ , a_ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length __A = 0 # the cached sizes of the previous chains __A = {} for start_chain_element in range(1 , a_ ): # The temporary set will contain the elements of the chain __A = set() __A = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __A = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(a_ ) chain_set_length += 1 __A = digit_factorial_sum(a_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __A = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
55
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 SCREAMING_SNAKE_CASE :List[Any] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,A : int = 14 ): if group not in primes: raise ValueError("Unsupported Group" ) __A = primes[group]["prime"] __A = primes[group]["generator"] __A = int(hexlify(urandom(32 ) ) ,base=16 ) def UpperCamelCase_ ( self : Optional[int] ): return hex(self.__private_key )[2:] def UpperCamelCase_ ( self : List[str] ): __A = pow(self.generator ,self.__private_key ,self.prime ) return hex(A )[2:] def UpperCamelCase_ ( self : List[str] ,A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(A ,(self.prime - 1) // 2 ,self.prime ) == 1 ) def UpperCamelCase_ ( self : Optional[int] ,A : str ): __A = int(A ,base=16 ) if not self.is_valid_public_key(A ): raise ValueError("Invalid public key" ) __A = pow(A ,self.__private_key ,self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def UpperCamelCase_ ( A : int ,A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(A ,(prime - 1) // 2 ,A ) == 1 ) @staticmethod def UpperCamelCase_ ( A : str ,A : str ,A : int = 14 ): __A = int(A ,base=16 ) __A = int(A ,base=16 ) __A = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(A ,A ): raise ValueError("Invalid public key" ) __A = pow(A ,A ,A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
55
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["speech"] def __init__( self : List[Any] ,*A : Optional[int] ,**A : List[str] ): requires_backends(self ,["speech"] ) class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["speech"] def __init__( self : int ,*A : Optional[int] ,**A : Optional[int] ): requires_backends(self ,["speech"] )
55
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
55
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :str = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : str = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = fname.split(os.path.sep )[-1] return re.search(r'^(.*)_\d+\.jpg$' , _lowercase ).groups()[0] class __lowerCamelCase (_a ): def __init__( self: Optional[int],A_: Tuple,A_: Optional[Any]=None,A_: Dict=None ): '''simple docstring''' __UpperCamelCase = file_names __UpperCamelCase = image_transform __UpperCamelCase = label_to_id def __len__( self: Any ): '''simple docstring''' return len(self.file_names ) def __getitem__( self: Dict,A_: Dict ): '''simple docstring''' __UpperCamelCase = self.file_names[idx] __UpperCamelCase = PIL.Image.open(A_ ) __UpperCamelCase = raw_image.convert('RGB' ) if self.image_transform is not None: __UpperCamelCase = self.image_transform(A_ ) __UpperCamelCase = extract_label(A_ ) if self.label_to_id is not None: __UpperCamelCase = self.label_to_id[label] return {"image": image, "label": label} def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = config['image_size'] if not isinstance(_lowercase , (list, tuple) ): __UpperCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": __UpperCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __UpperCamelCase = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: __UpperCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __UpperCamelCase = os.path.split(_lowercase )[-1].split('.' )[0] accelerator.init_trackers(_lowercase , _lowercase ) # Grab all the image filenames __UpperCamelCase = [os.path.join(args.data_dir , _lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences __UpperCamelCase = [extract_label(_lowercase ) for fname in file_names] __UpperCamelCase = list(set(_lowercase ) ) id_to_label.sort() __UpperCamelCase = {lbl: i for i, lbl in enumerate(_lowercase )} # Set the seed before splitting the data. np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # Split our filenames between train and validation __UpperCamelCase = np.random.permutation(len(_lowercase ) ) __UpperCamelCase = int(0.8 * len(_lowercase ) ) __UpperCamelCase = random_perm[:cut] __UpperCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __UpperCamelCase = Compose([RandomResizedCrop(_lowercase , scale=(0.5, 1.0) ), ToTensor()] ) __UpperCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowercase , label_to_id=_lowercase ) # For evaluation, we use a deterministic Resize __UpperCamelCase = Compose([Resize(_lowercase ), ToTensor()] ) __UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowercase , label_to_id=_lowercase ) # Instantiate dataloaders. __UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) __UpperCamelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = create_model('resnet50d' , pretrained=_lowercase , num_classes=len(_lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __UpperCamelCase = False for param in model.get_classifier().parameters(): __UpperCamelCase = True # We normalize the batches of images to be a bit faster. __UpperCamelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) __UpperCamelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __UpperCamelCase = OneCycleLR(optimizer=_lowercase , max_lr=_lowercase , epochs=_lowercase , steps_per_epoch=len(_lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly __UpperCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) __UpperCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __UpperCamelCase = os.path.splitext(_lowercase )[0] if "epoch" in training_difference: __UpperCamelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 __UpperCamelCase = None else: __UpperCamelCase = int(training_difference.replace('step_' , '' ) ) __UpperCamelCase = resume_step // len(_lowercase ) resume_step -= starting_epoch * len(_lowercase ) # Now we train the model for epoch in range(_lowercase , _lowercase ): model.train() if args.with_tracking: __UpperCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __UpperCamelCase = accelerator.skip_first_batches(_lowercase , _lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __UpperCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std __UpperCamelCase = model(_lowercase ) __UpperCamelCase = torch.nn.functional.cross_entropy(_lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowercase , _lowercase ): __UpperCamelCase = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) model.eval() __UpperCamelCase = 0 __UpperCamelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std with torch.no_grad(): __UpperCamelCase = model(_lowercase ) __UpperCamelCase = outputs.argmax(dim=-1 ) __UpperCamelCase, __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) __UpperCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __UpperCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_lowercase ), 'epoch': epoch, } , step=_lowercase , ) if checkpointing_steps == "epoch": __UpperCamelCase = f'''epoch_{epoch}''' if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) if args.with_tracking: accelerator.end_training() def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_lowercase , default=_lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_lowercase , default=_lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_lowercase , default=_lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase__ ( _A): """simple docstring""" a__ : str = "realm" def __init__( self : List[Any] , __lowerCAmelCase : List[Any]=3_05_22 , __lowerCAmelCase : List[str]=7_68 , __lowerCAmelCase : str=1_28 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Tuple=30_72 , __lowerCAmelCase : Optional[int]="gelu_new" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : str=1E-12 , __lowerCAmelCase : Tuple=2_56 , __lowerCAmelCase : List[str]=10 , __lowerCAmelCase : Union[str, Any]=1E-3 , __lowerCAmelCase : Optional[Any]=5 , __lowerCAmelCase : List[Any]=3_20 , __lowerCAmelCase : Any=13_35_37_18 , __lowerCAmelCase : Tuple=50_00 , __lowerCAmelCase : str=1 , __lowerCAmelCase : List[str]=0 , __lowerCAmelCase : Union[str, Any]=2 , **__lowerCAmelCase : Dict , ) -> int: super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) # Common config _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = retriever_proj_size _A = num_hidden_layers _A = num_attention_heads _A = num_candidates _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps # Reader config _A = span_hidden_size _A = max_span_width _A = reader_layer_norm_eps _A = reader_beam_size _A = reader_seq_len # Retrieval config _A = num_block_records _A = searcher_beam_size
2
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
'''simple docstring''' def A_( A : int): if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase = 1 UpperCamelCase = 1 while repunit: UpperCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def A_( A : int = 100_0000): UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(A) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
3
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionControlNetImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = 2 lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class a ( a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionControlNetImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = 2 lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowerCAmelCase = 10.0 lowerCAmelCase = 4 lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = 'evil space-punk bird' lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) ) lowerCAmelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) ) lowerCAmelCase = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='np' , num_inference_steps=50 , strength=0.6 , ) lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
4
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''Wav2Vec2FeatureExtractor''' _lowercase : Optional[Any] = '''AutoTokenizer''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__(_lowercase , _lowercase ) _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False @classmethod def _lowercase ( cls , _lowercase , **_lowercase ): """simple docstring""" try: return super().from_pretrained(_lowercase , **_lowercase ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , _lowercase , ) _lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase ) _lowerCAmelCase = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase ) return cls(feature_extractor=_lowercase , tokenizer=_lowercase ) def __call__( self , *_lowercase , **_lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _lowerCAmelCase = kwargs.pop("""raw_speech""" ) else: _lowerCAmelCase = kwargs.pop("""audio""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""sampling_rate""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""text""" , _lowercase ) if len(_lowercase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _lowerCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if text is None: return inputs elif audio is None: return encodings else: _lowerCAmelCase = encodings["""input_ids"""] return inputs def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase ) _lowerCAmelCase = kwargs.pop("""input_features""" , _lowercase ) _lowerCAmelCase = kwargs.pop("""labels""" , _lowercase ) if len(_lowercase ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if input_features is not None: _lowerCAmelCase = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) if labels is not None: _lowerCAmelCase = self.tokenizer.pad(_lowercase , **_lowercase ) if labels is None: return input_features elif input_features is None: return labels else: _lowerCAmelCase = labels["""input_ids"""] return input_features def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _lowercase ( self , *_lowercase , **_lowercase ): """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @contextmanager def _lowercase ( self ): """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.feature_extractor _lowerCAmelCase = False
5
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict ): SCREAMING_SNAKE_CASE__ = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE__ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
6
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['''PoolFormerFeatureExtractor'''] a = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
7
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __A : Optional[Any] = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __A : List[str] = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" __A : Any = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> str: if number >= 0: # Get binary representation of positive number __A : Optional[Any] = '0' + str(bin(__snake_case ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __A : Union[str, Any] = len(bin(__snake_case )[3:] ) # Find 2's complement of number __A : Any = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] __A : Optional[Any] = ( '1' + '0' * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') SCREAMING_SNAKE_CASE__ = subprocess.check_output(f'git diff --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() SCREAMING_SNAKE_CASE__ = '''|'''.join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = re.compile(rf'^({joined_dirs}).*?\.py$') SCREAMING_SNAKE_CASE__ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
9
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCAmelCase = False class lowerCAmelCase_ ( unittest.TestCase ): pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : str ): _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A ) _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained(_A , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = generator.manual_seed(0 ) _UpperCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCamelCase = '''cyberpunk 2077''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe.dual_guided( prompt=_A , image=_A , text_to_image_strength=0.75 , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _UpperCamelCase = '''A painting of a squirrel eating a burger ''' _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe.text_to_image( prompt=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _UpperCamelCase = pipe.image_variation(_A , generator=_A , output_type='''numpy''' ).images _UpperCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
10
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __A ( A ): '''simple docstring''' @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task='''fill-mask''' , model=A ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Dict: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task='''fill-mask''' , model=A ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def a__ (self ) -> Optional[int]: """simple docstring""" _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
11
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ : List[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model lowerCamelCase__ : Dict = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names lowerCamelCase__ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ : List[str] = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: lowerCamelCase__ : Optional[Any] = """allenai""" def UpperCamelCase ( lowercase_ ) -> Union[str, Any]: '''simple docstring''' lowercase__ : Any = dict((re.sub(R"""@@$""" , """""" , lowercase_ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , lowercase_ ), v) for k, v in d.items() ) lowercase__ : List[str] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase__ : int = d[k] # restore return da def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' assert os.path.exists(lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__ : int = basename(lowercase_ ) lowercase__ : List[Any] = dirname(lowercase_ ) lowercase__ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase__ : int = cls.hub_models() lowercase__ : Tuple = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} lowercase__ : Optional[Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) lowercase__ : Optional[int] = hub_utils.from_pretrained( lowercase_ , lowercase_ , lowercase_ , archive_map=lowercase_ , **lowercase_ ) lowercase__ : Tuple = vars(chkpt["""args"""]["""model"""] ) lowercase__ : List[Any] = args["""source_lang"""] lowercase__ : Dict = args["""target_lang"""] lowercase__ : Optional[Any] = dirname(lowercase_ ) lowercase__ : int = basename(lowercase_ ) # dicts lowercase__ : Union[str, Any] = os.path.join(lowercase_ , F'dict.{src_lang}.txt' ) lowercase__ : Optional[int] = os.path.join(lowercase_ , F'dict.{tgt_lang}.txt' ) lowercase__ : Optional[int] = Dictionary.load(lowercase_ ) lowercase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) lowercase__ : str = len(lowercase_ ) lowercase__ : Any = os.path.join(lowercase_ , """vocab-src.json""" ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase__ : Any = True for k in src_vocab.keys(): if not k.islower(): lowercase__ : List[str] = False break lowercase__ : Tuple = Dictionary.load(lowercase_ ) lowercase__ : Any = rewrite_dict_keys(tgt_dict.indices ) lowercase__ : Any = len(lowercase_ ) lowercase__ : Any = os.path.join(lowercase_ , """vocab-tgt.json""" ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # merges_file (bpecodes) lowercase__ : Union[str, Any] = os.path.join(lowercase_ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ ) if os.path.exists(lowercase_ ): break with open(lowercase_ , encoding="""utf-8""" ) as fin: lowercase__ : List[Any] = fin.read() lowercase__ : Optional[Any] = re.sub(R""" \d+$""" , """""" , lowercase_ , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as fout: fout.write(lowercase_ ) # model config lowercase__ : Tuple = os.path.join(lowercase_ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' lowercase__ : List[str] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with lowercase__ : Optional[int] = 5 lowercase__ : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase__ : Optional[int] = best_score_hparams[model_dir]["""length_penalty"""] else: lowercase__ : Union[str, Any] = 1.0 print(F'Generating {fsmt_model_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # tokenizer config lowercase__ : Optional[int] = os.path.join(lowercase_ , lowercase_ ) lowercase__ : int = { """langs""": [src_lang, tgt_lang], """model_max_length""": 10_24, """do_lower_case""": do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase_ , ensure_ascii=lowercase_ , indent=lowercase_ ) ) # model lowercase__ : Dict = chkpt["""models"""][0] lowercase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowercase__ : Any = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase__ : List[Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(lowercase_ , lowercase_ ) lowercase__ : str = FSMTConfig.from_pretrained(lowercase_ ) lowercase__ : List[str] = FSMTForConditionalGeneration(lowercase_ ) # check that it loads ok model_new.load_state_dict(lowercase_ , strict=lowercase_ ) # save lowercase__ : str = os.path.join(lowercase_ , lowercase_ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase_ , lowercase_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
12
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer A__ : Optional[int] = """bart""" A__ : Optional[int] = True @st.cache(allow_output_mutation=UpperCAmelCase_ ) def UpperCAmelCase__ ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __lowerCamelCase : Optional[int] = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __lowerCamelCase : int = qar_model.eval() else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": __lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __lowerCamelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __lowerCamelCase : Dict = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __lowerCamelCase : Optional[Any] = sas_model.eval() else: __lowerCamelCase , __lowerCamelCase : List[Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=UpperCAmelCase_ ) def UpperCAmelCase__ ( ) -> int: if LOAD_DENSE_INDEX: __lowerCamelCase : List[str] = faiss.StandardGpuResources() __lowerCamelCase : Any = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __lowerCamelCase : List[Any] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) __lowerCamelCase : Any = faiss.IndexFlatIP(1_28 ) __lowerCamelCase : Dict = faiss.index_cpu_to_gpu(UpperCAmelCase_ , 1 , UpperCAmelCase_ ) wikiaab_gpu_index_flat.add(UpperCAmelCase_ ) # TODO fix for larger GPU else: __lowerCamelCase , __lowerCamelCase : Dict = (None, None) __lowerCamelCase : Union[str, Any] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=UpperCAmelCase_ ) def UpperCAmelCase__ ( ) -> Dict: __lowerCamelCase : Union[str, Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __lowerCamelCase : Union[str, Any] = elia['train_eli5'] __lowerCamelCase : List[Any] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) __lowerCamelCase : int = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(UpperCAmelCase_ ) return (elia_train, eli5_train_q_index) A__ , A__ , A__ : Dict = load_indexes() A__ , A__ , A__ , A__ : str = load_models() A__ , A__ : Dict = load_train_data() def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple=10 ) -> List[str]: __lowerCamelCase : List[str] = embed_questions_for_retrieval([question] , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : int = eli5_train_q_index.search(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [elia_train[int(UpperCAmelCase_ )] for i in I[0]] return nn_examples def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple="wiki40b" , UpperCAmelCase_ : Dict="dense" , UpperCAmelCase_ : int=10 ) -> Any: if source == "none": __lowerCamelCase , __lowerCamelCase : Optional[Any] = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCamelCase , __lowerCamelCase : Optional[int] = query_qa_dense_index( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: __lowerCamelCase , __lowerCamelCase : Optional[Any] = query_es_index( UpperCAmelCase_ , UpperCAmelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=UpperCAmelCase_ , ) __lowerCamelCase : Tuple = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __lowerCamelCase : Any = 'question: {} context: {}'.format(UpperCAmelCase_ , UpperCAmelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCAmelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCAmelCase_ : None), } ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Tuple=2_56 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=0.95 , UpperCAmelCase_ : Union[str, Any]=0.8 ) -> Optional[int]: with torch.no_grad(): __lowerCamelCase : Any = qa_sas_generate( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , num_answers=1 , num_beams=UpperCAmelCase_ , min_len=UpperCAmelCase_ , max_len=UpperCAmelCase_ , do_sample=UpperCAmelCase_ , temp=UpperCAmelCase_ , top_p=UpperCAmelCase_ , top_k=UpperCAmelCase_ , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar A__ : Optional[Any] = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" A__ : List[Any] = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia A__ : Any = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) A__ : Optional[Any] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] A__ : List[str] = st.sidebar.checkbox("""Demo options""") if demo_options: A__ : List[Any] = st.sidebar.selectbox( """""", action_list, index=3, ) A__ : str = action_list.index(action_st) A__ : str = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) A__ : List[str] = show_type == """Show full text of passages""" else: A__ : Optional[Any] = 3 A__ : Optional[int] = True A__ : Optional[int] = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: A__ : Optional[int] = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) A__ : List[str] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) A__ : Optional[Any] = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: A__ : Union[str, Any] = """wiki40b""" A__ : Union[str, Any] = """dense""" A__ : Dict = """beam""" A__ : Dict = 2 A__ : List[Any] = 64 A__ : Dict = 256 A__ : Dict = None A__ : Optional[int] = None A__ : List[str] = st.sidebar.checkbox("""Generation options""") if generate_options: A__ : Any = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) A__ : Dict = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) A__ : int = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) A__ : Optional[int] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": A__ : List[Any] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: A__ : Any = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) A__ : int = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) A__ : int = None # start main text A__ : int = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] A__ : int = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": A__ : List[Any] = st.text_input("""Enter your question here:""", """""") else: A__ : Dict = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": A__ , A__ : Optional[int] = make_support(question, source=wiki_source, method="""dense""", n_results=10) A__ , A__ : Tuple = make_support(question, source=wiki_source, method="""sparse""", n_results=10) A__ : str = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] A__ : Union[str, Any] = support_list[:10] A__ : List[str] = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: A__ , A__ : int = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: A__ , A__ : Tuple = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): A__ : List[Any] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) A__ : int = res[1].strip() if sec_titles == "": A__ : int = """[{}]({})""".format(res[0], wiki_url) else: A__ : Union[str, Any] = sec_titles.split(""" & """) A__ : Optional[int] = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: A__ : Optional[Any] = find_nearest_training(question) A__ : str = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) A__ : Optional[Any] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) A__ : Optional[Any] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
13
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A : Tuple = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : Optional[int] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 8 , **_UpperCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad lowercase__ = pad_size def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple ) -> np.ndarray: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> int: """simple docstring""" lowercase__ , lowercase__ = get_image_size(_UpperCAmelCase ) lowercase__ = (old_height // size + 1) * size - old_height lowercase__ = (old_width // size + 1) * size - old_width return pad(_UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_UpperCAmelCase ) def lowerCamelCase__ (self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_pad if do_pad is not None else self.do_pad lowercase__ = pad_size if pad_size is not None else self.pad_size lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_pad: lowercase__ = [self.pad(_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
15
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
__A : Tuple = {str(digit): digit**5 for digit in range(1_0)} def __a ( A__ : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(A__ ) ) def __a ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(A__ ) ) if __name__ == "__main__": print(solution())
16
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Dict = '''▁''' UpperCAmelCase_ : List[str] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase_ : Dict = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } UpperCAmelCase_ : Optional[Any] = { '''facebook/m2m100_418M''': 1_024, } # fmt: off UpperCAmelCase_ : List[Any] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[Any] = VOCAB_FILES_NAMES _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = ['''input_ids''', '''attention_mask'''] _lowercase : List[int] = [] _lowercase : List[int] = [] def __init__( self : Dict , __A : Optional[Any] , __A : Any , __A : Tuple=None , __A : List[str]=None , __A : int="<s>" , __A : Union[str, Any]="</s>" , __A : Optional[Any]="</s>" , __A : Tuple="<pad>" , __A : List[str]="<unk>" , __A : Optional[Any]="m2m100" , __A : Optional[Dict[str, Any]] = None , __A : Any=8 , **__A : List[str] , ): __A : int = {} if sp_model_kwargs is None else sp_model_kwargs __A : List[Any] = language_codes __A : List[str] = FAIRSEQ_LANGUAGE_CODES[language_codes] __A : str = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} __A : Optional[int] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__A ) for lang_code in fairseq_language_code if self.get_lang_token(__A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__A , tgt_lang=__A , bos_token=__A , eos_token=__A , sep_token=__A , unk_token=__A , pad_token=__A , language_codes=__A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__A , **__A , ) __A : Any = vocab_file __A : Any = load_json(__A ) __A : Union[str, Any] = {v: k for k, v in self.encoder.items()} __A : Optional[int] = spm_file __A : Dict = load_spm(__A , self.sp_model_kwargs ) __A : int = len(self.encoder ) __A : Optional[Any] = { self.get_lang_token(__A ): self.encoder_size + i for i, lang_code in enumerate(__A ) } __A : Any = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__A )} __A : Union[str, Any] = {v: k for k, v in self.lang_token_to_id.items()} __A : Tuple = src_lang if src_lang is not None else """en""" __A : Dict = tgt_lang __A : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __A : str = num_madeup_words @property def lowerCAmelCase_ ( self : Any ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase_ ( self : int ): return self._src_lang @src_lang.setter def lowerCAmelCase_ ( self : int , __A : str ): __A : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase_ ( self : str , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def lowerCAmelCase_ ( self : str , __A : Union[str, Any] ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__A , self.encoder[self.unk_token] ) def lowerCAmelCase_ ( self : int , __A : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__A , self.unk_token ) def lowerCAmelCase_ ( self : Tuple , __A : Optional[Any] ): __A : Dict = [] __A : Tuple = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token __A : Dict = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def lowerCAmelCase_ ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) __A : Optional[Any] = [1] * len(self.prefix_tokens ) __A : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def lowerCAmelCase_ ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A : List[str] = self.__dict__.copy() __A : Union[str, Any] = None return state def __setstate__( self : Dict , __A : Dict ): __A : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __A : Union[str, Any] = {} __A : str = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase_ ( self : str , __A : str , __A : Optional[str] = None ): __A : str = Path(__A ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) __A : str = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __A : Dict = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __A ) if os.path.abspath(self.spm_file ) != os.path.abspath(__A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __A ) elif not os.path.isfile(self.spm_file ): with open(__A , """wb""" ) as fi: __A : str = self.sp_model.serialized_model_proto() fi.write(__A ) return (str(__A ), str(__A )) def lowerCAmelCase_ ( self : Union[str, Any] , __A : List[str] , __A : str = "en" , __A : Optional[List[str]] = None , __A : str = "ro" , **__A : Optional[int] , ): __A : Any = src_lang __A : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__A , __A , **__A ) def lowerCAmelCase_ ( self : int , __A : Dict , __A : Optional[str] , __A : Optional[str] , **__A : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __A : List[Any] = src_lang __A : str = self(__A , add_special_tokens=__A , **__A ) __A : Optional[int] = self.get_lang_id(__A ) __A : Optional[Any] = tgt_lang_id return inputs def lowerCAmelCase_ ( self : List[str] ): self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase_ ( self : Optional[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase_ ( self : Dict , __A : str ): __A : Any = self.get_lang_token(__A ) __A : Any = self.lang_token_to_id[lang_token] __A : Any = [self.cur_lang_id] __A : Optional[Any] = [self.eos_token_id] def lowerCAmelCase_ ( self : int , __A : str ): __A : Tuple = self.get_lang_token(__A ) __A : Dict = self.lang_token_to_id[lang_token] __A : Union[str, Any] = [self.cur_lang_id] __A : str = [self.eos_token_id] def lowerCAmelCase_ ( self : Tuple , __A : str ): return self.lang_code_to_token[lang] def lowerCAmelCase_ ( self : str , __A : str ): __A : List[Any] = self.get_lang_token(__A ) return self.lang_token_to_id[lang_token] def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: __A : Optional[int] = sentencepiece.SentencePieceProcessor(**a__ ) spm.Load(str(a__ ) ) return spm def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Union[Dict, List]: with open(a__ ,"""r""" ) as f: return json.load(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : str ) -> None: with open(a__ ,"""w""" ) as f: json.dump(a__ ,a__ ,indent=2 )
17
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _SCREAMING_SNAKE_CASE = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _SCREAMING_SNAKE_CASE = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _SCREAMING_SNAKE_CASE = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def _snake_case ( self ) -> Tuple: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="uniform_average" , _lowerCAmelCase=True ) -> Union[str, Any]: _lowerCAmelCase = mean_squared_error( _lowerCAmelCase , _lowerCAmelCase , sample_weight=_lowerCAmelCase , multioutput=_lowerCAmelCase , squared=_lowerCAmelCase ) return {"mse": mse}
18
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" if is_torch_version('''<''', '''2.0.0''' ) or not hasattr(__snake_case, '''_dynamo''' ): return False return isinstance(__snake_case, torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase__ ( __snake_case, __snake_case = True ) -> List[str]: """simple docstring""" _UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCamelCase = is_compiled_module(__snake_case ) if is_compiled: _UpperCamelCase = model _UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__snake_case, __snake_case ): _UpperCamelCase = model.module if not keep_fpaa_wrapper: _UpperCamelCase = getattr(__snake_case, '''forward''' ) _UpperCamelCase = model.__dict__.pop('''_original_forward''', __snake_case ) if original_forward is not None: while hasattr(__snake_case, '''__wrapped__''' ): _UpperCamelCase = forward.__wrapped__ if forward == original_forward: break _UpperCamelCase = forward if getattr(__snake_case, '''_converted_to_transformer_engine''', __snake_case ): convert_model(__snake_case, to_transformer_engine=__snake_case ) if is_compiled: _UpperCamelCase = model _UpperCamelCase = compiled_model return model def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" PartialState().wait_for_everyone() def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__snake_case, __snake_case ) elif PartialState().local_process_index == 0: torch.save(__snake_case, __snake_case ) @contextmanager def lowerCamelCase__ ( **__snake_case ) -> Tuple: """simple docstring""" for key, value in kwargs.items(): _UpperCamelCase = str(__snake_case ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if not hasattr(__snake_case, '''__qualname__''' ) and not hasattr(__snake_case, '''__name__''' ): _UpperCamelCase = getattr(__snake_case, '''__class__''', __snake_case ) if hasattr(__snake_case, '''__qualname__''' ): return obj.__qualname__ if hasattr(__snake_case, '''__name__''' ): return obj.__name__ return str(__snake_case ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(__snake_case, __snake_case ): _UpperCamelCase = destination.setdefault(__snake_case, {} ) merge_dicts(__snake_case, __snake_case ) else: _UpperCamelCase = value return destination def lowerCamelCase__ ( __snake_case = None ) -> bool: """simple docstring""" if port is None: _UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
19
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase_ : def __init__( self , lowercase_ , lowercase_=2 , lowercase_=True , lowercase_=False , lowercase_=10 , lowercase_=3 , lowercase_=32 * 8 , lowercase_=32 * 8 , lowercase_=4 , lowercase_=64 , ) -> Union[str, Any]: a__ =parent a__ =batch_size a__ =is_training a__ =use_auxiliary_loss a__ =num_queries a__ =num_channels a__ =min_size a__ =max_size a__ =num_labels a__ =hidden_dim a__ =hidden_dim def __UpperCamelCase ( self) -> int: a__ =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( lowercase_) a__ =torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_) a__ =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_) > 0.5 ).float() a__ =(torch.rand((self.batch_size, self.num_labels) , device=lowercase_) > 0.5).long() a__ =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCamelCase ( self) -> List[Any]: a__ =MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ =self.num_queries a__ =self.num_labels a__ =[1, 1, 1, 1] a__ =self.num_channels a__ =64 a__ =128 a__ =self.hidden_dim a__ =self.hidden_dim a__ =self.hidden_dim return config def __UpperCamelCase ( self) -> str: a__ , a__ , a__ , a__ , a__ =self.prepare_config_and_inputs() a__ ={'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Union[str, Any]: a__ =output.encoder_hidden_states a__ =output.pixel_decoder_hidden_states a__ =output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowercase_) , config.decoder_layers) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=False) -> Any: with torch.no_grad(): a__ =MaskaFormerModel(config=lowercase_) model.to(lowercase_) model.eval() a__ =model(pixel_values=lowercase_ , pixel_mask=lowercase_) a__ =model(lowercase_ , output_hidden_states=lowercase_) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_) def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Any: a__ =MaskaFormerForUniversalSegmentation(config=lowercase_) model.to(lowercase_) model.eval() def comm_check_on_output(lowercase_): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): a__ =model(pixel_values=lowercase_ , pixel_mask=lowercase_) a__ =model(lowercase_) comm_check_on_output(lowercase_) a__ =model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_) comm_check_on_output(lowercase_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class lowercase_ (lowercase__ , lowercase__ , unittest.TestCase ): snake_case =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () snake_case ={'feature-extraction': MaskaFormerModel} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> Optional[int]: a__ =MaskaFormerModelTester(self) a__ =ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def __UpperCamelCase ( self) -> List[str]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_) def __UpperCamelCase ( self) -> List[str]: a__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowercase_) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def __UpperCamelCase ( self) -> str: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def __UpperCamelCase ( self) -> Tuple: pass @unittest.skip(reason='Mask2Former is not a generative model') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip(reason='Mask2Former does not use token embeddings') def __UpperCamelCase ( self) -> Tuple: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __UpperCamelCase ( self) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> str: pass def __UpperCamelCase ( self) -> Optional[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_) @slow def __UpperCamelCase ( self) -> Any: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ =MaskaFormerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCamelCase ( self) -> Dict: a__ =(self.model_tester.min_size,) * 2 a__ ={ 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_), 'class_labels': torch.zeros(2 , 10 , device=lowercase_).long(), } a__ =self.model_tester.get_config() a__ =MaskaFormerForUniversalSegmentation(lowercase_).to(lowercase_) a__ =model(**lowercase_) self.assertTrue(outputs.loss is not None) def __UpperCamelCase ( self) -> Tuple: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_) def __UpperCamelCase ( self) -> int: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowercase_).to(lowercase_) a__ =model(**lowercase_ , output_attentions=lowercase_) self.assertTrue(outputs.attentions is not None) def __UpperCamelCase ( self) -> Union[str, Any]: if not self.model_tester.is_training: return a__ =self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() a__ =model_class(lowercase_) model.to(lowercase_) model.train() a__ =model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_).loss loss.backward() def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.all_model_classes[1] a__ , a__ , a__ , a__ , a__ =self.model_tester.prepare_config_and_inputs() a__ =True a__ =True a__ =model_class(lowercase_).to(lowercase_) model.train() a__ =model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_) a__ =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _lowerCAmelCase: str = 1e-4 def _lowercase( ): a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowercase_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self) -> Tuple: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __UpperCamelCase ( self) -> Optional[Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def __UpperCamelCase ( self) -> str: a__ =MaskaFormerModel.from_pretrained(self.model_checkpoints).to(lowercase_) a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 384, 384)) with torch.no_grad(): a__ =model(**lowercase_) a__ =torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) a__ =torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) a__ =torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(lowercase_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> Any: a__ =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(lowercase_).eval() a__ =self.default_image_processor a__ =prepare_img() a__ =image_processor(lowercase_ , return_tensors='pt').to(lowercase_) a__ =inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowercase_ , (1, 3, 384, 384)) with torch.no_grad(): a__ =model(**lowercase_) # masks_queries_logits a__ =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) a__ =[ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] a__ =torch.tensor(lowercase_).to(lowercase_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_)) # class_queries_logits a__ =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) a__ =torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(lowercase_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_)) def __UpperCamelCase ( self) -> Optional[Any]: a__ =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(lowercase_).eval() a__ =self.default_image_processor a__ =image_processor( [np.zeros((3, 800, 1333)), np.zeros((3, 800, 1333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='pt' , ) a__ =inputs['pixel_values'].to(lowercase_) a__ =[el.to(lowercase_) for el in inputs['mask_labels']] a__ =[el.to(lowercase_) for el in inputs['class_labels']] with torch.no_grad(): a__ =model(**lowercase_) self.assertTrue(outputs.loss is not None)
20
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline UpperCAmelCase_ : Tuple = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") UpperCAmelCase_ : int = parser.parse_args() UpperCAmelCase_ : Union[str, Any] = "cpu" UpperCAmelCase_ : int = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" UpperCAmelCase_ : Optional[int] = "path-to-your-trained-model" UpperCAmelCase_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: UpperCAmelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) UpperCAmelCase_ : Union[str, Any] = pipe.to(device) # to channels last UpperCAmelCase_ : List[str] = pipe.unet.to(memory_format=torch.channels_last) UpperCAmelCase_ : List[Any] = pipe.vae.to(memory_format=torch.channels_last) UpperCAmelCase_ : List[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: UpperCAmelCase_ : str = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex UpperCAmelCase_ : int = torch.randn(2, 4, 64, 64) UpperCAmelCase_ : str = torch.rand(1) * 999 UpperCAmelCase_ : Optional[Any] = torch.randn(2, 77, 768) UpperCAmelCase_ : Union[str, Any] = (sample, timestep, encoder_hidden_status) try: UpperCAmelCase_ : Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: UpperCAmelCase_ : Any = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) UpperCAmelCase_ : Optional[int] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) UpperCAmelCase_ : Tuple = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: UpperCAmelCase_ : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute UpperCAmelCase_ : List[str] = 666 UpperCAmelCase_ : List[str] = torch.Generator(device).manual_seed(seed) UpperCAmelCase_ : List[str] = {"generator": generator} if args.steps is not None: UpperCAmelCase_ : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): UpperCAmelCase_ : List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
21
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
'''simple docstring''' import math import qiskit def snake_case_ (UpperCamelCase : int = 1 , UpperCamelCase : int = 1 , UpperCamelCase : int = 1 ): '''simple docstring''' if ( isinstance(UpperCamelCase , UpperCamelCase ) or isinstance(UpperCamelCase , UpperCamelCase ) or isinstance(UpperCamelCase , UpperCamelCase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(UpperCamelCase ) != input_a) or (math.floor(UpperCamelCase ) != input_a) or (math.floor(UpperCamelCase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _a = qiskit.QuantumRegister(4 , '''qr''' ) _a = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _a = [input_a, input_a, carry_in] _a = qiskit.QuantumCircuit(UpperCamelCase , UpperCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCamelCase ) # measure the last two qbits _a = qiskit.Aer.get_backend('''aer_simulator''' ) _a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
22
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = False ) -> str: UpperCamelCase_ = scheduler UpperCamelCase_ = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] UpperCamelCase_ = split_batches UpperCamelCase_ = step_with_optimizer UpperCamelCase_ = GradientState() def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCamelCase_ = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: return self.scheduler.get_last_lr() def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.scheduler.state_dict() def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: self.scheduler.load_state_dict(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: return self.scheduler.get_lr() def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
23
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] )-> Optional[Any]: '''simple docstring''' __snake_case = [] for part_id in partition_order: __snake_case = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_lowerCamelCase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Any: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(1_00 ).repartition(1 ) __snake_case = Spark(_lowerCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(10 ).repartition(2 ) __snake_case = [1, 0] __snake_case = _generate_iterable_examples(_lowerCamelCase , _lowerCamelCase ) # Reverse the partitions. __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , _lowerCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __snake_case , __snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> int: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(10 ).repartition(1 ) __snake_case = SparkExamplesIterable(_lowerCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Union[str, Any]: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: __snake_case = lambda _lowerCamelCase : x.reverse() __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [2, 1, 0] ) __snake_case = SparkExamplesIterable(_lowerCamelCase ).shuffle_data_sources(_lowerCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Tuple: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __snake_case = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __snake_case = SparkExamplesIterable(_lowerCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __snake_case = _get_expected_row_ids_and_row_dicts_for_partition_order(_lowerCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(_lowerCamelCase ): __snake_case , __snake_case = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _UpperCamelCase ()-> Optional[int]: '''simple docstring''' __snake_case = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __snake_case = spark.range(1_00 ).repartition(1 ) __snake_case = Spark(_lowerCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
24
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , a : List[Any] , a : List[Any]=13 , a : Union[str, Any]=7 , a : Optional[int]=True , a : Optional[int]=True , a : int=True , a : Any=True , a : Dict=99 , a : Tuple=32 , a : Optional[int]=5 , a : List[Any]=4 , a : Optional[int]=4 , a : List[str]="gelu" , a : Optional[int]=0.0 , a : int=0.1 , a : List[Any]=True , a : Union[str, Any]=512 , a : Tuple=16 , a : Union[str, Any]=2 , a : List[str]=0.02 , a : Any=3 , a : int=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Dict = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_multiple_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : str = weight_tying SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Any = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : List[str] = scope def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Optional[int] = True return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : List[str] , a : Union[str, Any] , a : Optional[Any] , a : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : List[str] , a : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Union[str, Any] , a : Union[str, Any] , a : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int] , a : Tuple , a : Tuple , a : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : str = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , use_cache=a ) SCREAMING_SNAKE_CASE : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , output_hidden_states=a ) SCREAMING_SNAKE_CASE : Any = output_from_no_past["hidden_states"][0] SCREAMING_SNAKE_CASE : Dict = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )["hidden_states"][0] # select random slice SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ =( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE : Dict = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "abeja/gpt-neox-japanese-2.7b" SCREAMING_SNAKE_CASE : Optional[int] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] SCREAMING_SNAKE_CASE : List[Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] SCREAMING_SNAKE_CASE : List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for prompt in prompts: SCREAMING_SNAKE_CASE : str = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE : Any = model.generate(a , max_length=50 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
25
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
'''simple docstring''' from jiwer import compute_measures import datasets __UpperCamelCase = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __UpperCamelCase = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" __UpperCamelCase = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : int=None , __magic_name__ : Dict=None , __magic_name__ : Union[str, Any]=False ) -> str: """simple docstring""" if concatenate_texts: return compute_measures(__magic_name__ , __magic_name__ )["wer"] else: __snake_case : Union[str, Any] = 0 __snake_case : Tuple = 0 for prediction, reference in zip(__magic_name__ , __magic_name__ ): __snake_case : Dict = compute_measures(__magic_name__ , __magic_name__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
26
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Dict = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["ConvNextFeatureExtractor"] __A : Optional[Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
27
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A ): '''simple docstring''' super().__init__() self.register_modules(unet=A, scheduler=A ) @torch.no_grad() def __call__( self, A = 1, A = None, A = 50, A = "pil", A = True, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=A, ) SCREAMING_SNAKE_CASE : Dict = image.to(self.device ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE : List[Any] = self.unet(A, A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step(A, A, A ).prev_sample SCREAMING_SNAKE_CASE : str = (image / 2 + 0.5).clamp(0, 1 ) SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Dict = self.numpy_to_pil(A ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=A ), "This is a local test"
28
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return base * power(lowerCAmelCase__ ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") A_ = int(input("""Enter the base: """).strip()) A_ = int(input("""Enter the exponent: """).strip()) A_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents A_ = 1 / result print(f"{base} to the power of {exponent} is {result}")
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __a( _a ): """simple docstring""" lowerCAmelCase = '''megatron-bert''' def __init__( self ,_SCREAMING_SNAKE_CASE=29_056 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=24 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=4_096 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE="absolute" ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Tuple = type_vocab_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Dict = position_embedding_type UpperCAmelCase_ : int = use_cache
30
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Any=8 ) -> Dict: SCREAMING_SNAKE_CASE_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , _lowerCAmelCase : UNetaDConditionModel , _lowerCAmelCase : DDPMScheduler , _lowerCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): if latents is None: SCREAMING_SNAKE_CASE_ = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE_ = latents.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE_ = torch.device(F"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Any=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE_ = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self : int ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self : Any , _lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 512 , _lowerCAmelCase : int = 100 , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ): SCREAMING_SNAKE_CASE_ = self._execution_device SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = torch.cat(_lowerCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = torch.cat(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE_ = negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps SCREAMING_SNAKE_CASE_ = self.unet.config.in_channels SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = downscale_height_and_width(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE_ = self.unet( sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , )[0] # post-processing SCREAMING_SNAKE_CASE_ = self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
31
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ (unittest.TestCase ): '''simple docstring''' def __init__( self:int , _a:Optional[int] , _a:List[Any]=7 , _a:Union[str, Any]=3 , _a:List[str]=18 , _a:Any=30 , _a:str=4_00 , _a:Optional[Any]=True , _a:List[Any]=None , _a:Optional[Any]=True , ): snake_case__ = size if size is not None else {'''height''': 18, '''width''': 18} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize def SCREAMING_SNAKE_CASE__ ( self:int ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : str = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self:Any ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''clusters''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) snake_case__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_a , obj[key] ) ) else: self.assertEqual(obj[key] , _a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ = os.path.join(_a , '''image_processor.json''' ) image_processor_first.to_json_file(_a ) snake_case__ = self.image_processing_class.from_json_file(_a ).to_dict() snake_case__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_a ) snake_case__ = self.image_processing_class.from_pretrained(_a ).to_dict() snake_case__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _a ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): pass def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) snake_case__ = Image.open(dataset[4]['''file'''] ) snake_case__ = Image.open(dataset[5]['''file'''] ) snake_case__ = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) snake_case__ = prepare_images() # test non-batched snake_case__ = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) snake_case__ = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , _a ) # test batched snake_case__ = image_processing(_a , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) snake_case__ = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _a )
33
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
34
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ) -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def a ( ) -> str: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def a ( ) -> List[str]: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('''https://huggingface.co''' )
35
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=snake_case ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __lowerCamelCase : ClassVar[Features] = Features({'''image''': Image()} ) __lowerCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) __lowerCamelCase : str = "image" __lowerCamelCase : str = "labels" def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] ,SCREAMING_SNAKE_CASE_ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) snake_case : Any = copy.deepcopy(self ) snake_case : List[str] = self.label_schema.copy() snake_case : Union[str, Any] = features[self.label_column] snake_case : List[str] = label_schema return task_template @property def snake_case_ ( self ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
36
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : str = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } UpperCamelCase : Optional[int] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = GPTaTokenizer def __init__( self : Optional[Any] , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : Any="<|endoftext|>" , lowerCamelCase__ : Dict="<|endoftext|>" , lowerCamelCase__ : Tuple="<|endoftext|>" , lowerCamelCase__ : str=False , **lowerCamelCase__ : Any , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : Dict = kwargs.pop("add_bos_token" , lowerCamelCase__ ) a__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Optional[int] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : List[str] = add_prefix_space a__ : Union[str, Any] = pre_tok_class(**lowerCamelCase__ ) a__ : int = add_prefix_space def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): a__ : str = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : Optional[Any] ): a__ : Any = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Any , lowerCamelCase__ : "Conversation" ): a__ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: a__ : Optional[int] = input_ids[-self.model_max_length :] return input_ids
37
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: A_ : str = None try: import msvcrt except ImportError: A_ : Optional[int] = None try: import fcntl except ImportError: A_ : List[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A_ : int = OSError # Data # ------------------------------------------------ A_ : List[str] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] A_ : Optional[Any] = "3.0.12" A_ : int = None def UpperCamelCase__ ( ) -> str: '''simple docstring''' global _logger snake_case__ : Any = _logger or logging.getLogger(__name__ ) return _logger class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = lock_file return None def __str__( self ): snake_case__ : List[str] = f"The file lock '{self.lock_file}' could not be acquired." return temp class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = lock return None def __enter__( self ): return self.lock def __exit__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.lock.release() return None class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Union[str, Any] = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long snake_case__ : Any = self.hash_filename_if_too_long(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # The path to the lock file. snake_case__ : List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. snake_case__ : Any = None # The default timeout value. snake_case__ : List[Any] = timeout # We use this lock primarily for the lock counter. snake_case__ : int = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. snake_case__ : Union[str, Any] = 0 return None @property def __UpperCamelCase ( self ): return self._lock_file @property def __UpperCamelCase ( self ): return self._timeout @timeout.setter def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = float(__SCREAMING_SNAKE_CASE ) return None def __UpperCamelCase ( self ): raise NotImplementedError() def __UpperCamelCase ( self ): raise NotImplementedError() @property def __UpperCamelCase ( self ): return self._lock_file_fd is not None def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: snake_case__ : List[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 snake_case__ : int = id(self ) snake_case__ : int = self._lock_file snake_case__ : Optional[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__SCREAMING_SNAKE_CASE ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: snake_case__ : int = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: snake_case__ : Any = id(self ) snake_case__ : List[str] = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() snake_case__ : Dict = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): self.acquire() return self def __exit__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.release() return None def __del__( self ): self.release(force=__SCREAMING_SNAKE_CASE ) return None def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = os.path.basename(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > max_length and max_length > 0: snake_case__ : Optional[Any] = os.path.dirname(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = str(hash(__SCREAMING_SNAKE_CASE ) ) snake_case__ : str = filename[: max_length - len(__SCREAMING_SNAKE_CASE ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return path class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=None ): from .file_utils import relative_to_absolute_path super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) snake_case__ : str = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: snake_case__ : Dict = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: try: msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: snake_case__ : Any = fd return None def __UpperCamelCase ( self ): snake_case__ : Dict = self._lock_file_fd snake_case__ : Dict = None msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_UNLCK , 1 ) os.close(__SCREAMING_SNAKE_CASE ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=None ): snake_case__ : List[Any] = os.statvfs(os.path.dirname(__SCREAMING_SNAKE_CASE ) ).f_namemax super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = os.O_RDWR | os.O_CREAT | os.O_TRUNC snake_case__ : Dict = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) try: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: snake_case__ : List[str] = fd return None def __UpperCamelCase ( self ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition snake_case__ : List[str] = self._lock_file_fd snake_case__ : int = None fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) os.close(__SCREAMING_SNAKE_CASE ) return None class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: snake_case__ : Union[str, Any] = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: snake_case__ : Optional[int] = fd return None def __UpperCamelCase ( self ): os.close(self._lock_file_fd ) snake_case__ : Tuple = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A_ : Optional[int] = None if msvcrt: A_ : Union[str, Any] = WindowsFileLock elif fcntl: A_ : List[str] = UnixFileLock else: A_ : List[Any] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
38
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , SCREAMING_SNAKE_CASE__ , ) if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): snake_case_ = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case_, snake_case_ = image[0].size snake_case_, snake_case_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 snake_case_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] snake_case_ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) snake_case_ = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 snake_case_ = image.transpose(0 , 3 , 1 , 2 ) snake_case_ = 2.0 * image - 1.0 snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): snake_case_ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): snake_case_ = [mask] if isinstance(mask[0] , PIL.Image.Image ): snake_case_, snake_case_ = mask[0].size snake_case_, snake_case_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case_ = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] snake_case_ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) snake_case_ = mask.astype(np.floataa ) / 255.0 snake_case_ = 0 snake_case_ = 1 snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(mask[0] , torch.Tensor ): snake_case_ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return mask class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : UNetaDModel SCREAMING_SNAKE_CASE : RePaintScheduler def __init__( self : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) ->Tuple: super().__init__() self.register_modules(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , _UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCamelCase : int = 2_5_0 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : int = 1_0 , _UpperCamelCase : int = 1_0 , _UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCamelCase : Optional[str] = "pil" , _UpperCamelCase : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: snake_case_ = image snake_case_ = _preprocess_image(_UpperCamelCase ) snake_case_ = original_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ = _preprocess_mask(_UpperCamelCase ) snake_case_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) snake_case_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = original_image.shape snake_case_ = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.device ) snake_case_ = eta snake_case_ = self.scheduler.timesteps[0] + 1 snake_case_ = generator[0] if isinstance(_UpperCamelCase , _UpperCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual snake_case_ = self.unet(_UpperCamelCase , _UpperCamelCase ).sample # compute previous image: x_t -> x_t-1 snake_case_ = self.scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t snake_case_ = self.scheduler.undo_step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = t snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(_UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCamelCase )
39
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=2, ) -> Any: UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Tuple = image_size UpperCamelCase : List[Any] = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Optional[Any] = scope UpperCamelCase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 UpperCamelCase : str = num_patches + 2 def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Optional[int]: return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : int = DeiTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Optional[int] = DeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : Tuple = DeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = self.type_sequence_label_size UpperCamelCase : Dict = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : str = 1 UpperCamelCase : List[Any] = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = DeiTModelTester(self ) UpperCamelCase : str = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> List[Any]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[str] = [*signature.parameters.keys()] UpperCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: UpperCamelCase : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case_ ( self ) -> str: if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase : Tuple = False UpperCamelCase : int = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase : Dict = problem_type['title'] UpperCamelCase : Optional[int] = problem_type['num_labels'] UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if problem_type["num_labels"] > 1: UpperCamelCase : int = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) UpperCamelCase : Tuple = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as warning_list: UpperCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def snake_case_ ( self ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Tuple = DeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> List[str]: UpperCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[str]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : List[Any] = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : int = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_ ( self ) -> str: UpperCamelCase : str = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224', torch_dtype=torch.floataa, device_map='auto' ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) UpperCamelCase : Optional[int] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )
40
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCAmelCase__ = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' lowerCAmelCase__ = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' lowerCAmelCase__ = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' lowerCAmelCase__ = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' lowerCAmelCase__ = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Tuple ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) ,homepage='''https://github.com/openai/human-eval''' ,codebase_urls=['''https://github.com/openai/human-eval'''] ,reference_urls=['''https://github.com/openai/human-eval'''] ,license=_LICENSE ,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : str ,lowercase__ : Optional[Any] ,lowercase__ : int=[1, 1_0, 1_0_0] ,lowercase__ : Any=4 ,lowercase__ : Union[str, Any]=3.0 ): if os.getenv('''HF_ALLOW_CODE_EVAL''' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=lowercase__ ) as executor: __lowercase = [] __lowercase = Counter() __lowercase = 0 __lowercase = defaultdict(lowercase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowercase__ ,lowercase__ ) ): for candidate in candidates: __lowercase = candidate + '''\n''' + test_case __lowercase = (test_program, timeout, task_id, completion_id[task_id]) __lowercase = executor.submit(lowercase__ ,*lowercase__ ) futures.append(lowercase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowercase__ ): __lowercase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __lowercase , __lowercase = [], [] for result in results.values(): result.sort() __lowercase = [r[1]['''passed'''] for r in result] total.append(len(lowercase__ ) ) correct.append(sum(lowercase__ ) ) __lowercase = np.array(lowercase__ ) __lowercase = np.array(lowercase__ ) __lowercase = k __lowercase = {F"pass@{k}": estimate_pass_at_k(lowercase__ ,lowercase__ ,lowercase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _A ( A__ , A__ , A__ ): """simple docstring""" def estimator(A__ , A__ , A__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A__ , A__ ): __lowercase = itertools.repeat(A__ , len(A__ ) ) else: assert len(A__ ) == len(A__ ) __lowercase = iter(A__ ) return np.array([estimator(int(A__ ) , int(A__ ) , A__ ) for n, c in zip(A__ , A__ )] )
41
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = '' for i in table: res += inp[i - 1] return res def _UpperCamelCase ( __UpperCamelCase ) -> Tuple: return data[1:] + data[0] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = '' for i in range(len(__UpperCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: lowerCamelCase_ = int('0b' + data[0] + data[-1] ,2 ) lowerCamelCase_ = int('0b' + data[1:3] ,2 ) return bin(s[row][col] )[2:] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: lowerCamelCase_ = message[:4] lowerCamelCase_ = message[4:] lowerCamelCase_ = apply_table(__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = xor(__UpperCamelCase ,__UpperCamelCase ) lowerCamelCase_ = apply_sbox(__UpperCamelCase ,temp[:4] ) # noqa: E741 lowerCamelCase_ = apply_sbox(__UpperCamelCase ,temp[4:] ) lowerCamelCase_ = '0' * (2 - len(__UpperCamelCase )) + l # noqa: E741 lowerCamelCase_ = '0' * (2 - len(__UpperCamelCase )) + r lowerCamelCase_ = apply_table(l + r ,__UpperCamelCase ) lowerCamelCase_ = xor(__UpperCamelCase ,__UpperCamelCase ) return temp + right if __name__ == "__main__": A_ = input("Enter 10 bit key: ") A_ = input("Enter 8 bit message: ") A_ = [6, 3, 7, 4, 8, 5, 10, 9] A_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] A_ = [2, 4, 3, 1] A_ = [2, 6, 3, 1, 4, 8, 5, 7] A_ = [4, 1, 3, 5, 7, 2, 8, 6] A_ = [4, 1, 2, 3, 2, 3, 4, 1] A_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] A_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation A_ = apply_table(key, paa_table) A_ = temp[:5] A_ = temp[5:] A_ = left_shift(left) A_ = left_shift(right) A_ = apply_table(left + right, pa_table) A_ = left_shift(left) A_ = left_shift(right) A_ = left_shift(left) A_ = left_shift(right) A_ = apply_table(left + right, pa_table) # encryption A_ = apply_table(message, IP) A_ = function(expansion, sa, sa, keya, temp) A_ = temp[4:] + temp[:4] A_ = function(expansion, sa, sa, keya, temp) A_ = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption A_ = apply_table(CT, IP) A_ = function(expansion, sa, sa, keya, temp) A_ = temp[4:] + temp[:4] A_ = function(expansion, sa, sa, keya, temp) A_ = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
42
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
from math import pi, sqrt, tan def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) lowercase__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) lowercase__ = (sidea + sidea + sidea) / 2 lowercase__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print('\nSurface Areas of various geometric shapes: \n') print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
43
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp UpperCAmelCase_ : List[str] = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : Any = { 'RUCAIBox/mvp': 1024, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['input_ids', 'attention_mask'] lowerCAmelCase_ = MvpTokenizer def __init__( self : Any,__A : Tuple=None,__A : str=None,__A : List[Any]=None,__A : Union[str, Any]="replace",__A : Union[str, Any]="<s>",__A : Optional[int]="</s>",__A : List[str]="</s>",__A : Any="<s>",__A : Dict="<unk>",__A : Union[str, Any]="<pad>",__A : Optional[int]="<mask>",__A : List[str]=False,__A : str=True,**__A : str,): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : Optional[int] = add_prefix_space _lowerCamelCase : List[str] = pre_tok_class(**__A ) _lowerCamelCase : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : Any = "post_processor" _lowerCamelCase : Optional[int] = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : Optional[int] = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : List[str] = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : str = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : Tuple = True if changes_to_apply: _lowerCamelCase : Dict = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Dict = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property def lowerCamelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : List[str] ): _lowerCamelCase : Optional[int] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : Optional[Any] = value def lowerCamelCase_ ( self : List[Any],*__A : Dict,**__A : int ): _lowerCamelCase : Any = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Union[str, Any],*__A : Optional[int],**__A : Dict ): _lowerCamelCase : Any = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : Optional[int] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : int,__A : Optional[Any]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[str],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
44
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
from scipy.stats import spearmanr import datasets UpperCamelCase = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCamelCase = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" UpperCamelCase = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): """simple docstring""" def __a ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def __a ( self :Union[str, Any] , lowerCamelCase__ :str , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str]=False ): UpperCamelCase__ :Any = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants _lowerCAmelCase : List[str] = 300 # TEMPERATURE (unit = K) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
46
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorPipeline __SCREAMING_SNAKE_CASE : int = ['''prompt'''] __SCREAMING_SNAKE_CASE : Tuple = ['''prompt''', '''negative_prompt'''] __SCREAMING_SNAKE_CASE : Any = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] __SCREAMING_SNAKE_CASE : Tuple = False @property def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return 3_2 @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return 3_2 @property def __lowerCAmelCase ( self : str ): '''simple docstring''' return self.time_input_dim @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 1_0_0 @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __lowerCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) __a : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 1_2, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __a : Optional[Any] = PriorTransformer(**SCREAMING_SNAKE_CASE__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a : Tuple = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __a : int = CLIPVisionModelWithProjection(SCREAMING_SNAKE_CASE__ ) return model @property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : Optional[Any] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_2_4 , ) return image_processor def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : Union[str, Any] = self.dummy_prior __a : int = self.dummy_image_encoder __a : Optional[Any] = self.dummy_text_encoder __a : Tuple = self.dummy_tokenizer __a : Dict = self.dummy_image_processor __a : Tuple = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=SCREAMING_SNAKE_CASE__ , clip_sample_range=10.0 , ) __a : Any = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): __a : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: __a : str = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) __a : Tuple = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Union[str, Any] = 'cpu' __a : str = self.get_dummy_components() __a : Optional[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) __a : List[Any] = output.image_embeds __a : Optional[int] = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ , )[0] __a : List[Any] = image[0, -1_0:] __a : Union[str, Any] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __a : Optional[int] = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : str = torch_device == 'cpu' __a : Tuple = True __a : Optional[Any] = False self._test_inference_batch_single_identical( test_max_difference=SCREAMING_SNAKE_CASE__ , relax_max_difference=SCREAMING_SNAKE_CASE__ , test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , ) @skip_mps def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[int] = torch_device == 'cpu' __a : Any = False self._test_attention_slicing_forward_pass( test_max_difference=SCREAMING_SNAKE_CASE__ , test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , )
47
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = ['image_processor', 'tokenizer'] snake_case__ :List[str] = 'BlipImageProcessor' snake_case__ :Any = 'AutoTokenizer' def __init__( self : Any , __magic_name__ : str , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = False super().__init__(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = self.image_processor def __call__( self : Any , __magic_name__ : ImageInput = None , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: lowerCAmelCase__ = self.tokenizer lowerCAmelCase__ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) return text_encoding # add pixel_values lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) if text is not None: lowerCAmelCase__ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) else: lowerCAmelCase__ = None if text_encoding is not None: encoding_image_processor.update(__magic_name__ ) return encoding_image_processor def __SCREAMING_SNAKE_CASE ( self : List[str] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[int] ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , *__magic_name__ : Any , **__magic_name__ : List[Any] ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
48
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = {} __UpperCAmelCase = job['''started_at'''] __UpperCAmelCase = job['''completed_at'''] __UpperCAmelCase = date_parser.parse(snake_case_ ) __UpperCAmelCase = date_parser.parse(snake_case_ ) __UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __UpperCAmelCase = start __UpperCAmelCase = end __UpperCAmelCase = duration_in_min return job_info def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any]=None ): __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __UpperCAmelCase = requests.get(snake_case_ , headers=snake_case_ ).json() __UpperCAmelCase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(snake_case_ ): __UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=snake_case_ ).json() job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _lowercase : Tuple = parser.parse_args() _lowercase : List[str] = get_job_time(args.workflow_run_id) _lowercase : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
49
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase : Dict = logging.get_logger(__name__) class UpperCamelCase__ (enum.Enum ): '''simple docstring''' _UpperCamelCase = 0 _UpperCamelCase = 1 @add_end_docstrings(a ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'generated' def __init__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): super().__init__(*_lowerCAmelCase ,**_lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCamelCase_ ( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): lowerCamelCase__ = {} if truncation is not None: lowerCamelCase__ = truncation lowerCamelCase__ = generate_kwargs lowerCamelCase__ = {} if return_tensors is not None and return_type is None: lowerCamelCase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCamelCase__ = return_type if clean_up_tokenization_spaces is not None: lowerCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCamelCase__ = self.tokenizer.encode(_lowerCAmelCase ,add_special_tokens=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): return True def UpperCamelCase_ ( self ,*_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] ,_lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) lowerCamelCase__ = ([prefix + arg for arg in args[0]],) lowerCamelCase__ = True elif isinstance(args[0] ,_lowerCAmelCase ): lowerCamelCase__ = (prefix + args[0],) lowerCamelCase__ = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowerCamelCase__ = self.tokenizer(*_lowerCAmelCase ,padding=_lowerCAmelCase ,truncation=_lowerCAmelCase ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): lowerCamelCase__ = super().__call__(*_lowerCAmelCase ,**_lowerCAmelCase ) if ( isinstance(args[0] ,_lowerCAmelCase ) and all(isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for el in args[0] ) and all(len(_lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**_lowerCAmelCase ): lowerCamelCase__ = self._parse_and_tokenize(_lowerCAmelCase ,truncation=_lowerCAmelCase ,**_lowerCAmelCase ) return inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,**_lowerCAmelCase ): if self.framework == "pt": lowerCamelCase__ , lowerCamelCase__ = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowerCamelCase__ , lowerCamelCase__ = tf.shape(model_inputs["""input_ids"""] ).numpy() lowerCamelCase__ = generate_kwargs.get("""min_length""" ,self.model.config.min_length ) lowerCamelCase__ = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) self.check_inputs(_lowerCAmelCase ,generate_kwargs["""min_length"""] ,generate_kwargs["""max_length"""] ) lowerCamelCase__ = self.model.generate(**_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = output_ids.shape[0] if self.framework == "pt": lowerCamelCase__ = output_ids.reshape(_lowerCAmelCase ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowerCamelCase__ = tf.reshape(_lowerCAmelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase=ReturnType.TEXT ,_lowerCAmelCase=False ): lowerCamelCase__ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCamelCase__ = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowerCamelCase__ = { F'''{self.return_name}_text''': self.tokenizer.decode( _lowerCAmelCase ,skip_special_tokens=_lowerCAmelCase ,clean_up_tokenization_spaces=_lowerCAmelCase ,) } records.append(_lowerCAmelCase ) return records @add_end_docstrings(a ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'summary' def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return super().__call__(*_lowerCAmelCase ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(a ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'translation' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCamelCase_ ( self ,*_lowerCAmelCase ,_lowerCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE ,_lowerCAmelCase=None ,_lowerCAmelCase=None ): if getattr(self.tokenizer ,"""_build_translation_inputs""" ,_lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *_lowerCAmelCase ,return_tensors=self.framework ,truncation=_lowerCAmelCase ,src_lang=_lowerCAmelCase ,tgt_lang=_lowerCAmelCase ) else: return super()._parse_and_tokenize(*_lowerCAmelCase ,truncation=_lowerCAmelCase ) def UpperCamelCase_ ( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,**_lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = super()._sanitize_parameters(**_lowerCAmelCase ) if src_lang is not None: lowerCamelCase__ = src_lang if tgt_lang is not None: lowerCamelCase__ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCamelCase__ = kwargs.get("""task""" ,self.task ) lowerCamelCase__ = task.split("""_""" ) if task and len(_lowerCAmelCase ) == 4: # translation, XX, to YY lowerCamelCase__ = items[1] lowerCamelCase__ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*_lowerCAmelCase ,**_lowerCAmelCase ): return super().__call__(*_lowerCAmelCase ,**_lowerCAmelCase )
50
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Tuple , *a__ : Dict , **a__ : Optional[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[Any] , *a__ : List[Any] , **a__ : Union[str, Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Union[str, Any] , *a__ : int , **a__ : Optional[int] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Tuple , *a__ : Union[str, Any] , **a__ : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : List[Any] , *a__ : List[str] , **a__ : List[Any] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Dict , *a__ : int , **a__ : str ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Tuple , *a__ : str , **a__ : Optional[int] ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[Any] , *a__ : int , **a__ : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Optional[Any] , *a__ : Union[str, Any] , **a__ : List[str] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[int] , *a__ : Union[str, Any] , **a__ : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Optional[int] , *a__ : str , **a__ : int ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *a__ : Dict , **a__ : List[Any] ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : int , *a__ : List[str] , **a__ : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : int , *a__ : int , **a__ : Any ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCAmelCase__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["torch", "transformers", "onnx"] def __init__( self : Any , *a__ : Tuple , **a__ : int ): requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : int , *a__ : List[Any] , **a__ : str ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __snake_case ( cls : Dict , *a__ : Tuple , **a__ : Tuple ): requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
51
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
"""simple docstring""" from __future__ import annotations def __A ( a_ :list) -> float: if not nums: raise ValueError('''List is empty''') return sum(a_) / len(a_) if __name__ == "__main__": import doctest doctest.testmod()
52
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
import os import time import numpy as np import onnxruntime as ort _snake_case : Dict = '1' _snake_case : str = '0' _snake_case : Optional[Any] = '1' _snake_case : int = ort.SessionOptions() _snake_case : Optional[Any] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') _snake_case : List[Any] = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] _snake_case : Any = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) _snake_case : Tuple = ort.RunOptions() _snake_case : Any = 128 _snake_case : str = 1 _snake_case : Tuple = np.ones((batch, sequence), dtype=np.intaa) _snake_case : int = np.ones((batch, sequence), dtype=np.intaa) _snake_case : List[str] = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') _snake_case : str = time.time() _snake_case : Tuple = 2000 _snake_case : Any = {} for iter in range(max_iters): _snake_case : Tuple = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
53
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int = None , _lowerCAmelCase: int = None ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =pad_token_id UpperCAmelCase_ =max_length UpperCAmelCase_ =vocab UpperCAmelCase_ =merges UpperCAmelCase_ =BytePairTokenizer(_lowerCAmelCase , _lowerCAmelCase , sequence_length=_lowerCAmelCase ) @classmethod def lowerCAmelCase__ ( cls: Union[str, Any] , _lowerCAmelCase: GPTaTokenizer , *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[" ".join(_lowerCAmelCase ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase_ =tokenizer.get_vocab() return cls(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowerCAmelCase__ ( cls: Dict , _lowerCAmelCase: Union[str, os.PathLike] , *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =GPTaTokenizer.from_pretrained(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) return cls.from_tokenizer(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowerCAmelCase__ ( cls: List[str] , _lowerCAmelCase: Optional[int] ) -> List[Any]: '''simple docstring''' return cls(**_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict ) -> int: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int = None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.tf_tokenizer(_lowerCAmelCase ) UpperCAmelCase_ =tf.ones_like(_lowerCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase_ =max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase_ , UpperCAmelCase_ =pad_model_inputs( _lowerCAmelCase , max_seq_length=_lowerCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _a , _a , _a : Union[str, Any] = False, False, False @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) _SCREAMING_SNAKE_CASE : str = field(default="Audio" , init=__lowercase , repr=__lowercase ) def __call__( self : Optional[Any] ) -> Tuple: return self.pa_type def a ( self : int , SCREAMING_SNAKE_CASE_ : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"bytes": None, "path": value} elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __snake_case = BytesIO() sf.write(SCREAMING_SNAKE_CASE_ , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __snake_case = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __snake_case = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 3_2767 __snake_case = BytesIO(bytes() ) sf.write(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) __snake_case , __snake_case = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err __snake_case = xsplitext(SCREAMING_SNAKE_CASE_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: __snake_case = token_per_repo_id or {} __snake_case = path.split('::' )[-1] try: __snake_case = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL )['repo_id'] __snake_case = token_per_repo_id[repo_id] except (ValueError, KeyError): __snake_case = None with xopen(SCREAMING_SNAKE_CASE_ , 'rb' , use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: __snake_case , __snake_case = sf.read(SCREAMING_SNAKE_CASE_ ) else: __snake_case , __snake_case = sf.read(SCREAMING_SNAKE_CASE_ ) __snake_case = array.T if self.mono: __snake_case = librosa.to_mono(SCREAMING_SNAKE_CASE_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: __snake_case = librosa.resample(SCREAMING_SNAKE_CASE_ , orig_sr=SCREAMING_SNAKE_CASE_ , target_sr=self.sampling_rate ) __snake_case = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def a ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): __snake_case = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) __snake_case = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __snake_case = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __snake_case = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): __snake_case = pa.array([Audio().encode_example(SCREAMING_SNAKE_CASE_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __snake_case = storage.field('bytes' ) else: __snake_case = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __snake_case = storage.field('path' ) else: __snake_case = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE_ : int ): with xopen(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: __snake_case = f.read() return bytes_ __snake_case = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __snake_case = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __snake_case = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type )
56
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 16 A_ : Tuple = 32 def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = 1_6 , UpperCAmelCase__ = "bert-base-cased" ) -> Optional[int]: UpperCamelCase_: Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: int = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_: Union[str, Any] = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=UpperCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_: Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(UpperCAmelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. UpperCamelCase_: Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) UpperCamelCase_: List[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: model.eval() UpperCamelCase_: Any = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase_: Dict = model(**UpperCAmelCase__ ) UpperCamelCase_: List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase_ ,UpperCamelCase_: Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase__ ) - 1: UpperCamelCase_: List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase_: Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) UpperCamelCase_: Any = metric.compute() return eval_metric["accuracy"] def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> str: # Initialize accelerator UpperCamelCase_: Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_: int = config['lr'] UpperCamelCase_: List[Any] = int(config['num_epochs'] ) UpperCamelCase_: Dict = int(config['seed'] ) UpperCamelCase_: Optional[Any] = int(config['batch_size'] ) UpperCamelCase_: int = args.model_name_or_path set_seed(UpperCAmelCase__ ) UpperCamelCase_ ,UpperCamelCase_: List[str] = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_: Dict = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) # Instantiate optimizer UpperCamelCase_: List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_: Any = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_: Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: UpperCamelCase_: List[Any] = 1 UpperCamelCase_: List[Any] = (len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_: Union[str, Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase__ , ) else: UpperCamelCase_: Union[str, Any] = DummyScheduler(UpperCAmelCase__ , total_num_steps=UpperCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[int] = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_: Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_: str = 0 UpperCamelCase_: int = evaluate.load('glue' , 'mrpc' ) UpperCamelCase_: int = num_epochs if args.partial_train_epoch is not None: UpperCamelCase_: Union[str, Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase_: Union[str, Any] = args.resume_from_checkpoint.split('epoch_' )[1] UpperCamelCase_: Tuple = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase_: Optional[int] = int(UpperCAmelCase__ ) + 1 UpperCamelCase_: str = evaluation_loop(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) accelerator.print('resumed checkpoint performance:' , UpperCAmelCase__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: UpperCamelCase_: Dict = json.load(UpperCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase_: Any = {} for epoch in range(UpperCAmelCase__ , UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): UpperCamelCase_: str = model(**UpperCAmelCase__ ) UpperCamelCase_: List[str] = outputs.loss UpperCamelCase_: str = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase_: Tuple = F'''epoch_{epoch}''' UpperCamelCase_: Union[str, Any] = os.path.join(args.output_dir , UpperCAmelCase__ ) accelerator.save_state(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = evaluation_loop(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = accuracy UpperCamelCase_: List[str] = lr_scheduler.get_lr()[0] UpperCamelCase_: Optional[Any] = optimizer.param_groups[0]['lr'] UpperCamelCase_: Dict = epoch UpperCamelCase_: Optional[int] = overall_step accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case () -> Optional[Any]: UpperCamelCase_: Optional[int] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase__ , ) parser.add_argument( '--output_dir' , type=UpperCAmelCase__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=UpperCAmelCase__ , default=2 , help='Number of train epochs.' , ) UpperCamelCase_: str = parser.parse_args() UpperCamelCase_: Dict = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
57
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : int = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''data2vec-text''' def __init__( self , _lowercase=3_0_5_2_2 , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) snake_case_ : List[Any] = vocab_size snake_case_ : str = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = hidden_act snake_case_ : str = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Optional[int] = position_embedding_type snake_case_ : List[Any] = use_cache snake_case_ : Tuple = classifier_dropout class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
58
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
59
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase_ = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase_ = { '''RUCAIBox/mvp''': 1_0_2_4, } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = VOCAB_FILES_NAMES lowerCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Tuple = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ : str = MvpTokenizer def __init__(self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> Tuple: '''simple docstring''' super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) snake_case_ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: snake_case_ : Optional[int] = getattr(__magic_name__ , pre_tok_state.pop('''type''' ) ) snake_case_ : Any = add_prefix_space snake_case_ : List[Any] = pre_tok_class(**__magic_name__ ) snake_case_ : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ : Tuple = '''post_processor''' snake_case_ : Optional[Any] = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: snake_case_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : List[str] = tuple(state['''sep'''] ) if "cls" in state: snake_case_ : str = tuple(state['''cls'''] ) snake_case_ : Tuple = False if state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: snake_case_ : int = add_prefix_space snake_case_ : Dict = True if state.get('''trim_offsets''' , __magic_name__ ) != trim_offsets: snake_case_ : Optional[Any] = trim_offsets snake_case_ : str = True if changes_to_apply: snake_case_ : Optional[Any] = getattr(__magic_name__ , state.pop('''type''' ) ) snake_case_ : Optional[int] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowerCamelCase (self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' snake_case_ : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value snake_case_ : Union[str, Any] = value def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: '''simple docstring''' snake_case_ : Any = kwargs.get('''is_split_into_words''' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: '''simple docstring''' snake_case_ : Tuple = kwargs.get('''is_split_into_words''' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ : Optional[int] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__=None ) -> str: '''simple docstring''' snake_case_ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : int = [self.sep_token_id] snake_case_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
60
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _A ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): """simple docstring""" for attribute in key.split("." ): lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCAmelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , lowerCAmelCase_ ) if "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "weight" in name: lowerCAmelCase__ = "weight" elif "bias" in name: lowerCAmelCase__ = "bias" else: lowerCAmelCase__ = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = full_name.split("conv_layers." )[-1] lowerCAmelCase__ = name.split("." ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ = SEWConfig() if is_finetuned: lowerCAmelCase__ = model.wav_encoder.wav_model.cfg else: lowerCAmelCase__ = model.cfg lowerCAmelCase__ = fs_config.conv_bias lowerCAmelCase__ = eval(fs_config.conv_feature_layers ) lowerCAmelCase__ = [x[0] for x in conv_layers] lowerCAmelCase__ = [x[1] for x in conv_layers] lowerCAmelCase__ = [x[2] for x in conv_layers] lowerCAmelCase__ = "gelu" lowerCAmelCase__ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" lowerCAmelCase__ = 0.0 lowerCAmelCase__ = fs_config.activation_fn.name lowerCAmelCase__ = fs_config.encoder_embed_dim lowerCAmelCase__ = 0.02 lowerCAmelCase__ = fs_config.encoder_ffn_embed_dim lowerCAmelCase__ = 1E-5 lowerCAmelCase__ = fs_config.encoder_layerdrop lowerCAmelCase__ = fs_config.encoder_attention_heads lowerCAmelCase__ = fs_config.conv_pos_groups lowerCAmelCase__ = fs_config.conv_pos lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = fs_config.encoder_layers lowerCAmelCase__ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCAmelCase__ = model.cfg lowerCAmelCase__ = fs_config.final_dropout lowerCAmelCase__ = fs_config.layerdrop lowerCAmelCase__ = fs_config.activation_dropout lowerCAmelCase__ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCAmelCase__ = fs_config.attention_dropout lowerCAmelCase__ = fs_config.dropout_input lowerCAmelCase__ = fs_config.dropout lowerCAmelCase__ = fs_config.mask_channel_length lowerCAmelCase__ = fs_config.mask_channel_prob lowerCAmelCase__ = fs_config.mask_length lowerCAmelCase__ = fs_config.mask_prob lowerCAmelCase__ = "Wav2Vec2FeatureExtractor" lowerCAmelCase__ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def _A ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=True ): """simple docstring""" if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCAmelCase__ = SEWConfig.from_pretrained(lowerCAmelCase_ ) else: lowerCAmelCase__ = convert_config(model[0] , lowerCAmelCase_ ) lowerCAmelCase__ = model[0].eval() lowerCAmelCase__ = True if config.feat_extract_norm == "layer" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(lowerCAmelCase_ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , lowerCAmelCase_ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase_ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) lowerCAmelCase__ = SEWForCTC(lowerCAmelCase_ ) else: lowerCAmelCase__ = SEWModel(lowerCAmelCase_ ) feature_extractor.save_pretrained(lowerCAmelCase_ ) recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) hf_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
61
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
snake_case = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} snake_case = ["""a""", """b""", """c""", """d""", """e"""] def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = start # add current to visited visited.append(lowercase ) SCREAMING_SNAKE_CASE : Any = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE : Union[str, Any] = topological_sort(lowercase , lowercase , lowercase ) # if all neighbors visited add current to sort sort.append(lowercase ) # if all vertices haven't been visited select a new one to visit if len(lowercase ) != len(lowercase ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE : List[Any] = topological_sort(lowercase , lowercase , lowercase ) # return sort return sort if __name__ == "__main__": snake_case = topological_sort("""a""", [], []) print(sort)
62
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
63
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase_ : int = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
64
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowercase ( unittest.TestCase ): def __lowercase ( self : Any ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down UpperCAmelCase__ : Optional[int] = mock.Mock() UpperCAmelCase__ : List[Any] = 500 UpperCAmelCase__ : int = {} UpperCAmelCase__ : List[str] = HTTPError UpperCAmelCase__ : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase__ : int = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=A ) as mock_head: UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowercase ( self : int ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down UpperCAmelCase__ : List[str] = mock.Mock() UpperCAmelCase__ : List[str] = 500 UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Any = HTTPError UpperCAmelCase__ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase__ : List[Any] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=A ) as mock_head: UpperCAmelCase__ : List[Any] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : List[str] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase__ : List[str] = tempfile.mktemp() with open(A ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,A ) UpperCAmelCase__ : Any = AlbertTokenizer.from_pretrained(A ) finally: os.remove(A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,A ) UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def __lowercase ( self : List[str] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase__ : Tuple = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class __lowercase ( unittest.TestCase ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = TOKEN HfFolder.save_token(A ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def __lowercase ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : List[Any] = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : List[Any] = BertTokenizer(A ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase__ : List[Any] = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ,repo_id="""test-tokenizer""" ,push_to_hub=A ,use_auth_token=self._token ) UpperCAmelCase__ : str = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def __lowercase ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Dict = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : Union[str, Any] = BertTokenizer(A ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase__ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=A ,use_auth_token=self._token ) UpperCAmelCase__ : List[str] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def __lowercase ( self : str ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Optional[Any] = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : Tuple = CustomTokenizer(A ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer" ,trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : List[str] = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : Dict = BertTokenizerFast.from_pretrained(A ) bert_tokenizer.save_pretrained(A ) UpperCAmelCase__ : Dict = CustomTokenizerFast.from_pretrained(A ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer" ,trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( f"{USER}/test-dynamic-tokenizer" ,use_fast=A ,trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class __lowercase ( unittest.TestCase ): def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase__ : Dict = Trie() UpperCAmelCase__ : Optional[int] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(A ,["""AB""", """C"""] )
65
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , ): _lowercase : List[Any] = parent _lowercase : List[str] = 1_3 _lowercase : str = 7 _lowercase : int = 3_0 _lowercase : Optional[Any] = self.seq_length + self.mem_len _lowercase : List[str] = 1_5 _lowercase : Tuple = True _lowercase : Optional[Any] = True _lowercase : List[Any] = 9_9 _lowercase : int = [1_0, 5_0, 8_0] _lowercase : Tuple = 3_2 _lowercase : Any = 3_2 _lowercase : int = 4 _lowercase : List[str] = 8 _lowercase : Tuple = 1_2_8 _lowercase : int = 2 _lowercase : Optional[Any] = 2 _lowercase : str = None _lowercase : int = 1 _lowercase : Tuple = 0 _lowercase : Dict = 3 _lowercase : Union[str, Any] = self.vocab_size - 1 _lowercase : Optional[Any] = 0.01 def __a ( self ): _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : List[Any] = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __a ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFTransfoXLModel(_lowerCAmelCase ) _lowercase , _lowercase : Union[str, Any] = model(_lowerCAmelCase ).to_tuple() _lowercase : Any = {'input_ids': input_ids_a, 'mems': mems_a} _lowercase , _lowercase : Any = model(_lowerCAmelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = TFTransfoXLLMHeadModel(_lowerCAmelCase ) _lowercase , _lowercase : List[Any] = model(_lowerCAmelCase ).to_tuple() _lowercase : Optional[int] = {'input_ids': input_ids_a, 'labels': lm_labels} _lowercase , _lowercase : Union[str, Any] = model(_lowerCAmelCase ).to_tuple() _lowercase , _lowercase : Dict = model([input_ids_a, mems_a] ).to_tuple() _lowercase : Any = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} _lowercase , _lowercase : Union[str, Any] = model(_lowerCAmelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = TFTransfoXLForSequenceClassification(_lowerCAmelCase ) _lowercase : Dict = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self ): _lowercase : Any = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : str = config_and_inputs _lowercase : List[Any] = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Optional[Any] = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : int = False _UpperCamelCase : Tuple = False _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __a ( self ): _lowercase : Optional[Any] = TFTransfoXLModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , d_embed=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): self.model_tester.set_seed() _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_lowerCAmelCase ) def __a ( self ): self.model_tester.set_seed() _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowercase : int = model_class(_lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowercase : Dict = model.get_output_embeddings() assert isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) _lowercase : List[Any] = model.get_bias() assert name is None else: _lowercase : List[Any] = model.get_output_embeddings() assert x is None _lowercase : int = model.get_bias() assert name is None def __a ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __a ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = TFTransfoXLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def __a ( self ): pass @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def __a ( self ): _lowercase : str = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off _lowercase : Union[str, Any] = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowercase : Optional[int] = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowercase : Union[str, Any] = model.generate(_lowerCAmelCase , max_length=2_0_0 , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _lowerCAmelCase )
66
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case__ :list[int | float] , snake_case__ :int , snake_case__ :int ) -> int | float: if len(snake_case__ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(snake_case__ ) or left < -len(snake_case__ ) or right >= len(snake_case__ ) or right < -len(snake_case__ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] _lowercase = (left + right) >> 1 # the middle _lowercase = find_max(snake_case__ , snake_case__ , snake_case__ ) # find max in range[left, mid] _lowercase = find_max(snake_case__ , mid + 1 , snake_case__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
67
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _A ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase : Tuple = 'bit' lowerCamelCase : List[Any] = ['preactivation', 'bottleneck'] lowerCamelCase : List[Any] = ['SAME', 'VALID'] def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : List[str]=64 , __SCREAMING_SNAKE_CASE : Tuple=[256, 512, 1024, 2048] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE : Optional[Any]="preactivation" , __SCREAMING_SNAKE_CASE : int="relu" , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=32 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[str]: super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __UpperCAmelCase =global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __UpperCAmelCase =num_channels __UpperCAmelCase =embedding_size __UpperCAmelCase =hidden_sizes __UpperCAmelCase =depths __UpperCAmelCase =layer_type __UpperCAmelCase =hidden_act __UpperCAmelCase =global_padding __UpperCAmelCase =num_groups __UpperCAmelCase =drop_path_rate __UpperCAmelCase =embedding_dynamic_padding __UpperCAmelCase =output_stride __UpperCAmelCase =width_factor __UpperCAmelCase =["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __UpperCAmelCase , __UpperCAmelCase =get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
68
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Dict = logging.get_logger(__name__) a : Union[str, Any] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """efficientnet""" def __init__( self : Optional[int] , a_ : int = 3 , a_ : int = 600 , a_ : float = 2.0 , a_ : float = 3.1 , a_ : int = 8 , a_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , a_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , a_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , a_ : List[int] = [] , a_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , a_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , a_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , a_ : float = 0.25 , a_ : str = "swish" , a_ : int = 2_560 , a_ : str = "mean" , a_ : float = 0.02 , a_ : float = 0.001 , a_ : float = 0.99 , a_ : float = 0.5 , a_ : float = 0.2 , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = num_channels __snake_case = image_size __snake_case = width_coefficient __snake_case = depth_coefficient __snake_case = depth_divisor __snake_case = kernel_sizes __snake_case = in_channels __snake_case = out_channels __snake_case = depthwise_padding __snake_case = strides __snake_case = num_block_repeats __snake_case = expand_ratios __snake_case = squeeze_expansion_ratio __snake_case = hidden_act __snake_case = hidden_dim __snake_case = pooling_type __snake_case = initializer_range __snake_case = batch_norm_eps __snake_case = batch_norm_momentum __snake_case = dropout_rate __snake_case = drop_connect_rate __snake_case = sum(a_ ) * 4 class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : str ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : List[str] ): """simple docstring""" return 1e-5
69
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Dict , A_ : int=7 , A_ : Any=3 , A_ : List[str]=30 , A_ : Union[str, Any]=400 , A_ : List[str]=True , A_ : int=None , A_ : Any=True , A_ : str=1 / 255 , A_ : int=True , A_ : List[Any]=[0.5, 0.5, 0.5] , A_ : Union[str, Any]=[0.5, 0.5, 0.5] , A_ : Union[str, Any]=True , ) -> List[str]: """simple docstring""" lowerCamelCase_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_pad def a__ ( self : Tuple ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a__ ( self : Union[str, Any] , A_ : Dict , A_ : Any=False ) -> Union[str, Any]: """simple docstring""" if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(A_ , Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image.size else: lowerCamelCase_ , lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size['shortest_edge'] * h / w ) lowerCamelCase_ = self.size['shortest_edge'] elif w > h: lowerCamelCase_ = self.size['shortest_edge'] lowerCamelCase_ = int(self.size['shortest_edge'] * w / h ) else: lowerCamelCase_ = self.size['shortest_edge'] lowerCamelCase_ = self.size['shortest_edge'] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ , lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(A_ , key=lambda A_ : item[0] )[0] lowerCamelCase_ = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = DetrImageProcessor if is_vision_available() else None def a__ ( self : List[Any] ) -> str: """simple docstring""" lowerCamelCase_ = DetrImageProcessingTester(self ) @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_rescale' ) ) self.assertTrue(hasattr(A_ , 'rescale_factor' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , A_ ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def a__ ( self : Dict ) -> Any: """simple docstring""" pass def a__ ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values lowerCamelCase_ , lowerCamelCase_ = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {'image_id': 39769, 'annotations': target} # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) lowerCamelCase_ = image_processing(images=A_ , annotations=A_ , return_tensors='pt' ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) lowerCamelCase_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) lowerCamelCase_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1E-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) ) @slow def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} lowerCamelCase_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) lowerCamelCase_ = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='pt' ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) lowerCamelCase_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area lowerCamelCase_ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) lowerCamelCase_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1E-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify masks lowerCamelCase_ = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A_ ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
70
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=False ) -> int: """simple docstring""" UpperCAmelCase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCAmelCase_ : int = "segformer.encoder." + key if key.startswith("backbone" ): UpperCAmelCase_ : Tuple = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_ : Optional[int] = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCAmelCase_ : Optional[int] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "norm" in key: UpperCAmelCase_ : List[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_ : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCAmelCase_ : List[str] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "layer_norm1" in key: UpperCAmelCase_ : int = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCAmelCase_ : str = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_ : Optional[int] = key[key.find("block" ) + len("block" )] UpperCAmelCase_ : Any = key.replace(F'''block{idx}''' , F'''block.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if "attn.q" in key: UpperCAmelCase_ : List[str] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCAmelCase_ : int = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCAmelCase_ : int = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCAmelCase_ : List[str] = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCAmelCase_ : Dict = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_ : List[str] = key[key.find("linear_c" ) + len("linear_c" )] UpperCAmelCase_ : List[Any] = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_SCREAMING_SNAKE_CASE )-1}''' ) if key.startswith("head" ): UpperCAmelCase_ : Dict = key.replace("head" , "classifier" ) UpperCAmelCase_ : str = value return new_state_dict def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_ : int = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_ : Optional[int] = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_ : int = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def a__ ( ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = SegformerConfig() UpperCAmelCase_ : Any = False # set attributes based on model_name UpperCAmelCase_ : Optional[Any] = "huggingface/label-files" if "segformer" in model_name: UpperCAmelCase_ : Optional[int] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCAmelCase_ : List[str] = 1_50 UpperCAmelCase_ : List[Any] = "ade20k-id2label.json" UpperCAmelCase_ : str = (1, 1_50, 1_28, 1_28) elif "city" in model_name: UpperCAmelCase_ : Optional[int] = 19 UpperCAmelCase_ : Union[str, Any] = "cityscapes-id2label.json" UpperCAmelCase_ : List[Any] = (1, 19, 1_28, 1_28) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = model_name[4:6] UpperCAmelCase_ : Optional[int] = 10_00 UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : Optional[int] = (1, 10_00) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes UpperCAmelCase_ : Tuple = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ : List[str] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCAmelCase_ : Optional[Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Dict = 2_56 elif size == "b2": UpperCAmelCase_ : Tuple = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Union[str, Any] = 7_68 UpperCAmelCase_ : Union[str, Any] = [3, 4, 6, 3] elif size == "b3": UpperCAmelCase_ : Union[str, Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : int = 7_68 UpperCAmelCase_ : Optional[Any] = [3, 4, 18, 3] elif size == "b4": UpperCAmelCase_ : List[Any] = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : List[Any] = 7_68 UpperCAmelCase_ : Tuple = [3, 8, 27, 3] elif size == "b5": UpperCAmelCase_ : Dict = [64, 1_28, 3_20, 5_12] UpperCAmelCase_ : Optional[int] = 7_68 UpperCAmelCase_ : List[Any] = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) UpperCAmelCase_ : Dict = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_SCREAMING_SNAKE_CASE , align=_SCREAMING_SNAKE_CASE , do_random_crop=_SCREAMING_SNAKE_CASE ) # prepare image UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: UpperCAmelCase_ : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) else: UpperCAmelCase_ : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCAmelCase_ : Union[str, Any] = rename_keys(_SCREAMING_SNAKE_CASE , encoder_only=_SCREAMING_SNAKE_CASE ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict if encoder_only: UpperCAmelCase_ : Any = False UpperCAmelCase_ : Optional[Any] = SegformerForImageClassification(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Any = SegformerForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # forward pass UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCAmelCase_ : Tuple = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCAmelCase_ : Tuple = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCAmelCase_ : List[Any] = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCAmelCase_ : Any = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCAmelCase_ : List[str] = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCAmelCase_ : List[str] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCAmelCase_ : int = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCAmelCase_ : Optional[Any] = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCAmelCase_ : List[Any] = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: UpperCAmelCase_ : Any = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""segformer.b0.512x512.ade.160k""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
71
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Optional[int]="shi-labs/oneformer_demo" ) -> str: '''simple docstring''' with open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) as f: lowercase =json.load(lowercase_ ) lowercase ={} lowercase =[] lowercase =[] for key, info in class_info.items(): lowercase =info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(lowercase_ ) ) lowercase =thing_ids lowercase =class_names return metadata class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=4_00 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=2_55 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ): lowercase =parent lowercase =batch_size lowercase =num_channels lowercase =min_resolution lowercase =max_resolution lowercase =do_resize lowercase ={'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size lowercase =do_normalize lowercase =image_mean lowercase =image_std lowercase =class_info_file lowercase =prepare_metadata(snake_case_ , snake_case_ ) lowercase =num_text lowercase =repo_path # for the post_process_functions lowercase =2 lowercase =10 lowercase =10 lowercase =3 lowercase =4 lowercase =num_labels lowercase =do_reduce_labels lowercase =ignore_index def _A( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _A( self , snake_case_ , snake_case_=False ): if not batched: lowercase =image_inputs[0] if isinstance(snake_case_ , Image.Image ): lowercase , lowercase =image.size else: lowercase , lowercase =image.shape[1], image.shape[2] if w < h: lowercase =int(self.size['''shortest_edge'''] * h / w ) lowercase =self.size['''shortest_edge'''] elif w > h: lowercase =self.size['''shortest_edge'''] lowercase =int(self.size['''shortest_edge'''] * w / h ) else: lowercase =self.size['''shortest_edge'''] lowercase =self.size['''shortest_edge'''] else: lowercase =[] for image in image_inputs: lowercase , lowercase =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase =max(snake_case_ , key=lambda snake_case_ : item[0] )[0] lowercase =max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def _A( self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCamelCase__ = image_processing_class def _A( self ): lowercase =OneFormerImageProcessorTester(self ) @property def _A( self ): return self.image_processing_tester.prepare_image_processor_dict() def _A( self ): lowercase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case_ , '''image_std''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case_ , '''size''' ) ) self.assertTrue(hasattr(snake_case_ , '''ignore_index''' ) ) self.assertTrue(hasattr(snake_case_ , '''class_info_file''' ) ) self.assertTrue(hasattr(snake_case_ , '''num_text''' ) ) self.assertTrue(hasattr(snake_case_ , '''repo_path''' ) ) self.assertTrue(hasattr(snake_case_ , '''metadata''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_reduce_labels''' ) ) def _A( self ): pass def _A( self ): # Initialize image_processor lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase =prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input lowercase =image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowercase , lowercase =self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase =self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) lowercase =image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _A( self ): # Initialize image_processor lowercase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase =prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input lowercase =image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowercase , lowercase =self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase =self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) lowercase =image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _A( self ): # Initialize image_processor lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase =prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input lowercase =image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values lowercase , lowercase =self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase =self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) lowercase =image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _A( self , snake_case_=False , snake_case_=False , snake_case_="np" ): lowercase =self.image_processing_class(**self.image_processor_dict ) # prepare image and target lowercase =self.image_processing_tester.num_labels lowercase =None lowercase =None lowercase =prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: lowercase =num_labels if is_instance_map: lowercase =list(range(snake_case_ ) ) * 2 lowercase =dict(enumerate(snake_case_ ) ) lowercase =[ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": lowercase =[Image.fromarray(snake_case_ ) for annotation in annotations] lowercase =image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , snake_case_ , return_tensors='''pt''' , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def _A( self ): pass def _A( self ): def common(snake_case_=False , snake_case_=None ): lowercase =self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) lowercase =inputs['''mask_labels'''] lowercase =inputs['''class_labels'''] lowercase =inputs['''pixel_values'''] lowercase =inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type='''pil''' ) common(is_instance_map=snake_case_ , segmentation_type='''pil''' ) def _A( self ): lowercase =np.zeros((20, 50) ) lowercase =1 lowercase =1 lowercase =1 lowercase =binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def _A( self ): lowercase =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowercase =self.image_processing_tester.get_fake_oneformer_outputs() lowercase =fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) lowercase =[(1, 4) for i in range(self.image_processing_tester.batch_size )] lowercase =fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def _A( self ): lowercase =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowercase =self.image_processing_tester.get_fake_oneformer_outputs() lowercase =image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , snake_case_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def _A( self ): lowercase =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) lowercase =self.image_processing_tester.get_fake_oneformer_outputs() lowercase =image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , snake_case_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
72
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_UpperCAmelCase , n - 1 , _UpperCAmelCase) * a) % mod else: SCREAMING_SNAKE_CASE = binary_exponentiation(_UpperCAmelCase , n / 2 , _UpperCAmelCase) return (b * b) % mod # a prime number a_ : str = 7_01 a_ : Union[str, Any] = 10_00_00_00_00 a_ : List[str] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
73
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
0
from pathlib import Path import fire from tqdm import tqdm def a__ ( snake_case="ro" , snake_case="en" , snake_case="wmt16" , snake_case=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __SCREAMING_SNAKE_CASE : str = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __SCREAMING_SNAKE_CASE : Dict = datasets.load_dataset(snake_case , snake_case ) if save_dir is None: __SCREAMING_SNAKE_CASE : List[str] = F'''{dataset}-{pair}''' __SCREAMING_SNAKE_CASE : Dict = Path(snake_case ) save_dir.mkdir(exist_ok=snake_case ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __SCREAMING_SNAKE_CASE : Optional[int] = '''val''' if split == '''validation''' else split __SCREAMING_SNAKE_CASE : Union[str, Any] = save_dir.joinpath(F'''{fn}.source''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = save_dir.joinpath(F'''{fn}.target''' ) __SCREAMING_SNAKE_CASE : Dict = src_path.open('''w+''' ) __SCREAMING_SNAKE_CASE : int = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __SCREAMING_SNAKE_CASE : Tuple = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
0
'''simple docstring''' from __future__ import annotations import time UpperCamelCase__ = list[tuple[int, int]] UpperCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int , _A : int , _A : int , _A : int , _A : Node | None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = pos_x UpperCAmelCase__ : Optional[int] = pos_y UpperCAmelCase__ : Optional[int] = (pos_y, pos_x) UpperCAmelCase__ : Optional[Any] = goal_x UpperCAmelCase__ : Tuple = goal_y UpperCAmelCase__ : Union[str, Any] = parent class lowerCamelCase_ : def __init__( self : int , _A : tuple[int, int] , _A : tuple[int, int] ): '''simple docstring''' UpperCAmelCase__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , _A ) UpperCAmelCase__ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , _A ) UpperCAmelCase__ : int = [self.start] UpperCAmelCase__ : List[str] = False def lowercase_ ( self : Optional[Any] ): '''simple docstring''' while self.node_queue: UpperCAmelCase__ : Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase__ : Tuple = True return self.retrace_path(_A ) UpperCAmelCase__ : Dict = self.get_successors(_A ) for node in successors: self.node_queue.append(_A ) if not self.reached: return [self.start.pos] return None def lowercase_ ( self : Optional[int] , _A : Node ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for action in delta: UpperCAmelCase__ : int = parent.pos_x + action[1] UpperCAmelCase__ : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_A , _A , self.target.pos_y , self.target.pos_x , _A ) ) return successors def lowercase_ ( self : Any , _A : Node | None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = node UpperCAmelCase__ : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase__ : Dict = current_node.parent path.reverse() return path class lowerCamelCase_ : def __init__( self : int , _A : Optional[Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = BreadthFirstSearch(_A , _A ) UpperCAmelCase__ : Dict = BreadthFirstSearch(_A , _A ) UpperCAmelCase__ : Union[str, Any] = False def lowercase_ ( self : List[str] ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: UpperCAmelCase__ : Tuple = self.fwd_bfs.node_queue.pop(0 ) UpperCAmelCase__ : Optional[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: UpperCAmelCase__ : Optional[Any] = True return self.retrace_bidirectional_path( _A , _A ) UpperCAmelCase__ : List[str] = current_bwd_node UpperCAmelCase__ : Dict = current_fwd_node UpperCAmelCase__ : str = { self.fwd_bfs: self.fwd_bfs.get_successors(_A ), self.bwd_bfs: self.bwd_bfs.get_successors(_A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowercase_ ( self : Dict , _A : Node , _A : Node ): '''simple docstring''' UpperCAmelCase__ : int = self.fwd_bfs.retrace_path(_A ) UpperCAmelCase__ : str = self.bwd_bfs.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase__ : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCamelCase__ = (0, 0) UpperCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase__ = time.time() UpperCamelCase__ = BreadthFirstSearch(init, goal) UpperCamelCase__ = bfs.search() UpperCamelCase__ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCamelCase__ = time.time() UpperCamelCase__ = BidirectionalBreadthFirstSearch(init, goal) UpperCamelCase__ = bd_bfs.search() UpperCamelCase__ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
75
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
0
"""simple docstring""" a_ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
76
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( __magic_name__ ): @staticmethod @abstractmethod def a_ ( UpperCamelCase_ : ArgumentParser): """simple docstring""" raise NotImplementedError() @abstractmethod def a_ ( self : List[Any]): """simple docstring""" raise NotImplementedError()
77
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
0
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( UpperCamelCase__ ): a__ : int = """MCTCTFeatureExtractor""" a__ : int = """AutoTokenizer""" def __init__(self : Dict , __a : Tuple , __a : Optional[Any] ): super().__init__(__a , __a ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False def __call__(self : Dict , *__a : int , **__a : str ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ = kwargs.pop("audio" , __a ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , __a ) UpperCAmelCase_ = kwargs.pop("text" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: UpperCAmelCase_ = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings["input_ids"] return inputs def _lowercase (self : List[Any] , *__a : List[Any] , **__a : int ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Optional[int] , *__a : str , **__a : List[Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a ) UpperCAmelCase_ = kwargs.pop("input_features" , __a ) UpperCAmelCase_ = kwargs.pop("labels" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(__a , *__a , **__a ) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(__a , **__a ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels["input_ids"] return input_features def _lowercase (self : Optional[int] , *__a : List[Any] , **__a : Tuple ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def _lowercase (self : Any ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
78
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE__ : str = 25_60_47 SCREAMING_SNAKE_CASE__ : Optional[int] = 25_61_45 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = NllbTokenizer __lowerCamelCase = NllbTokenizerFast __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = {} def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Any = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = NllbTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase__ : str = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : str = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Dict = tempfile.mkdtemp() UpperCAmelCase__ : int = tokenizer_r.save_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : Dict = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Tuple = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : str = tokenizer_r.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : Tuple = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) UpperCAmelCase__ : int = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : int = tokenizer_r.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase__ : List[str] = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : int = tokenizer_r.from_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : str = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) @require_torch def __UpperCAmelCase ( self ): if not self.test_seqaseq: return UpperCAmelCase__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. UpperCAmelCase__ : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] UpperCAmelCase__ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: UpperCAmelCase__ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified UpperCAmelCase__ : Optional[Any] = tokenizer.prepare_seqaseq_batch( _lowerCAmelCase , tgt_texts=_lowerCAmelCase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) UpperCAmelCase__ : Tuple = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , _lowerCAmelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : int = [AddedToken("""<special>""" , lstrip=_lowerCAmelCase )] UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : str = tokenizer_r.encode("""Hey this is a <special> token""" ) UpperCAmelCase__ : Optional[Any] = tokenizer_r.encode("""<special>""" , add_special_tokens=_lowerCAmelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase__ : Any = self.tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.encode("""Hey this is a <special> token""" ) UpperCAmelCase__ : Dict = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): __lowerCamelCase = 'facebook/nllb-200-distilled-600M' __lowerCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __lowerCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __lowerCamelCase = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def __UpperCAmelCase ( cls ): UpperCAmelCase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) UpperCAmelCase__ : Union[str, Any] = 1 return cls def __UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 256057 ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) def __UpperCAmelCase ( self ): self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase__ : Union[str, Any] = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on UpperCAmelCase__ : Optional[Any] = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , _lowerCAmelCase ) UpperCAmelCase__ : Any = 10 UpperCAmelCase__ : Dict = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) def __UpperCAmelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [256203, 3] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = NllbTokenizer.from_pretrained(_lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase ) @require_torch def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase__ : Optional[int] = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) UpperCAmelCase__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase__ : List[Any] = targets["""input_ids"""] UpperCAmelCase__ : Dict = shift_tokens_right( _lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { # A, test, EOS, en_XX """input_ids""": [[256047, 70, 7356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256057, } , ) @require_torch def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = True UpperCAmelCase__ : Tuple = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Tuple = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
79
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : int = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = BartphoTokenizer __snake_case :int = False __snake_case :Union[str, Any] = True def _a ( self : List[str] ) -> List[str]: """simple docstring""" super().setUp() __lowercase = ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] __lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __lowercase = {"""unk_token""": """<unk>"""} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""monolingual_vocab_file"""] ) with open(self.monolingual_vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) __lowercase = BartphoTokenizer(_lowerCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : List[str] , **_lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = """This is a là test""" __lowercase = """This is a<unk><unk> test""" return input_text, output_text def _a ( self : int ) -> str: """simple docstring""" __lowercase = BartphoTokenizer(_lowerCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) __lowercase = """This is a là test""" __lowercase = """▁This ▁is ▁a ▁l à ▁t est""".split() __lowercase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase )
80
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0