code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
def UpperCAmelCase ( a_ = 4_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
__A = [0, 1]
__A = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__A = 0
for j in range(len(a_ ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = JukeboxTokenizer
snake_case_ = {
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCamelCase_ ( self : List[str] ):
import torch
__A = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__A = tokenizer(**self.metas )["input_ids"]
# fmt: off
__A = [
torch.tensor([[
0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
torch.tensor([[0, 0, 0, 10_69, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCamelCase_ ( self : List[Any] ):
import torch
__A = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__A = tokenizer(**self.metas )["input_ids"]
# fmt: off
__A = [
torch.tensor([[
0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> list[int]:
"""simple docstring"""
__A = len(a_ )
for i in range(a_ ):
for j in range(i + 1 , a_ ):
if numbers[j] < numbers[i]:
__A , __A = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[Any] = input('Enter numbers separated by a comma:\n').strip()
SCREAMING_SNAKE_CASE :List[Any] = [int(item) for item in user_input.split(',')]
print(exchange_sort(unsorted))
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
SCREAMING_SNAKE_CASE :Optional[int] = logging.getLogger()
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("-f" )
__A = parser.parse_args()
return args.f
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
__A = {}
__A = os.path.join(a_ , "all_results.json" )
if os.path.exists(a_ ):
with open(a_ , "r" ) as f:
__A = json.load(a_ )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
def UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
__A = torch.cuda.is_available() and torch_device == "cuda"
return is_using_cuda and is_apex_available()
SCREAMING_SNAKE_CASE :Dict = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@classmethod
def UpperCamelCase_ ( cls : List[Any] ):
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
__A = tempfile.mkdtemp()
__A = os.path.join(cls.tmpdir ,"default_config.yml" )
write_basic_config(save_location=cls.configPath )
__A = ["accelerate", "launch", "--config_file", cls.configPath]
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] ):
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : Dict ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
'''.split()
if is_cuda_and_apex_available():
testargs.append("--fp16" )
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertGreaterEqual(result["eval_accuracy"] ,0.75 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"glue_no_trainer" ) ) )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
'''.split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertLess(result["perplexity"] ,1_00 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"clm_no_trainer" ) ) )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : int ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertLess(result["perplexity"] ,42 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"mlm_no_trainer" ) ) )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : Optional[int] ):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
__A = 7 if get_gpu_count() > 1 else 2
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertGreaterEqual(result["eval_accuracy"] ,0.75 )
self.assertLess(result["train_loss"] ,0.5 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"ner_no_trainer" ) ) )
@unittest.skip(reason="Fix me @muellerzr" )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : int ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result["eval_f1"] ,28 )
self.assertGreaterEqual(result["eval_exact"] ,28 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"qa_no_trainer" ) ) )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertGreaterEqual(result["eval_accuracy"] ,0.8 )
self.assertTrue(os.path.exists(os.path.join(A ,"swag_no_trainer" ) ) )
@slow
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : str ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertGreaterEqual(result["eval_rouge1"] ,10 )
self.assertGreaterEqual(result["eval_rouge2"] ,2 )
self.assertGreaterEqual(result["eval_rougeL"] ,7 )
self.assertGreaterEqual(result["eval_rougeLsum"] ,7 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"summarization_no_trainer" ) ) )
@slow
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : Any ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertGreaterEqual(result["eval_bleu"] ,30 )
self.assertTrue(os.path.exists(os.path.join(A ,"epoch_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"translation_no_trainer" ) ) )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = logging.StreamHandler(sys.stdout )
logger.addHandler(A )
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
'''.split()
run_command(self._launch_args + testargs )
__A = get_results(A )
self.assertGreaterEqual(result["eval_overall_accuracy"] ,0.10 )
@mock.patch.dict(os.environ ,{"WANDB_MODE": "offline"} )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.get_auto_remove_tmp_dir()
__A = f'''
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
'''.split()
if is_cuda_and_apex_available():
testargs.append("--fp16" )
run_command(self._launch_args + testargs )
__A = get_results(A )
# The base model scores a 25%
self.assertGreaterEqual(result["eval_accuracy"] ,0.6 )
self.assertTrue(os.path.exists(os.path.join(A ,"step_1" ) ) )
self.assertTrue(os.path.exists(os.path.join(A ,"image_classification_no_trainer" ) ) )
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
@abstractmethod
def UpperCamelCase_ ( A : ArgumentParser ):
raise NotImplementedError()
@abstractmethod
def UpperCamelCase_ ( self : int ):
raise NotImplementedError()
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
SCREAMING_SNAKE_CASE :Dict = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
SCREAMING_SNAKE_CASE :int = [{'type': 'code', 'content': INSTALL_CONTENT}]
SCREAMING_SNAKE_CASE :List[str] = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = (CMStochasticIterativeScheduler,)
snake_case_ = 10
def UpperCamelCase_ ( self : str ,**A : List[str] ):
__A = {
"num_train_timesteps": 2_01,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
config.update(**A )
return config
def UpperCamelCase_ ( self : int ):
__A = 10
__A = self.get_scheduler_config()
__A = self.scheduler_classes[0](**A )
scheduler.set_timesteps(A )
__A = scheduler.timesteps[0]
__A = scheduler.timesteps[1]
__A = self.dummy_sample
__A = 0.1 * sample
__A = scheduler.step(A ,A ,A ).prev_sample
__A = scheduler.step(A ,A ,A ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def UpperCamelCase_ ( self : Dict ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=A )
def UpperCamelCase_ ( self : Dict ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=A )
def UpperCamelCase_ ( self : str ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A = 1
scheduler.set_timesteps(A )
__A = scheduler.timesteps
__A = torch.manual_seed(0 )
__A = self.dummy_model()
__A = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(A ):
# 1. scale model input
__A = scheduler.scale_model_input(A ,A )
# 2. predict noise residual
__A = model(A ,A )
# 3. predict previous sample x_t-1
__A = scheduler.step(A ,A ,A ,generator=A ).prev_sample
__A = pred_prev_sample
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 1_92.76_14 ) < 1E-2
assert abs(result_mean.item() - 0.25_10 ) < 1E-3
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A = [1_06, 0]
scheduler.set_timesteps(timesteps=A )
__A = scheduler.timesteps
__A = torch.manual_seed(0 )
__A = self.dummy_model()
__A = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
__A = scheduler.scale_model_input(A ,A )
# 2. predict noise residual
__A = model(A ,A )
# 3. predict previous sample x_t-1
__A = scheduler.step(A ,A ,A ,generator=A ).prev_sample
__A = pred_prev_sample
__A = torch.sum(torch.abs(A ) )
__A = torch.mean(torch.abs(A ) )
assert abs(result_sum.item() - 3_47.63_57 ) < 1E-2
assert abs(result_mean.item() - 0.45_27 ) < 1E-3
def UpperCamelCase_ ( self : Dict ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A = [39, 30, 12, 15, 0]
with self.assertRaises(A ,msg="`timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A = [39, 30, 12, 1, 0]
__A = len(A )
with self.assertRaises(A ,msg="Can only pass one of `num_inference_steps` or `timesteps`." ):
scheduler.set_timesteps(num_inference_steps=A ,timesteps=A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A = [scheduler.config.num_train_timesteps]
with self.assertRaises(
A ,msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" ,):
scheduler.set_timesteps(timesteps=A )
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = abs(a_ )
__A = 0
while n > 0:
res += n % 1_0
n //= 1_0
return res
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = abs(a_ )
return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 )
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(int(a_ ) for c in str(abs(a_ ) ) )
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(a_ , a_ ) -> None:
__A = F'''{func.__name__}({value})'''
__A = timeit(F'''__main__.{call}''' , setup="import __main__" )
print(F'''{call:56} = {func(a_ )} -- {timing:.4f} seconds''' )
for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(a_ , a_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def UpperCAmelCase ( a_ , a_ , a_ , a_ , ) -> list[float]:
"""simple docstring"""
__A , __A = coefficient_matrix.shape
__A , __A = constant_matrix.shape
if rowsa != colsa:
__A = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'''
raise ValueError(a_ )
if colsa != 1:
__A = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}'''
raise ValueError(a_ )
if rowsa != rowsa:
__A = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
F'''received {rowsa}x{colsa} and {rowsa}x{colsa}'''
)
raise ValueError(a_ )
if len(a_ ) != rowsa:
__A = (
"Number of initial values must be equal to number of rows in coefficient "
F'''matrix but received {len(a_ )} and {rowsa}'''
)
raise ValueError(a_ )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
__A = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__A , __A = table.shape
strictly_diagonally_dominant(a_ )
# Iterates the whole matrix for given number of times
for _ in range(a_ ):
__A = []
for row in range(a_ ):
__A = 0
for col in range(a_ ):
if col == row:
__A = table[row][col]
elif col == cols - 1:
__A = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__A = (temp + val) / denom
new_val.append(a_ )
__A = new_val
return [float(a_ ) for i in new_val]
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
__A , __A = table.shape
__A = True
for i in range(0 , a_ ):
__A = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Any ,A : int ):
__A = [[] for _ in range(A )]
__A = size
def __getitem__( self : str ,A : int ):
return iter(self._graph[vertex] )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self._size
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ,A : int ,A : int ):
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(A ,A ) )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : int ):
__A = deque([start_vertex] )
__A = [None] * self.size
__A = 0
while queue:
__A = queue.popleft()
__A = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__A = current_distance + edge.weight
__A = distances[edge.destination_vertex]
if (
isinstance(A ,A )
and new_distance >= dest_vertex_distance
):
continue
__A = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import numpy as np
def UpperCAmelCase ( a_ ) -> np.array:
"""simple docstring"""
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from __future__ import annotations
from typing import Any
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int = 6 ):
__A = None
__A = None
self.create_linked_list(A )
def UpperCamelCase_ ( self : Optional[Any] ,A : int ):
__A = Node()
__A = current_node
__A = current_node
__A = current_node
for _ in range(1 ,A ):
__A = Node()
__A = current_node
__A = previous_node
__A = current_node
__A = self.front
__A = previous_node
def UpperCamelCase_ ( self : Optional[int] ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def UpperCamelCase_ ( self : Optional[int] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def UpperCamelCase_ ( self : Any ,A : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
__A = self.rear.next
if self.rear:
__A = data
def UpperCamelCase_ ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
__A = self.front.data
__A = None
return data
__A = self.front
__A = old_front.next
__A = old_front.data
__A = None
return data
def UpperCamelCase_ ( self : str ):
if self.is_empty():
raise Exception("Empty Queue" )
def UpperCamelCase_ ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("Full Queue" )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Any ):
__A = None
__A = None
__A = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Tuple = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = [
'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMSNModel',
'ViTMSNForImageClassification',
'ViTMSNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Any = {
'Visual-Attention-Network/van-base': (
'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json'
),
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "van"
def __init__( self : int ,A : str=2_24 ,A : int=3 ,A : Optional[Any]=[7, 3, 3, 3] ,A : Tuple=[4, 2, 2, 2] ,A : Union[str, Any]=[64, 1_28, 3_20, 5_12] ,A : Optional[int]=[3, 3, 12, 3] ,A : Optional[int]=[8, 8, 4, 4] ,A : Any="gelu" ,A : Union[str, Any]=0.02 ,A : Union[str, Any]=1E-6 ,A : Dict=1E-2 ,A : str=0.0 ,A : Optional[int]=0.0 ,**A : List[Any] ,):
super().__init__(**A )
__A = image_size
__A = num_channels
__A = patch_sizes
__A = strides
__A = hidden_sizes
__A = depths
__A = mlp_ratios
__A = hidden_act
__A = initializer_range
__A = layer_norm_eps
__A = layer_scale_init_value
__A = drop_path_rate
__A = dropout_rate
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
from maths.prime_factors import prime_factors
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if not isinstance(a_ , a_ ):
__A = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(a_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
return EnvironmentCommand()
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
return EnvironmentCommand(args.accelerate_config_file )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ):
__A = parser.add_parser("env" )
download_parser.set_defaults(func=A )
download_parser.add_argument(
"--accelerate-config_file" ,default=A ,help="The accelerate config file to use for the default values in the launching script." ,)
download_parser.set_defaults(func=A )
def __init__( self : List[str] ,A : str ,*A : str ):
__A = accelerate_config_file
def UpperCamelCase_ ( self : int ):
__A = "not installed"
if is_safetensors_available():
import safetensors
__A = safetensors.__version__
elif importlib.util.find_spec("safetensors" ) is not None:
import safetensors
__A = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
__A = "not installed"
__A = __A = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
__A = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(A ):
__A = load_config_from_file(self._accelerate_config_file ).to_dict()
__A = (
"\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(A ,A )
else f'''\t{accelerate_config}'''
)
__A = "not installed"
__A = "NA"
if is_torch_available():
import torch
__A = torch.__version__
__A = torch.cuda.is_available()
__A = "not installed"
__A = "NA"
if is_tf_available():
import tensorflow as tf
__A = tf.__version__
try:
# deprecated in v2.1
__A = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
__A = bool(tf.config.list_physical_devices("GPU" ) )
__A = "not installed"
__A = "not installed"
__A = "not installed"
__A = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
__A = flax.__version__
__A = jax.__version__
__A = jaxlib.__version__
__A = jax.lib.xla_bridge.get_backend().platform
__A = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f'''{safetensors_version}''',
"Accelerate version": f'''{accelerate_version}''',
"Accelerate config": f'''{accelerate_config_str}''',
"PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''',
"Tensorflow version (GPU?)": f'''{tf_version} ({tf_cuda_available})''',
"Flax version (CPU?/GPU?/TPU?)": f'''{flax_version} ({jax_backend})''',
"Jax version": f'''{jax_version}''',
"JaxLib version": f'''{jaxlib_version}''',
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(A ) )
return info
@staticmethod
def UpperCamelCase_ ( A : Tuple ):
return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
__A = str(bin(a_ ) )[2:] # remove the leading "0b"
__A = str(bin(a_ ) )[2:] # remove the leading "0b"
__A = max(len(a_ ) , len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ) , b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ):
__A = tempfile.mkdtemp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"的",
"价",
"格",
"是",
"15",
"便",
"alex",
"##andra",
",",
"。",
"-",
"t",
"shirt",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
__A = {
"do_resize": True,
"size": {"height": 2_24, "width": 2_24},
"do_center_crop": True,
"crop_size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
"image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
"do_convert_rgb": True,
}
__A = os.path.join(self.tmpdirname ,A )
with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp:
json.dump(A ,A )
def UpperCamelCase_ ( self : Any ,**A : Dict ):
return BertTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Dict ,**A : str ):
return BertTokenizerFast.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,**A : Dict ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Any ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.get_tokenizer()
__A = self.get_rust_tokenizer()
__A = self.get_image_processor()
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
processor_slow.save_pretrained(self.tmpdirname )
__A = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=A )
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
processor_fast.save_pretrained(self.tmpdirname )
__A = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer ,A )
self.assertIsInstance(processor_fast.tokenizer ,A )
self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor ,A )
self.assertIsInstance(processor_fast.image_processor ,A )
def UpperCamelCase_ ( self : List[str] ):
__A = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(cls_token="(CLS)" ,sep_token="(SEP)" )
__A = self.get_image_processor(do_normalize=A )
__A = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname ,cls_token="(CLS)" ,sep_token="(SEP)" ,do_normalize=A )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Any ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
__A = "Alexandra,T-shirt的价格是15便士。"
__A = processor(text=A )
__A = tokenizer(A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
__A = "Alexandra,T-shirt的价格是15便士。"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = ChineseCLIPProcessor(tokenizer=A ,image_processor=A )
__A = "Alexandra,T-shirt的价格是15便士。"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__A = range(3 , int(math.sqrt(a_ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def UpperCAmelCase ( a_ , a_=1 , **a_ ) -> Union[str, Any]:
"""simple docstring"""
__A = factor * value
__A = value
while not is_prime(a_ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **a_ )
return value
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE :str = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n'
def UpperCAmelCase ( a_ , a_ , a_=8 ) -> List[str]:
"""simple docstring"""
__A = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__A = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def UpperCAmelCase ( a_ , a_=5_1_2 , a_=5_1_2 ) -> List[Any]:
"""simple docstring"""
__A = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
__A = np.array(pil_image.convert("RGB" ) )
__A = arr.astype(np.floataa ) / 127.5 - 1
__A = np.transpose(a_ , [2, 0, 1] )
__A = torch.from_numpy(a_ ).unsqueeze(0 )
return image
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict ,A : UNetaDConditionModel ,A : DDPMScheduler ,A : VQModel ,):
super().__init__()
self.register_modules(
unet=A ,scheduler=A ,movq=A ,)
__A = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def UpperCamelCase_ ( self : List[str] ,A : Optional[Any] ,A : Dict ,A : Union[str, Any] ):
# get the original timestep using init_timestep
__A = min(int(num_inference_steps * strength ) ,A )
__A = max(num_inference_steps - init_timestep ,0 )
__A = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ,A : Optional[int] ,A : List[str] ,A : Dict ,A : Union[str, Any] ,A : Tuple ,A : Tuple=None ):
if not isinstance(A ,(torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(A )}''' )
__A = image.to(device=A ,dtype=A )
__A = batch_size * num_images_per_prompt
if image.shape[1] == 4:
__A = image
else:
if isinstance(A ,A ) and len(A ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(A )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
elif isinstance(A ,A ):
__A = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A )
]
__A = torch.cat(A ,dim=0 )
else:
__A = self.movq.encode(A ).latent_dist.sample(A )
__A = self.movq.config.scaling_factor * init_latents
__A = torch.cat([init_latents] ,dim=0 )
__A = init_latents.shape
__A = randn_tensor(A ,generator=A ,device=A ,dtype=A )
# get latents
__A = self.scheduler.add_noise(A ,A ,A )
__A = init_latents
return latents
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
__A = torch.device(f'''cuda:{gpu_id}''' )
__A = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(A ,A )
def UpperCamelCase_ ( self : Dict ,A : List[Any]=0 ):
if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
__A = torch.device(f'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("cpu" ,silence_dtype_warnings=A )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__A = None
for cpu_offloaded_model in [self.unet, self.movq]:
__A , __A = cpu_offload_with_hook(A ,A ,prev_module_hook=A )
# We'll offload the last model manually.
__A = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase_ ( self : Optional[Any] ):
if not hasattr(self.unet ,"_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(A ,"_hf_hook" )
and hasattr(module._hf_hook ,"execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(A )
def __call__( self : Tuple ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,A : Union[torch.FloatTensor, List[torch.FloatTensor]] ,A : int = 5_12 ,A : int = 5_12 ,A : int = 1_00 ,A : float = 4.0 ,A : float = 0.3 ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,):
__A = self._execution_device
__A = guidance_scale > 1.0
if isinstance(A ,A ):
__A = torch.cat(A ,dim=0 )
__A = image_embeds.shape[0]
if isinstance(A ,A ):
__A = torch.cat(A ,dim=0 )
if do_classifier_free_guidance:
__A = image_embeds.repeat_interleave(A ,dim=0 )
__A = negative_image_embeds.repeat_interleave(A ,dim=0 )
__A = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=A )
if not isinstance(A ,A ):
__A = [image]
if not all(isinstance(A ,(PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
f'''Input is in incorrect format: {[type(A ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' )
__A = torch.cat([prepare_image(A ,A ,A ) for i in image] ,dim=0 )
__A = image.to(dtype=image_embeds.dtype ,device=A )
__A = self.movq.encode(A )["latents"]
__A = latents.repeat_interleave(A ,dim=0 )
self.scheduler.set_timesteps(A ,device=A )
__A , __A = self.get_timesteps(A ,A ,A )
__A = timesteps[:1].repeat(batch_size * num_images_per_prompt )
__A , __A = downscale_height_and_width(A ,A ,self.movq_scale_factor )
__A = self.prepare_latents(
A ,A ,A ,A ,image_embeds.dtype ,A ,A )
for i, t in enumerate(self.progress_bar(A ) ):
# expand the latents if we are doing classifier free guidance
__A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__A = {"image_embeds": image_embeds}
__A = self.unet(
sample=A ,timestep=A ,encoder_hidden_states=A ,added_cond_kwargs=A ,return_dict=A ,)[0]
if do_classifier_free_guidance:
__A , __A = noise_pred.split(latents.shape[1] ,dim=1 )
__A , __A = noise_pred.chunk(2 )
__A , __A = variance_pred.chunk(2 )
__A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__A = torch.cat([noise_pred, variance_pred_text] ,dim=1 )
if not (
hasattr(self.scheduler.config ,"variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__A , __A = noise_pred.split(latents.shape[1] ,dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__A = self.scheduler.step(
A ,A ,A ,generator=A ,)[0]
# post-processing
__A = self.movq.decode(A ,force_not_quantize=A )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
__A = image * 0.5 + 0.5
__A = image.clamp(0 ,1 )
__A = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if output_type == "pil":
__A = self.numpy_to_pil(A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A )
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = os.path.join(args.tf_model_dir , "parameters.json" )
__A = json.loads(open(a_ ).read() )
if not params:
raise ValueError(
F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' )
if not args.output.endswith(".pt" ):
__A = args.output + ".pt"
__A = OrderedDict()
with tf.device("/CPU:0" ):
__A = tf.train.load_checkpoint(args.tf_model_dir )
__A = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
__A = reader.get_tensor(a_ ).astype(np.floataa )
if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ):
continue
if key_name.startswith("pasts/" ):
if key_name.startswith("pasts/mlp" ):
__A = int(key_name[9] )
elif key_name.startswith("pasts/out" ):
__A = 8
__A = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
__A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name.startswith("model/moe" ):
__A = int(key_name[9:].split("/" )[0] )
if key_name.endswith("/switch_gating/kernel" ):
__A = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player
__A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name.endswith("/softmlp/kernel" ):
__A = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player
__A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ):
__A = key_name[-9:-7]
for i in range(1_6 ):
__A = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer)
__A = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
__A = torch.tensor(a_ )
elif key_name.startswith("model/mlp" ):
__A = int(key_name[9:].split("/" )[0] )
if key_name.endswith("/p1/kernel" ):
__A = "model.blocks.%d.feed_forward.mlp.wi.weight" % player
__A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name.endswith("/p1/bias" ):
__A = "model.blocks.%d.feed_forward.mlp.wi.bias" % player
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
elif key_name.endswith("/p2/kernel" ):
__A = "model.blocks.%d.feed_forward.mlp.wo.weight" % player
__A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name.endswith("/p2/bias" ):
__A = "model.blocks.%d.feed_forward.mlp.wo.bias" % player
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
elif key_name.startswith("model/ln" ):
__A = int(key_name[8:].split("/" )[0] )
if key_name.endswith("/b" ):
__A = "model.blocks.%d.feed_forward.norm.bias" % player
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
elif key_name.endswith("/g" ):
__A = "model.blocks.%d.feed_forward.norm.weight" % player
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
elif key_name.startswith("model/att" ):
__A = int(key_name[9:].split("/" )[0] )
if key_name.endswith("/qkv/kernel" ):
__A = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
__A = state[:, 0, :, :]
__A = state[:, 1, :, :]
__A = state[:, 2, :, :]
__A = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
__A = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
__A = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
__A = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player
__A = torch.tensor(a_ )
__A = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player
__A = torch.tensor(a_ )
__A = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player
__A = torch.tensor(a_ )
elif key_name.endswith("/o/kernel" ):
__A = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player
__A = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name.startswith("model/an" ):
__A = int(key_name[8:].split("/" )[0] )
if key_name.endswith("/b" ):
__A = "model.blocks.%d.self_attn.norm.bias" % player
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
elif key_name.endswith("/g" ):
__A = "model.blocks.%d.self_attn.norm.weight" % player
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
elif (
key_name.startswith("model/wte" )
or key_name.startswith("model/wpe" )
or key_name.startswith("model/ete" )
):
__A = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[
key_name[-3:]
]
__A = "model.%s.weight" % nlayer
__A = vnp.copy() # same in embedded
__A = torch.tensor(a_ )
if key_name.startswith("model/wte" ):
__A = "lm_head.weight"
__A = vnp.copy() # same in embedded
__A = torch.tensor(a_ )
elif key_name.startswith("model/wob" ):
__A = "final_logits_bias"
__A = vnp.copy() # same in embedded
__A = state.reshape((1, -1) )
__A = torch.tensor(a_ )
elif key_name == "model/dense/kernel":
__A = "model.last_project.weight"
__A = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
__A = torch.tensor(a_ )
elif key_name == "model/dense_1/bias":
__A = "model.last_project.bias"
__A = vnp.copy() # same because it is one dimensional
__A = torch.tensor(a_ )
torch.save(a_ , args.output )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser(
description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model')
parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model')
SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE :str = {
'configuration_swiftformer': [
'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SwiftFormerConfig',
'SwiftFormerOnnxConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'SwiftFormerForImageClassification',
'SwiftFormerModel',
'SwiftFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,A : str = None ,A : uuid.UUID = None ,A : List[Any]=None ,A : str=None ):
if not conversation_id:
__A = uuid.uuida()
if past_user_inputs is None:
__A = []
if generated_responses is None:
__A = []
__A = conversation_id
__A = past_user_inputs
__A = generated_responses
__A = text
def __eq__( self : int ,A : str ):
if not isinstance(A ,A ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCamelCase_ ( self : Tuple ,A : str ,A : bool = False ):
if self.new_user_input:
if overwrite:
logger.warning(
f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
f'''with: "{text}".''' )
__A = text
else:
logger.warning(
f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
__A = text
def UpperCamelCase_ ( self : List[str] ):
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
__A = None
def UpperCamelCase_ ( self : int ,A : str ):
self.generated_responses.append(A )
def UpperCamelCase_ ( self : Dict ):
for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self : Tuple ):
__A = f'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
__A = "user" if is_user else "bot"
output += f'''{name} >> {text} \n'''
return output
@add_end_docstrings(
__SCREAMING_SNAKE_CASE , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[str] ,*A : int ,**A : Any ):
super().__init__(*A ,**A )
if self.tokenizer.pad_token_id is None:
__A = self.tokenizer.eos_token
def UpperCamelCase_ ( self : Dict ,A : Tuple=None ,A : int=None ,A : Union[str, Any]=None ,**A : Dict ):
__A = {}
__A = {}
__A = {}
if min_length_for_response is not None:
__A = min_length_for_response
if minimum_tokens is not None:
__A = minimum_tokens
if "max_length" in generate_kwargs:
__A = generate_kwargs["max_length"]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__A = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(A )
return preprocess_params, forward_params, postprocess_params
def __call__( self : Optional[Any] ,A : Union[Conversation, List[Conversation]] ,A : Tuple=0 ,**A : int ):
__A = super().__call__(A ,num_workers=A ,**A )
if isinstance(A ,A ) and len(A ) == 1:
return outputs[0]
return outputs
def UpperCamelCase_ ( self : Tuple ,A : Conversation ,A : Union[str, Any]=32 ):
if not isinstance(A ,A ):
raise ValueError("ConversationalPipeline, expects Conversation as inputs" )
if conversation.new_user_input is None:
raise ValueError(
f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
"Add user inputs with the conversation's `add_user_input` method" )
if hasattr(self.tokenizer ,"_build_conversation_input_ids" ):
__A = self.tokenizer._build_conversation_input_ids(A )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__A = self._legacy_parse_and_tokenize(A )
if self.framework == "pt":
__A = torch.LongTensor([input_ids] )
elif self.framework == "tf":
__A = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCamelCase_ ( self : Tuple ,A : str ,A : Union[str, Any]=10 ,**A : Union[str, Any] ):
__A = generate_kwargs.get("max_length" ,self.model.config.max_length )
__A = model_inputs["input_ids"].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
__A = max_length - minimum_tokens
__A = model_inputs["input_ids"][:, -trim:]
if "attention_mask" in model_inputs:
__A = model_inputs["attention_mask"][:, -trim:]
__A = model_inputs.pop("conversation" )
__A = max_length
__A = self.model.generate(**A ,**A )
if self.model.config.is_encoder_decoder:
__A = 1
else:
__A = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCamelCase_ ( self : Any ,A : str ,A : Tuple=True ):
__A = model_outputs["output_ids"]
__A = self.tokenizer.decode(
output_ids[0] ,skip_special_tokens=A ,clean_up_tokenization_spaces=A ,)
__A = model_outputs["conversation"]
conversation.mark_processed()
conversation.append_response(A )
return conversation
def UpperCamelCase_ ( self : Any ,A : Conversation ):
__A = self.tokenizer.eos_token_id
__A = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(A ,add_special_tokens=A ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(A ,add_special_tokens=A ) )
if len(A ) > self.tokenizer.model_max_length:
__A = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
from manim import *
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ):
__A = Rectangle(height=0.5 ,width=0.5 )
__A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 )
__A = [mem.copy() for i in range(6 )]
__A = [mem.copy() for i in range(6 )]
__A = VGroup(*A ).arrange(A ,buff=0 )
__A = VGroup(*A ).arrange(A ,buff=0 )
__A = VGroup(A ,A ).arrange(A ,buff=0 )
__A = Text("CPU" ,font_size=24 )
__A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A )
cpu.move_to([-2.5, -0.5, 0] )
self.add(A )
__A = [mem.copy() for i in range(1 )]
__A = VGroup(*A ).arrange(A ,buff=0 )
__A = Text("GPU" ,font_size=24 )
__A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A )
gpu.align_to(A ,A )
gpu.set_x(gpu.get_x() - 1 )
self.add(A )
__A = [mem.copy() for i in range(6 )]
__A = VGroup(*A ).arrange(A ,buff=0 )
__A = Text("Model" ,font_size=24 )
__A = Group(A ,A ).arrange(A ,buff=0.5 ,aligned_edge=A )
model.move_to([3, -1.0, 0] )
self.play(
Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,Create(A ,run_time=1 ) ,)
__A = MarkupText(
f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,)
__A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__A = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,)
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(A ,run_time=2.5 ) ,Write(A ) ,Write(A ) )
self.add(A )
__A = []
__A = []
__A = []
for i, rect in enumerate(A ):
__A = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(A ,opacity=0.7 )
cpu_target.move_to(A )
cpu_target.generate_target()
__A = 0.46 / 4
__A = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=A )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target ,direction=A ,buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=A ,buff=0.0 )
cpu_targs.append(A )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(A ) )
second_animations.append(MoveToTarget(A ,run_time=1.5 ) )
self.play(*A )
self.play(*A )
self.wait()
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : str ,A : List[str]=7 ,A : Optional[Any]=3 ,A : int=18 ,A : Union[str, Any]=30 ,A : Dict=4_00 ,A : int=True ,A : Tuple=None ,A : Optional[int]=True ,A : str=None ,A : Optional[Any]=True ,A : List[str]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,A : Dict=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,A : Tuple=True ,):
__A = size if size is not None else {"height": 2_24, "width": 2_24}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_convert_rgb
def UpperCamelCase_ ( self : str ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def UpperCamelCase_ ( self : str ,A : List[Any]=False ,A : int=False ,A : Optional[int]=False ):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
__A = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
2_55 ,size=(self.num_channels, self.max_resolution, self.max_resolution) ,dtype=np.uinta ) )
else:
__A = []
for i in range(self.batch_size ):
__A , __A = np.random.choice(np.arange(self.min_resolution ,self.max_resolution ) ,2 )
image_inputs.append(np.random.randint(2_55 ,size=(self.num_channels, width, height) ,dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
if torchify:
__A = [torch.from_numpy(A ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = ChineseCLIPImageProcessingTester(self ,do_center_crop=A )
@property
def UpperCamelCase_ ( self : Tuple ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
self.assertTrue(hasattr(A ,"do_convert_rgb" ) )
def UpperCamelCase_ ( self : Dict ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 2_24, "width": 2_24} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
__A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
def UpperCamelCase_ ( self : Dict ):
pass
def UpperCamelCase_ ( self : List[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = self.image_processor_tester.prepare_inputs(equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : Any ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = self.image_processor_tester.prepare_inputs(equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : Any ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = self.image_processor_tester.prepare_inputs(equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = ChineseCLIPImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = ChineseCLIPImageProcessingTester(self ,num_channels=4 ,do_center_crop=A )
__A = 3
@property
def UpperCamelCase_ ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Dict ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
self.assertTrue(hasattr(A ,"do_convert_rgb" ) )
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Union[str, Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = self.image_processor_tester.prepare_inputs(equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
SCREAMING_SNAKE_CASE :Union[str, Any] = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
snake_case_ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "The input training data file (a text file)."} )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def UpperCamelCase_ ( self : Optional[int] ):
if self.train_file is not None:
__A = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__A = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 42
snake_case_ = True
snake_case_ = None
snake_case_ = None
def __call__( self : Optional[Any] ,A : str ):
__A = "label" if "label" in features[0].keys() else "labels"
__A = [feature.pop(A ) for feature in features]
__A = len(A )
__A = len(features[0]["input_ids"] )
__A = [
[{k: v[i] for k, v in feature.items()} for i in range(A )] for feature in features
]
__A = list(chain(*A ) )
__A = self.tokenizer.pad(
A ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" ,)
# Un-flatten
__A = {k: v.view(A ,A ,-1 ) for k, v in batch.items()}
# Add back labels
__A = torch.tensor(A ,dtype=torch.intaa )
return batch
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
__A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__A , __A , __A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag" , a_ , a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__A = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
__A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__A = {}
if data_args.train_file is not None:
__A = data_args.train_file
if data_args.validation_file is not None:
__A = data_args.validation_file
__A = data_args.train_file.split("." )[-1]
__A = load_dataset(
a_ , data_files=a_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
__A = load_dataset(
"swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__A = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__A = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__A = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__A = [F'''ending{i}''' for i in range(4 )]
__A = "sent1"
__A = "sent2"
if data_args.max_seq_length is None:
__A = tokenizer.model_max_length
if max_seq_length > 1_0_2_4:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
__A = 1_0_2_4
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
__A = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_ ):
__A = [[context] * 4 for context in examples[context_name]]
__A = examples[question_header_name]
__A = [
[F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
__A = list(chain(*a_ ) )
__A = list(chain(*a_ ) )
# Tokenize
__A = tokenizer(
a_ , a_ , truncation=a_ , max_length=a_ , padding="max_length" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(a_ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
__A = raw_datasets["train"]
if data_args.max_train_samples is not None:
__A = min(len(a_ ) , data_args.max_train_samples )
__A = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
__A = train_dataset.map(
a_ , batched=a_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
__A = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
__A = min(len(a_ ) , data_args.max_eval_samples )
__A = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
__A = eval_dataset.map(
a_ , batched=a_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
__A = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_ ):
__A , __A = eval_predictions
__A = np.argmax(a_ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__A = Trainer(
model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a_ , data_collator=a_ , compute_metrics=a_ , )
# Training
if training_args.do_train:
__A = None
if training_args.resume_from_checkpoint is not None:
__A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__A = last_checkpoint
__A = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
__A = train_result.metrics
__A = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
__A = min(a_ , len(a_ ) )
trainer.log_metrics("train" , a_ )
trainer.save_metrics("train" , a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__A = trainer.evaluate()
__A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
__A = min(a_ , len(a_ ) )
trainer.log_metrics("eval" , a_ )
trainer.save_metrics("eval" , a_ )
__A = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
from math import factorial
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[str] ,A : Optional[int] ,A : int ):
__A = real
if isinstance(A ,A ):
__A = [1] * rank
else:
__A = rank
def __repr__( self : Tuple ):
return (
f'''{self.real}+'''
f'''{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}'''
)
def UpperCamelCase_ ( self : List[Any] ):
__A = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real ,A )
def __add__( self : Optional[Any] ,A : List[Any] ):
if not isinstance(A ,A ):
return Dual(self.real + other ,self.duals )
__A = self.duals.copy()
__A = other.duals.copy()
if len(A ) > len(A ):
o_dual.extend([1] * (len(A ) - len(A )) )
elif len(A ) < len(A ):
s_dual.extend([1] * (len(A ) - len(A )) )
__A = []
for i in range(len(A ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real ,A )
snake_case_ = __add__
def __sub__( self : int ,A : Dict ):
return self + other * -1
def __mul__( self : List[Any] ,A : List[str] ):
if not isinstance(A ,A ):
__A = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other ,A )
__A = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real ,A )
snake_case_ = __mul__
def __truediv__( self : Tuple ,A : Dict ):
if not isinstance(A ,A ):
__A = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other ,A )
raise ValueError
def __floordiv__( self : List[str] ,A : Tuple ):
if not isinstance(A ,A ):
__A = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other ,A )
raise ValueError
def __pow__( self : Optional[Any] ,A : List[str] ):
if n < 0 or isinstance(A ,A ):
raise ValueError("power must be a positive integer" )
if n == 0:
return 1
if n == 1:
return self
__A = self
for _ in range(n - 1 ):
x *= self
return x
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
if not callable(a_ ):
raise ValueError("differentiate() requires a function as input for func" )
if not isinstance(a_ , (float, int) ):
raise ValueError("differentiate() requires a float as input for position" )
if not isinstance(a_ , a_ ):
raise ValueError("differentiate() requires an int as input for order" )
__A = Dual(a_ , 1 )
__A = func(a_ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
return y**2 * y**4
print(differentiate(f, 9, 2))
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class UpperCAmelCase :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *A : List[Any] ,**A : Tuple ):
pass
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
SCREAMING_SNAKE_CASE :Any = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : List[str] ,A : int ):
__A = pipeline(
"document-question-answering" ,model=A ,tokenizer=A ,image_processor=A )
__A = INVOICE_URL
__A = list(zip(*apply_tesseract(load_image(A ) ,A ,"" ) ) )
__A = "What is the placebo?"
__A = [
{
"image": load_image(A ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : Optional[Any] ):
__A = dqa_pipeline(A ,top_k=2 )
self.assertEqual(
A ,[
[
{"score": ANY(A ), "answer": ANY(A ), "start": ANY(A ), "end": ANY(A )},
{"score": ANY(A ), "answer": ANY(A ), "start": ANY(A ), "end": ANY(A )},
]
]
* 3 ,)
@require_torch
@require_detectrona
@require_pytesseract
def UpperCamelCase_ ( self : Any ):
__A = pipeline("document-question-answering" ,model="hf-internal-testing/tiny-random-layoutlmv2" )
__A = INVOICE_URL
__A = "How many cats are there?"
__A = [
{"score": 0.00_01, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.00_01, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(nested_simplify(A ,decimals=4 ) ,A )
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(nested_simplify(A ,decimals=4 ) ,A )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__A = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(A ,[] )
# We can optionnally pass directly the words and bounding boxes
__A = "./tests/fixtures/tests_samples/COCO/000000039769.png"
__A = []
__A = []
__A = dqa_pipeline(image=A ,question=A ,words=A ,boxes=A ,top_k=2 )
self.assertEqual(A ,[] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = pipeline(
"document-question-answering" ,model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" ,revision="9977165" ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 ,)
@slow
@require_torch
@require_detectrona
@require_pytesseract
def UpperCamelCase_ ( self : Any ):
__A = pipeline(
"document-question-answering" ,model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" ,revision="9977165" ,max_seq_len=50 ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 ,)
@slow
@require_torch
@require_pytesseract
@require_vision
def UpperCamelCase_ ( self : Any ):
__A = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" ,revision="3dc6de3" ,add_prefix_space=A )
__A = pipeline(
"document-question-answering" ,model="impira/layoutlm-document-qa" ,tokenizer=A ,revision="3dc6de3" ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
] ,)
__A = dqa_pipeline({"image": image, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 ,)
__A = list(zip(*apply_tesseract(load_image(A ) ,A ,"" ) ) )
# This model should also work if `image` is set to None
__A = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23},
] ,)
@slow
@require_torch
@require_pytesseract
@require_vision
def UpperCamelCase_ ( self : Optional[Any] ):
__A = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" ,revision="3dc6de3" ,add_prefix_space=A )
__A = pipeline(
"document-question-answering" ,model="impira/layoutlm-document-qa" ,tokenizer=A ,revision="3dc6de3" ,max_seq_len=50 ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16},
] ,)
__A = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[
{"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 ,)
__A = list(zip(*apply_tesseract(load_image(A ) ,A ,"" ) ) )
# This model should also work if `image` is set to None
__A = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
{"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16},
] ,)
@slow
@require_torch
def UpperCamelCase_ ( self : List[str] ):
__A = pipeline(
"document-question-answering" ,model="naver-clova-ix/donut-base-finetuned-docvqa" ,tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) ,feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" ,)
__A = INVOICE_URL
__A = "What is the invoice number?"
__A = dqa_pipeline(image=A ,question=A ,top_k=2 )
self.assertEqual(nested_simplify(A ,decimals=4 ) ,[{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def UpperCamelCase_ ( self : Any ):
pass
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
SCREAMING_SNAKE_CASE :List[Any] = logging.getLogger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "sequence-classification"
def __init__( self : Tuple ,A : List[Any] ):
if type(A ) == dict:
__A = Namespace(**A )
__A = glue_output_modes[hparams.task]
__A = glue_tasks_num_labels[hparams.task]
super().__init__(A ,A ,self.mode )
def UpperCamelCase_ ( self : List[Any] ,**A : Optional[Any] ):
return self.model(**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : Any ):
__A = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__A = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
__A = self(**A )
__A = outputs[0]
__A = self.trainer.lr_schedulers[0]["scheduler"]
__A = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.hparams
__A = processors[args.task]()
__A = processor.get_labels()
for mode in ["train", "dev"]:
__A = self._feature_file(A )
if os.path.exists(A ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" ,A )
else:
logger.info("Creating features from dataset file at %s" ,args.data_dir )
__A = (
processor.get_dev_examples(args.data_dir )
if mode == "dev"
else processor.get_train_examples(args.data_dir )
)
__A = convert_examples_to_features(
A ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,)
logger.info("Saving features into cached file %s" ,A )
torch.save(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : int ,A : bool = False ):
__A = "dev" if mode == "test" else mode
__A = self._feature_file(A )
logger.info("Loading features from cached file %s" ,A )
__A = torch.load(A )
__A = torch.tensor([f.input_ids for f in features] ,dtype=torch.long )
__A = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long )
__A = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
__A = torch.tensor([f.label for f in features] ,dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
__A = torch.tensor([f.label for f in features] ,dtype=torch.float )
return DataLoader(
TensorDataset(A ,A ,A ,A ) ,batch_size=A ,shuffle=A ,)
def UpperCamelCase_ ( self : Optional[Any] ,A : Optional[Any] ,A : int ):
__A = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__A = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None
__A = self(**A )
__A , __A = outputs[:2]
__A = logits.detach().cpu().numpy()
__A = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def UpperCamelCase_ ( self : Optional[Any] ,A : int ):
__A = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item()
__A = np.concatenate([x["pred"] for x in outputs] ,axis=0 )
if self.hparams.glue_output_mode == "classification":
__A = np.argmax(A ,axis=1 )
elif self.hparams.glue_output_mode == "regression":
__A = np.squeeze(A )
__A = np.concatenate([x["target"] for x in outputs] ,axis=0 )
__A = [[] for _ in range(out_label_ids.shape[0] )]
__A = [[] for _ in range(out_label_ids.shape[0] )]
__A = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task ,A ,A )}
__A = dict(results.items() )
__A = results
return ret, preds_list, out_label_list
def UpperCamelCase_ ( self : Any ,A : list ):
__A , __A , __A = self._eval_end(A )
__A = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any] ):
__A , __A , __A = self._eval_end(A )
__A = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def UpperCamelCase_ ( A : Any ,A : List[Any] ):
BaseTransformer.add_model_specific_args(A ,A )
parser.add_argument(
"--max_seq_length" ,default=1_28 ,type=A ,help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) ,)
parser.add_argument(
"--task" ,default="" ,type=A ,required=A ,help="The GLUE task to run" ,)
parser.add_argument(
"--gpus" ,default=0 ,type=A ,help="The number of GPUs allocated for this, it is by default 0 meaning none" ,)
parser.add_argument(
"--overwrite_cache" ,action="store_true" ,help="Overwrite the cached training and evaluation sets" )
return parser
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = argparse.ArgumentParser()
add_generic_args(a_ , os.getcwd() )
__A = GLUETransformer.add_model_specific_args(a_ , os.getcwd() )
__A = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
__A = os.path.join(
"./results" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , )
os.makedirs(args.output_dir )
__A = GLUETransformer(a_ )
__A = generic_train(a_ , a_ )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
__A = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=a_ ) )
__A = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(a_ )
if __name__ == "__main__":
main()
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "microsoft/speecht5_tts"
snake_case_ = (
"This is a tool that reads an English text out loud. It takes an input named `text` which should contain the "
"text to read (in English) and returns a waveform object containing the sound."
)
snake_case_ = "text_reader"
snake_case_ = SpeechTaProcessor
snake_case_ = SpeechTaForTextToSpeech
snake_case_ = SpeechTaHifiGan
snake_case_ = ["text"]
snake_case_ = ["audio"]
def UpperCamelCase_ ( self : Any ):
if self.post_processor is None:
__A = "microsoft/speecht5_hifigan"
super().setup()
def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any] ,A : Union[str, Any]=None ):
__A = self.pre_processor(text=A ,return_tensors="pt" ,truncation=A )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError("Datasets needs to be installed if not passing speaker embeddings." )
__A = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" )
__A = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def UpperCamelCase_ ( self : List[str] ,A : Any ):
with torch.no_grad():
return self.model.generate_speech(**A )
def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ):
with torch.no_grad():
return self.post_processor(A ).cpu().detach()
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = []
__A = set({"(", "[", "{"} )
__A = set({")", "]", "}"} )
__A = {"{": "}", "[": "]", "(": ")"}
for i in range(len(a_ ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(a_ ) == 0 or (len(a_ ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(a_ ) == 0
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = input("Enter sequence of brackets: " )
if is_balanced(a_ ):
print(a_ , "is balanced" )
else:
print(a_ , "is not balanced" )
if __name__ == "__main__":
main()
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def UpperCAmelCase ( a_ , a_ , a_=1_0_2_4 , a_=1_0_2_4 , a_=False , **a_ ) -> Union[str, Any]:
"""simple docstring"""
__A = AutoTokenizer.from_pretrained(a_ )
__A = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path="train" , **a_ )
__A = tok.pad_token_id
def get_lens(a_ ):
__A = tqdm(
DataLoader(a_ , batch_size=5_1_2 , num_workers=8 , shuffle=a_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
__A = []
for batch in dl:
__A = batch["input_ids"].ne(a_ ).sum(1 ).tolist()
__A = batch["labels"].ne(a_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(a_ , a_ ):
max_lens.append(max(a_ , a_ ) )
else:
max_lens.extend(a_ )
return max_lens
__A = get_lens(a_ )
__A = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path="val" , **a_ )
__A = get_lens(a_ )
pickle_save(a_ , train_ds.len_file )
pickle_save(a_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, TaEncoderModel
from diffusers import DDPMScheduler, UNetaDConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
class UpperCAmelCase :
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
torch.manual_seed(0 )
__A = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__A = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__A = UNetaDConditionModel(
sample_size=32 ,layers_per_block=1 ,block_out_channels=[32, 64] ,down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] ,mid_block_type="UNetMidBlock2DSimpleCrossAttn" ,up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] ,in_channels=3 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="text" ,addition_embed_type_num_heads=2 ,cross_attention_norm="group_norm" ,resnet_time_scale_shift="scale_shift" ,act_fn="gelu" ,)
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__A = DDPMScheduler(
num_train_timesteps=10_00 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=A ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="epsilon" ,variance_type="learned_range" ,)
torch.manual_seed(0 )
__A = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
__A = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__A = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" )
torch.manual_seed(0 )
__A = UNetaDConditionModel(
sample_size=32 ,layers_per_block=[1, 2] ,block_out_channels=[32, 64] ,down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
] ,mid_block_type="UNetMidBlock2DSimpleCrossAttn" ,up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] ,in_channels=6 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type="text" ,addition_embed_type_num_heads=2 ,cross_attention_norm="group_norm" ,resnet_time_scale_shift="scale_shift" ,act_fn="gelu" ,class_embed_type="timestep" ,mid_block_scale_factor=1.4_14 ,time_embedding_act_fn="gelu" ,time_embedding_dim=32 ,)
unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
torch.manual_seed(0 )
__A = DDPMScheduler(
num_train_timesteps=10_00 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,thresholding=A ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type="epsilon" ,variance_type="learned_range" ,)
torch.manual_seed(0 )
__A = DDPMScheduler(
num_train_timesteps=10_00 ,beta_schedule="squaredcos_cap_v2" ,beta_start=0.00_01 ,beta_end=0.02 ,)
torch.manual_seed(0 )
__A = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def UpperCamelCase_ ( self : List[str] ):
__A = self.get_dummy_components()
__A = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__A = self.get_dummy_inputs(A )
__A = inputs["prompt"]
__A = inputs["generator"]
__A = inputs["num_inference_steps"]
__A = inputs["output_type"]
if "image" in inputs:
__A = inputs["image"]
else:
__A = None
if "mask_image" in inputs:
__A = inputs["mask_image"]
else:
__A = None
if "original_image" in inputs:
__A = inputs["original_image"]
else:
__A = None
__A , __A = pipe.encode_prompt(A )
# inputs with prompt converted to embeddings
__A = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__A = image
if mask_image is not None:
__A = mask_image
if original_image is not None:
__A = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(A ,A ,A )
__A = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
__A = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(A ,A ) is None ,f'''`{optional_component}` did not stay set to None after loading.''' ,)
__A = self.get_dummy_inputs(A )
__A = inputs["generator"]
__A = inputs["num_inference_steps"]
__A = inputs["output_type"]
# inputs with prompt converted to embeddings
__A = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
__A = image
if mask_image is not None:
__A = mask_image
if original_image is not None:
__A = original_image
__A = pipe_loaded(**A )[0]
__A = np.abs(to_np(A ) - to_np(A ) ).max()
self.assertLess(A ,1E-4 )
def UpperCamelCase_ ( self : Any ):
__A = self.get_dummy_components()
__A = self.pipeline_class(**A )
pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__A = self.get_dummy_inputs(A )
__A = pipe(**A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(A )
__A = self.pipeline_class.from_pretrained(A )
pipe_loaded.to(A )
pipe_loaded.set_progress_bar_config(disable=A )
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests
__A = self.get_dummy_inputs(A )
__A = pipe_loaded(**A )[0]
__A = np.abs(to_np(A ) - to_np(A ) ).max()
self.assertLess(A ,1E-4 )
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[Any] ,A : AutoencoderKL ,A : CLIPTextModel ,A : CLIPTokenizer ,A : UNetaDConditionModel ,A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,A : StableDiffusionSafetyChecker ,A : CLIPImageProcessor ,):
super().__init__()
self.register_modules(
vae=A ,text_encoder=A ,tokenizer=A ,unet=A ,scheduler=A ,safety_checker=A ,feature_extractor=A ,)
def UpperCamelCase_ ( self : Tuple ,A : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
__A = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(A )
def UpperCamelCase_ ( self : Tuple ):
self.enable_attention_slicing(A )
@torch.no_grad()
def __call__( self : Dict ,A : Union[str, List[str]] ,A : int = 5_12 ,A : int = 5_12 ,A : int = 50 ,A : float = 7.5 ,A : Optional[Union[str, List[str]]] = None ,A : Optional[int] = 1 ,A : float = 0.0 ,A : Optional[torch.Generator] = None ,A : Optional[torch.FloatTensor] = None ,A : Optional[str] = "pil" ,A : bool = True ,A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,A : int = 1 ,A : Optional[torch.FloatTensor] = None ,**A : Optional[Any] ,):
if isinstance(A ,A ):
__A = 1
elif isinstance(A ,A ):
__A = len(A )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(A )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(A ,A ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(A )}.''' )
# get prompt text embeddings
__A = self.tokenizer(
A ,padding="max_length" ,max_length=self.tokenizer.model_max_length ,return_tensors="pt" ,)
__A = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
__A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
__A = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
__A = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
__A , __A , __A = text_embeddings.shape
__A = text_embeddings.repeat(1 ,A ,1 )
__A = text_embeddings.view(bs_embed * num_images_per_prompt ,A ,-1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
__A = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
__A = 42
if negative_prompt is None:
__A = [""]
elif type(A ) is not type(A ):
raise TypeError(
f'''`negative_prompt` should be the same type to `prompt`, but got {type(A )} !='''
f''' {type(A )}.''' )
elif isinstance(A ,A ):
__A = [negative_prompt]
elif batch_size != len(A ):
raise ValueError(
f'''`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:'''
f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
" the batch size of `prompt`." )
else:
__A = negative_prompt
__A = text_input_ids.shape[-1]
__A = self.tokenizer(
A ,padding="max_length" ,max_length=A ,truncation=A ,return_tensors="pt" ,)
__A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__A = uncond_embeddings.shape[1]
__A = uncond_embeddings.repeat(A ,A ,1 )
__A = uncond_embeddings.view(batch_size * num_images_per_prompt ,A ,-1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__A = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
__A = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
__A = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
__A = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
__A = torch.randn(
A ,generator=A ,device="cpu" ,dtype=A ).to(self.device )
__A = torch.randn(A ,generator=A ,device="cpu" ,dtype=A ).to(
self.device )
else:
__A = torch.randn(
A ,generator=A ,device=self.device ,dtype=A )
__A = torch.randn(A ,generator=A ,device=self.device ,dtype=A )
else:
if latents_reference.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
__A = latents_reference.to(self.device )
__A = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
__A = (latents_shape[3] - latents_shape_reference[3]) // 2
__A = (latents_shape[2] - latents_shape_reference[2]) // 2
__A = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
__A = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
__A = 0 if dx < 0 else dx
__A = 0 if dy < 0 else dy
__A = max(-dx ,0 )
__A = max(-dy ,0 )
# import pdb
# pdb.set_trace()
__A = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(A )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
__A = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
__A = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__A = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__A = {}
if accepts_eta:
__A = eta
for i, t in enumerate(self.progress_bar(A ) ):
# expand the latents if we are doing classifier free guidance
__A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__A = self.scheduler.scale_model_input(A ,A )
# predict the noise residual
__A = self.unet(A ,A ,encoder_hidden_states=A ).sample
# perform guidance
if do_classifier_free_guidance:
__A , __A = noise_pred.chunk(2 )
__A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
__A = self.scheduler.step(A ,A ,A ,**A ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(A ,A ,A )
__A = 1 / 0.1_82_15 * latents
__A = self.vae.decode(A ).sample
__A = (image / 2 + 0.5).clamp(0 ,1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__A = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy()
if self.safety_checker is not None:
__A = self.feature_extractor(self.numpy_to_pil(A ) ,return_tensors="pt" ).to(
self.device )
__A , __A = self.safety_checker(
images=A ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
__A = None
if output_type == "pil":
__A = self.numpy_to_pil(A )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=A ,nsfw_content_detected=A )
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
SCREAMING_SNAKE_CASE :Tuple = 16
SCREAMING_SNAKE_CASE :List[str] = 32
def UpperCAmelCase ( a_ , a_ = 1_6 ) -> Union[str, Any]:
"""simple docstring"""
__A = AutoTokenizer.from_pretrained("bert-base-cased" )
__A = load_dataset("glue" , "mrpc" )
def tokenize_function(a_ ):
# max_length=None => use the model max length (it's actually the default)
__A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__A = datasets.map(
a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__A = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(a_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__A = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__A = 1_6
elif accelerator.mixed_precision != "no":
__A = 8
else:
__A = None
return tokenizer.pad(
a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , )
# Instantiate dataloaders.
__A = DataLoader(
tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
__A = DataLoader(
tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
SCREAMING_SNAKE_CASE :str = mocked_dataloaders # noqa: F811
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1":
__A = 2
# Initialize accelerator
__A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__A = config["lr"]
__A = int(config["num_epochs"] )
__A = int(config["seed"] )
__A = int(config["batch_size"] )
__A = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
__A = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__A = batch_size // MAX_GPU_BATCH_SIZE
__A = MAX_GPU_BATCH_SIZE
set_seed(a_ )
__A , __A = get_dataloaders(a_ , a_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__A = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__A = model.to(accelerator.device )
# Instantiate optimizer
__A = AdamW(params=model.parameters() , lr=a_ )
# Instantiate scheduler
__A = get_linear_schedule_with_warmup(
optimizer=a_ , num_warmup_steps=1_0_0 , num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__A , __A , __A , __A , __A = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ )
# Now we train the model
for epoch in range(a_ ):
model.train()
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__A = model(**a_ )
__A = outputs.loss
__A = loss / gradient_accumulation_steps
accelerator.backward(a_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
__A = 0
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__A = model(**a_ )
__A = outputs.logits.argmax(dim=-1 )
__A , __A = accelerator.gather((predictions, batch["labels"]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(a_ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
__A = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__A = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=a_ , references=a_ , )
__A = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , a_ )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
__A = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
__A = parser.parse_args()
__A = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6}
training_function(a_ , a_ )
if __name__ == "__main__":
main()
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
return 1.0 / (1.0 + np.exp(-_outputs ))
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = np.max(_outputs , axis=-1 , keepdims=a_ )
__A = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "sigmoid"
snake_case_ = "softmax"
snake_case_ = "none"
@add_end_docstrings(
__SCREAMING_SNAKE_CASE , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = False
snake_case_ = ClassificationFunction.NONE
def __init__( self : Dict ,**A : Optional[int] ):
super().__init__(**A )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def UpperCamelCase_ ( self : Any ,A : Optional[int]=None ,A : str=None ,A : Dict="" ,**A : str ):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
__A = tokenizer_kwargs
__A = {}
if hasattr(self.model.config ,"return_all_scores" ) and return_all_scores is None:
__A = self.model.config.return_all_scores
if isinstance(A ,A ) or top_k is None:
__A = top_k
__A = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." ,A ,)
if return_all_scores:
__A = None
else:
__A = 1
if isinstance(A ,A ):
__A = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
__A = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self : List[str] ,*A : Optional[Any] ,**A : Tuple ):
__A = super().__call__(*A ,**A )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
__A = "top_k" not in kwargs
if isinstance(args[0] ,A ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def UpperCamelCase_ ( self : Tuple ,A : Any ,**A : List[str] ):
__A = self.framework
if isinstance(A ,A ):
return self.tokenizer(**A ,return_tensors=A ,**A )
elif isinstance(A ,A ) and len(A ) == 1 and isinstance(inputs[0] ,A ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] ,text_pair=inputs[0][1] ,return_tensors=A ,**A )
elif isinstance(A ,A ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(A ,return_tensors=A ,**A )
def UpperCamelCase_ ( self : List[Any] ,A : str ):
return self.model(**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ,A : Tuple=None ,A : List[Any]=1 ,A : List[str]=True ):
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
__A = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
__A = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config ,"function_to_apply" ) and function_to_apply is None:
__A = self.model.config.function_to_apply
else:
__A = ClassificationFunction.NONE
__A = model_outputs["logits"][0]
__A = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
__A = sigmoid(A )
elif function_to_apply == ClassificationFunction.SOFTMAX:
__A = softmax(A )
elif function_to_apply == ClassificationFunction.NONE:
__A = outputs
else:
raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
__A = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(A )
]
if not _legacy:
dict_scores.sort(key=lambda A : x["score"] ,reverse=A )
if top_k is not None:
__A = dict_scores[:top_k]
return dict_scores
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Tuple = {
'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "nllb-moe"
snake_case_ = ["past_key_values"]
snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Tuple ,A : Dict=12_81_12 ,A : Optional[Any]=10_24 ,A : List[Any]=12 ,A : Union[str, Any]=40_96 ,A : Dict=16 ,A : Optional[int]=12 ,A : Optional[int]=40_96 ,A : Optional[int]=16 ,A : List[Any]=0.05 ,A : List[Any]=0.05 ,A : Union[str, Any]=True ,A : Union[str, Any]=True ,A : Union[str, Any]="relu" ,A : Tuple=10_24 ,A : List[str]=0.1 ,A : Any=0.1 ,A : Tuple=0.0 ,A : Union[str, Any]=0.02 ,A : str=2 ,A : Any=True ,A : Dict=False ,A : int="float32" ,A : int=False ,A : Tuple=1_28 ,A : str=64 ,A : List[str]=4 ,A : Optional[Any]=4 ,A : Tuple=0.0_01 ,A : int=0.0_01 ,A : List[Any]="all" ,A : int=False ,A : str=False ,A : Optional[int]=1.0 ,A : str=0.2 ,A : Any=1 ,A : Optional[int]=0 ,A : List[str]=2 ,A : Union[str, Any]=False ,**A : Tuple ,):
__A = vocab_size
__A = max_position_embeddings
__A = d_model
__A = encoder_ffn_dim
__A = encoder_layers
__A = encoder_attention_heads
__A = decoder_ffn_dim
__A = decoder_layers
__A = decoder_attention_heads
__A = dropout
__A = attention_dropout
__A = activation_dropout
__A = activation_function
__A = init_std
__A = encoder_layerdrop
__A = decoder_layerdrop
__A = use_cache
__A = encoder_layers
__A = scale_embedding # scale factor will be sqrt(d_model) if True
__A = router_z_loss_coef
__A = router_aux_loss_coef
__A = decoder_sparse_step
__A = encoder_sparse_step
__A = num_experts
__A = expert_capacity
__A = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' )
__A = router_dtype
__A = router_ignore_padding_tokens
__A = batch_prioritized_routing
__A = second_expert_policy
__A = normalize_router_prob_before_dropping
__A = moe_eval_capacity_token_fraction
__A = moe_token_dropout
__A = output_router_logits
super().__init__(
pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,is_encoder_decoder=A ,decoder_start_token_id=A ,**A ,)
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import copy
import re
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = "hp"
snake_case_ = {}
snake_case_ = None
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] ,A : List[str] ,A : List[str] ):
__A = prefix
__A = defaults
cls.build_naming_info()
@staticmethod
def UpperCamelCase_ ( A : str ,A : Optional[int] ):
if len(A ) == 0:
return ""
__A = None
if any(char.isdigit() for char in word ):
raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 ,len(A ) + 1 ):
__A = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
__A = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(A : Union[str, Any] ):
__A = ""
while integer != 0:
__A = chr(ord("A" ) + integer % 10 ) + s
integer //= 10
return s
__A = 0
while True:
__A = word + "#" + int_to_alphabetic(A )
if sword in info["reverse_short_word"]:
continue
else:
__A = sword
break
__A = short_word
__A = word
return short_word
@staticmethod
def UpperCamelCase_ ( A : Tuple ,A : str ):
__A = param_name.split("_" )
__A = [TrialShortNamer.shortname_for_word(A ,A ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
__A = ["", "_"]
for separator in separators:
__A = separator.join(A )
if shortname not in info["reverse_short_param"]:
__A = shortname
__A = param_name
return shortname
return param_name
@staticmethod
def UpperCamelCase_ ( A : Union[str, Any] ,A : List[Any] ):
__A = TrialShortNamer.shortname_for_key(A ,A )
__A = short_name
__A = param_name
@classmethod
def UpperCamelCase_ ( cls : List[Any] ):
if cls.NAMING_INFO is not None:
return
__A = {
"short_word": {},
"reverse_short_word": {},
"short_param": {},
"reverse_short_param": {},
}
__A = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(A ,A )
__A = info
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] ,A : int ):
cls.build_naming_info()
assert cls.PREFIX is not None
__A = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
__A = cls.NAMING_INFO["short_param"][k]
if isinstance(A ,A ):
__A = 1 if v else 0
__A = "" if isinstance(A ,(int, float) ) else "-"
__A = f'''{key}{sep}{v}'''
name.append(A )
return "_".join(A )
@classmethod
def UpperCamelCase_ ( cls : List[str] ,A : Tuple ):
__A = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
__A = []
else:
__A = repr.split("_" )
__A = {}
for value in values:
if "-" in value:
__A , __A = value.split("-" )
else:
__A = re.sub("[0-9.]" ,"" ,A )
__A = float(re.sub("[^0-9.]" ,"" ,A ) )
__A = cls.NAMING_INFO["reverse_short_param"][p_k]
__A = p_v
for k in cls.DEFAULTS:
if k not in parameters:
__A = cls.DEFAULTS[k]
return parameters
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
set_seed(770)
SCREAMING_SNAKE_CASE :Any = {
'c_attn': 'att_proj',
'c_proj': 'out_proj',
'c_fc': 'in_proj',
'transformer.': '',
'h.': 'layers.',
'ln_1': 'layernorm_1',
'ln_2': 'layernorm_2',
'ln_f': 'layernorm_final',
'wpe': 'position_embeds_layer',
'wte': 'input_embeds_layer',
}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'text_small': {
'repo_id': 'suno/bark',
'file_name': 'text.pt',
},
'coarse_small': {
'repo_id': 'suno/bark',
'file_name': 'coarse.pt',
},
'fine_small': {
'repo_id': 'suno/bark',
'file_name': 'fine.pt',
},
'text': {
'repo_id': 'suno/bark',
'file_name': 'text_2.pt',
},
'coarse': {
'repo_id': 'suno/bark',
'file_name': 'coarse_2.pt',
},
'fine': {
'repo_id': 'suno/bark',
'file_name': 'fine_2.pt',
},
}
SCREAMING_SNAKE_CASE :List[str] = os.path.dirname(os.path.abspath(__file__))
SCREAMING_SNAKE_CASE :Optional[int] = os.path.join(os.path.expanduser('~'), '.cache')
SCREAMING_SNAKE_CASE :Any = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0')
def UpperCAmelCase ( a_ , a_=False ) -> Optional[Any]:
"""simple docstring"""
__A = model_type
if use_small:
key += "_small"
return os.path.join(a_ , REMOTE_MODEL_PATHS[key]["file_name"] )
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
os.makedirs(a_ , exist_ok=a_ )
hf_hub_download(repo_id=a_ , filename=a_ , local_dir=a_ )
def UpperCAmelCase ( a_ , a_ , a_=False , a_="text" ) -> List[Any]:
"""simple docstring"""
if model_type == "text":
__A = BarkSemanticModel
__A = BarkSemanticConfig
__A = BarkSemanticGenerationConfig
elif model_type == "coarse":
__A = BarkCoarseModel
__A = BarkCoarseConfig
__A = BarkCoarseGenerationConfig
elif model_type == "fine":
__A = BarkFineModel
__A = BarkFineConfig
__A = BarkFineGenerationConfig
else:
raise NotImplementedError()
__A = F'''{model_type}_small''' if use_small else model_type
__A = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(a_ ):
logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info["repo_id"] , model_info["file_name"] )
__A = torch.load(a_ , map_location=a_ )
# this is a hack
__A = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
__A = model_args["vocab_size"]
__A = model_args["vocab_size"]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
__A = model_args.pop("n_head" )
__A = model_args.pop("n_embd" )
__A = model_args.pop("n_layer" )
__A = ConfigClass(**checkpoint["model_args"] )
__A = ModelClass(config=a_ )
__A = GenerationConfigClass()
__A = model_generation_config
__A = checkpoint["model"]
# fixup checkpoint
__A = "_orig_mod."
for k, v in list(state_dict.items() ):
if k.startswith(a_ ):
# replace part of the key with corresponding layer name in HF implementation
__A = k[len(a_ ) :]
for old_layer_name in new_layer_name_dict:
__A = new_k.replace(a_ , new_layer_name_dict[old_layer_name] )
__A = state_dict.pop(a_ )
__A = set(state_dict.keys() ) - set(model.state_dict().keys() )
__A = {k for k in extra_keys if not k.endswith(".attn.bias" )}
__A = set(model.state_dict().keys() ) - set(state_dict.keys() )
__A = {k for k in missing_keys if not k.endswith(".attn.bias" )}
if len(a_ ) != 0:
raise ValueError(F'''extra keys found: {extra_keys}''' )
if len(a_ ) != 0:
raise ValueError(F'''missing keys: {missing_keys}''' )
model.load_state_dict(a_ , strict=a_ )
__A = model.num_parameters(exclude_embeddings=a_ )
__A = checkpoint["best_val_loss"].item()
logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(a_ , 3 )} loss''' )
model.eval()
model.to(a_ )
del checkpoint, state_dict
return model
def UpperCAmelCase ( a_ , a_=False , a_="text" ) -> List[Any]:
"""simple docstring"""
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
__A = "cpu" # do conversion on cpu
__A = _get_ckpt_path(a_ , use_small=a_ )
__A = _load_model(a_ , a_ , model_type=a_ , use_small=a_ )
# load bark initial model
__A = _bark_load_model(a_ , "cpu" , model_type=a_ , use_small=a_ )
if model_type == "text":
__A = bark_model["model"]
if model.num_parameters(exclude_embeddings=a_ ) != bark_model.get_num_params():
raise ValueError("initial and new models don't have the same number of parameters" )
# check if same output as the bark model
__A = 5
__A = 1_0
if model_type in ["text", "coarse"]:
__A = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int )
__A = bark_model(a_ )[0]
__A = model(a_ )
# take last logits
__A = output_new_model_total.logits[:, [-1], :]
else:
__A = 3
__A = 8
__A = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
__A = model(a_ , a_ )
__A = bark_model(a_ , a_ )
__A = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("initial and new outputs don't have the same shape" )
if (output_new_model - output_old_model).abs().max().item() > 1E-3:
raise ValueError("initial and new outputs are not equal" )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , ) -> Union[str, Any]:
"""simple docstring"""
__A = os.path.join(a_ , a_ )
__A = BarkSemanticConfig.from_pretrained(os.path.join(a_ , "config.json" ) )
__A = BarkCoarseConfig.from_pretrained(os.path.join(a_ , "config.json" ) )
__A = BarkFineConfig.from_pretrained(os.path.join(a_ , "config.json" ) )
__A = EncodecConfig.from_pretrained("facebook/encodec_24khz" )
__A = BarkSemanticModel.from_pretrained(a_ )
__A = BarkCoarseModel.from_pretrained(a_ )
__A = BarkFineModel.from_pretrained(a_ )
__A = EncodecModel.from_pretrained("facebook/encodec_24khz" )
__A = BarkConfig.from_sub_model_configs(
a_ , a_ , a_ , a_ )
__A = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
__A = BarkModel(a_ )
__A = semantic
__A = coarseAcoustic
__A = fineAcoustic
__A = codec
__A = bark_generation_config
Path(a_ ).mkdir(exist_ok=a_ )
bark.save_pretrained(a_ , repo_id=a_ , push_to_hub=a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('model_type', type=str, help='text, coarse or fine.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.')
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase ( a_ , a_ , a_ ) -> Any:
"""simple docstring"""
def get_masked_lm_array(a_ ):
__A = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
def get_encoder_array(a_ ):
__A = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
def get_encoder_layer_array(a_ , a_ ):
__A = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
def get_encoder_attention_layer_array(a_ , a_ , a_ ):
__A = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
__A = tf.train.load_variable(a_ , a_ )
__A = array.reshape(a_ )
if "kernel" in name:
__A = array.transpose()
return torch.from_numpy(a_ )
print(F'''Loading model based on config from {config_path}...''' )
__A = BertConfig.from_json_file(a_ )
__A = BertForMaskedLM(a_ )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__A = model.bert.encoder.layer[layer_index]
# Self-attention
__A = layer.attention.self
__A = get_encoder_attention_layer_array(
a_ , "_query_dense/kernel" , self_attn.query.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_query_dense/bias" , self_attn.query.bias.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_key_dense/kernel" , self_attn.key.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_key_dense/bias" , self_attn.key.bias.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_value_dense/kernel" , self_attn.value.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
__A = layer.attention.output
__A = get_encoder_attention_layer_array(
a_ , "_output_dense/kernel" , self_output.dense.weight.data.shape )
__A = get_encoder_attention_layer_array(
a_ , "_output_dense/bias" , self_output.dense.bias.data.shape )
__A = get_encoder_layer_array(a_ , "_attention_layer_norm/gamma" )
__A = get_encoder_layer_array(a_ , "_attention_layer_norm/beta" )
# Intermediate
__A = layer.intermediate
__A = get_encoder_layer_array(a_ , "_intermediate_dense/kernel" )
__A = get_encoder_layer_array(a_ , "_intermediate_dense/bias" )
# Output
__A = layer.output
__A = get_encoder_layer_array(a_ , "_output_dense/kernel" )
__A = get_encoder_layer_array(a_ , "_output_dense/bias" )
__A = get_encoder_layer_array(a_ , "_output_layer_norm/gamma" )
__A = get_encoder_layer_array(a_ , "_output_layer_norm/beta" )
# Embeddings
__A = get_encoder_array("_position_embedding_layer/embeddings" )
__A = get_encoder_array("_type_embedding_layer/embeddings" )
__A = get_encoder_array("_embedding_norm_layer/gamma" )
__A = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
__A = model.cls.predictions.transform
__A = get_masked_lm_array("dense/kernel" )
__A = get_masked_lm_array("dense/bias" )
__A = get_masked_lm_array("layer_norm/gamma" )
__A = get_masked_lm_array("layer_norm/beta" )
__A = get_masked_lm_array("embedding_table" )
# Pooling
__A = BertPooler(config=a_ )
__A = get_encoder_array("_pooler_layer/kernel" )
__A = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(a_ )
# Integration test - should load without any errors ;)
__A = BertForMaskedLM.from_pretrained(a_ )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser()
parser.add_argument(
'--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.'
)
parser.add_argument(
'--bert_config_file',
type=str,
required=True,
help='The config json file corresponding to the BERT model. This specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path',
type=str,
required=True,
help='Path to the output PyTorch model.',
)
SCREAMING_SNAKE_CASE :Tuple = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :int = {
'configuration_mobilebert': [
'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'MobileBertConfig',
'MobileBertOnnxConfig',
],
'tokenization_mobilebert': ['MobileBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = ['MobileBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Union[str, Any] = [
'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileBertForMaskedLM',
'MobileBertForMultipleChoice',
'MobileBertForNextSentencePrediction',
'MobileBertForPreTraining',
'MobileBertForQuestionAnswering',
'MobileBertForSequenceClassification',
'MobileBertForTokenClassification',
'MobileBertLayer',
'MobileBertModel',
'MobileBertPreTrainedModel',
'load_tf_weights_in_mobilebert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = [
'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileBertForMaskedLM',
'TFMobileBertForMultipleChoice',
'TFMobileBertForNextSentencePrediction',
'TFMobileBertForPreTraining',
'TFMobileBertForQuestionAnswering',
'TFMobileBertForSequenceClassification',
'TFMobileBertForTokenClassification',
'TFMobileBertMainLayer',
'TFMobileBertModel',
'TFMobileBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
def UpperCAmelCase ( a_ = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
__A = int(a_ )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
__A = 2
__A = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
__A = i
while n % i == 0:
__A = n // i
i += 1
return int(a_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
__A = tempfile.mkdtemp()
__A = SamImageProcessor()
__A = SamProcessor(A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Any ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Any ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
@require_torch
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = [torch.ones((1, 3, 5, 5) )]
__A = [[17_64, 26_46]]
__A = [[6_83, 10_24]]
__A = processor.post_process_masks(A ,A ,A )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = processor.post_process_masks(
A ,torch.tensor(A ) ,torch.tensor(A ) )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
# should also work with np
__A = [np.ones((1, 3, 5, 5) )]
__A = processor.post_process_masks(A ,np.array(A ) ,np.array(A ) )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = [[1, 0], [0, 1]]
with self.assertRaises(A ):
__A = processor.post_process_masks(A ,np.array(A ) ,np.array(A ) )
@require_vision
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = SamImageProcessor()
__A = SamProcessor(A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Tuple ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : int ):
__A = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
@require_tf
def UpperCamelCase_ ( self : Dict ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = [tf.ones((1, 3, 5, 5) )]
__A = [[17_64, 26_46]]
__A = [[6_83, 10_24]]
__A = processor.post_process_masks(A ,A ,A ,return_tensors="tf" )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = processor.post_process_masks(
A ,tf.convert_to_tensor(A ) ,tf.convert_to_tensor(A ) ,return_tensors="tf" ,)
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
# should also work with np
__A = [np.ones((1, 3, 5, 5) )]
__A = processor.post_process_masks(
A ,np.array(A ) ,np.array(A ) ,return_tensors="tf" )
self.assertEqual(masks[0].shape ,(1, 3, 17_64, 26_46) )
__A = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__A = processor.post_process_masks(
A ,np.array(A ) ,np.array(A ) ,return_tensors="tf" )
@require_vision
@require_torchvision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int] ):
__A = tempfile.mkdtemp()
__A = SamImageProcessor()
__A = SamProcessor(A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : str ,**A : str ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Optional[Any] ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = np.random.randint(0 ,2 ,size=(1, 3, 5, 5) ).astype(np.floataa )
__A = [tf.convert_to_tensor(A )]
__A = [torch.tensor(A )]
__A = [[17_64, 26_46]]
__A = [[6_83, 10_24]]
__A = processor.post_process_masks(
A ,A ,A ,return_tensors="tf" )
__A = processor.post_process_masks(
A ,A ,A ,return_tensors="pt" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def UpperCamelCase_ ( self : List[str] ):
__A = self.get_image_processor()
__A = SamProcessor(image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="pt" )["pixel_values"].numpy()
__A = processor(images=A ,return_tensors="pt" )["pixel_values"].numpy()
__A = image_processor(A ,return_tensors="tf" )["pixel_values"].numpy()
__A = processor(images=A ,return_tensors="tf" )["pixel_values"].numpy()
self.assertTrue(np.allclose(A ,A ) )
self.assertTrue(np.allclose(A ,A ) )
self.assertTrue(np.allclose(A ,A ) )
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
import numpy as np
SCREAMING_SNAKE_CASE :Union[str, Any] = [
['a', 'b', 'c', 'd', 'e'],
['f', 'g', 'h', 'i', 'k'],
['l', 'm', 'n', 'o', 'p'],
['q', 'r', 's', 't', 'u'],
['v', 'w', 'x', 'y', 'z'],
]
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ):
__A = np.array(A )
def UpperCamelCase_ ( self : str ,A : str ):
__A , __A = np.where(letter == self.SQUARE )
__A = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : int ):
__A = self.SQUARE[indexa - 1, indexa - 1]
return letter
def UpperCamelCase_ ( self : str ,A : str ):
__A = message.lower()
__A = message.replace(" " ,"" )
__A = message.replace("j" ,"i" )
__A = np.empty((2, len(A )) )
for letter_index in range(len(A ) ):
__A = self.letter_to_numbers(message[letter_index] )
__A = numbers[0]
__A = numbers[1]
__A = first_step.reshape(2 * len(A ) )
__A = ""
for numbers_index in range(len(A ) ):
__A = int(second_step[numbers_index * 2] )
__A = int(second_step[(numbers_index * 2) + 1] )
__A = self.numbers_to_letter(A ,A )
__A = encoded_message + letter
return encoded_message
def UpperCamelCase_ ( self : List[str] ,A : str ):
__A = message.lower()
message.replace(" " ,"" )
__A = np.empty(2 * len(A ) )
for letter_index in range(len(A ) ):
__A = self.letter_to_numbers(message[letter_index] )
__A = numbers[0]
__A = numbers[1]
__A = first_step.reshape((2, len(A )) )
__A = ""
for numbers_index in range(len(A ) ):
__A = int(second_step[0, numbers_index] )
__A = int(second_step[1, numbers_index] )
__A = self.numbers_to_letter(A ,A )
__A = decoded_message + letter
return decoded_message
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
import csv
import tweepy
# Twitter API credentials
SCREAMING_SNAKE_CASE :List[str] = ''
SCREAMING_SNAKE_CASE :List[str] = ''
SCREAMING_SNAKE_CASE :Tuple = ''
SCREAMING_SNAKE_CASE :List[str] = ''
def UpperCAmelCase ( a_ ) -> None:
"""simple docstring"""
__A = tweepy.OAuthHandler(a_ , a_ )
auth.set_access_token(a_ , a_ )
__A = tweepy.API(a_ )
# initialize a list to hold all the tweepy Tweets
__A = []
# make initial request for most recent tweets (200 is the maximum allowed count)
__A = api.user_timeline(screen_name=a_ , count=2_0_0 )
# save most recent tweets
alltweets.extend(a_ )
# save the id of the oldest tweet less one
__A = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(a_ ) > 0:
print(F'''getting tweets before {oldest}''' )
# all subsequent requests use the max_id param to prevent duplicates
__A = api.user_timeline(
screen_name=a_ , count=2_0_0 , max_id=a_ )
# save most recent tweets
alltweets.extend(a_ )
# update the id of the oldest tweet less one
__A = alltweets[-1].id - 1
print(F'''...{len(a_ )} tweets downloaded so far''' )
# transform the tweepy tweets into a 2D array that will populate the csv
__A = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f:
__A = csv.writer(a_ )
writer.writerow(["id", "created_at", "text"] )
writer.writerows(a_ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('FirePing32')
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :List[Any] = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = ['XGLMTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = ['XGLMTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Tuple = [
'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'XGLMForCausalLM',
'XGLMModel',
'XGLMPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Dict = [
'FlaxXGLMForCausalLM',
'FlaxXGLMModel',
'FlaxXGLMPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXGLMForCausalLM',
'TFXGLMModel',
'TFXGLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :str = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
SCREAMING_SNAKE_CASE :Optional[Any] = 'scheduler_config.json'
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 1
snake_case_ = 2
snake_case_ = 3
snake_case_ = 4
snake_case_ = 5
snake_case_ = 6
snake_case_ = 7
snake_case_ = 8
snake_case_ = 9
snake_case_ = 10
snake_case_ = 11
snake_case_ = 12
snake_case_ = 13
snake_case_ = 14
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = SCHEDULER_CONFIG_NAME
snake_case_ = []
snake_case_ = True
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] ,A : Dict[str, Any] = None ,A : Optional[str] = None ,A : str=False ,**A : List[Any] ,):
__A , __A , __A = cls.load_config(
pretrained_model_name_or_path=A ,subfolder=A ,return_unused_kwargs=A ,return_commit_hash=A ,**A ,)
return cls.from_config(A ,return_unused_kwargs=A ,**A )
def UpperCamelCase_ ( self : Any ,A : Union[str, os.PathLike] ,A : bool = False ,**A : Dict ):
self.save_config(save_directory=A ,push_to_hub=A ,**A )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self._get_compatibles()
@classmethod
def UpperCamelCase_ ( cls : List[str] ):
__A = list(set([cls.__name__] + cls._compatibles ) )
__A = importlib.import_module(__name__.split("." )[0] )
__A = [
getattr(A ,A ) for c in compatible_classes_str if hasattr(A ,A )
]
return compatible_classes
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
SCREAMING_SNAKE_CASE :Optional[Any] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n'
SCREAMING_SNAKE_CASE :Tuple = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n'
SCREAMING_SNAKE_CASE :Tuple = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n'
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
return float((preds == labels).mean() )
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
__A = simple_accuracy(a_ , a_ )
__A = float(fa_score(y_true=a_ , y_pred=a_ ) )
return {
"accuracy": acc,
"f1": fa,
}
def UpperCAmelCase ( a_ , a_ ) -> List[Any]:
"""simple docstring"""
__A = float(pearsonr(a_ , a_ )[0] )
__A = float(spearmanr(a_ , a_ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ):
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
"You should supply a configuration name selected in "
"[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", "
"\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ),
} ) ,codebase_urls=[] ,reference_urls=[] ,format="numpy" ,)
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Dict ):
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(A ,A )}
elif self.config_name == "stsb":
return pearson_and_spearman(A ,A )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(A ,A )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(A ,A )}
else:
raise KeyError(
"You should supply a configuration name selected in "
"[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", "
"\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE :List[str] = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
SCREAMING_SNAKE_CASE :Any = 25_0004
SCREAMING_SNAKE_CASE :Tuple = 25_0020
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = MBartTokenizer
snake_case_ = MBartTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Dict ):
super().setUp()
# We have a SentencePiece fixture for testing
__A = MBartTokenizer(A ,keep_accents=A )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : int ):
__A = MBartTokenizer(A ,keep_accents=A )
__A = tokenizer.tokenize("This is a test" )
self.assertListEqual(A ,["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,)
__A = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
A ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] ,)
__A = tokenizer.convert_tokens_to_ids(A )
self.assertListEqual(
A ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] ,)
__A = tokenizer.convert_ids_to_tokens(A )
self.assertListEqual(
A ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] ,)
def UpperCamelCase_ ( self : List[str] ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__A = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__A = self.rust_tokenizer_class.from_pretrained(A ,**A )
__A = self.tokenizer_class.from_pretrained(A ,**A )
__A = tempfile.mkdtemp()
__A = tokenizer_r.save_pretrained(A )
__A = tokenizer_p.save_pretrained(A )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
__A = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(A ,A )
# Checks everything loads correctly in the same way
__A = tokenizer_r.from_pretrained(A )
__A = tokenizer_p.from_pretrained(A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A ,A ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(A )
# Save tokenizer rust, legacy_format=True
__A = tempfile.mkdtemp()
__A = tokenizer_r.save_pretrained(A ,legacy_format=A )
__A = tokenizer_p.save_pretrained(A )
# Checks it save with the same files
self.assertSequenceEqual(A ,A )
# Checks everything loads correctly in the same way
__A = tokenizer_r.from_pretrained(A )
__A = tokenizer_p.from_pretrained(A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A ,A ) )
shutil.rmtree(A )
# Save tokenizer rust, legacy_format=False
__A = tempfile.mkdtemp()
__A = tokenizer_r.save_pretrained(A ,legacy_format=A )
__A = tokenizer_p.save_pretrained(A )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__A = tokenizer_r.from_pretrained(A )
__A = tokenizer_p.from_pretrained(A )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A ,A ) )
shutil.rmtree(A )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = "facebook/mbart-large-en-ro"
snake_case_ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
snake_case_ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
snake_case_ = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE]
@classmethod
def UpperCamelCase_ ( cls : Optional[int] ):
__A = MBartTokenizer.from_pretrained(
cls.checkpoint_name ,src_lang="en_XX" ,tgt_lang="ro_RO" )
__A = 1
return cls
def UpperCamelCase_ ( self : Any ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] ,25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] ,25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] ,25_00_20 )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
self.assertIn(A ,self.tokenizer.all_special_ids )
__A = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
__A = self.tokenizer.decode(A ,skip_special_tokens=A )
__A = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=A )
self.assertEqual(A ,A )
self.assertNotIn(self.tokenizer.eos_token ,A )
def UpperCamelCase_ ( self : int ):
__A = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] ,A )
__A = 10
__A = self.tokenizer(A ,max_length=A ,truncation=A ).input_ids[0]
self.assertEqual(ids[-2] ,2 )
self.assertEqual(ids[-1] ,A )
self.assertEqual(len(A ) ,A )
def UpperCamelCase_ ( self : Any ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) ,[25_00_26, 25_00_01] )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = tempfile.mkdtemp()
__A = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(A )
__A = MBartTokenizer.from_pretrained(A )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,A )
@require_torch
def UpperCamelCase_ ( self : Tuple ):
__A = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=A ,return_tensors="pt" )
__A = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def UpperCamelCase_ ( self : Any ):
__A = self.tokenizer(
self.src_text ,text_target=self.tgt_text ,padding=A ,truncation=A ,max_length=len(self.expected_src_tokens ) ,return_tensors="pt" ,)
__A = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id )
self.assertIsInstance(A ,A )
self.assertEqual((2, 14) ,batch.input_ids.shape )
self.assertEqual((2, 14) ,batch.attention_mask.shape )
__A = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens ,A )
self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens ,[] )
self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, EN_CODE] )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.tokenizer(self.src_text ,padding=A ,truncation=A ,max_length=3 ,return_tensors="pt" )
__A = self.tokenizer(
text_target=self.tgt_text ,padding=A ,truncation=A ,max_length=10 ,return_tensors="pt" )
__A = targets["input_ids"]
__A = shift_tokens_right(A ,self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] ,3 )
self.assertEqual(batch.decoder_input_ids.shape[1] ,10 )
@require_torch
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer._build_translation_inputs(
"A test" ,return_tensors="pt" ,src_lang="en_XX" ,tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(A ) ,{
# A, test, EOS, en_XX
"input_ids": [[62, 30_34, 2, 25_00_04]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 25_00_01,
} ,)
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if not isinstance(a_ , a_ ):
__A = F'''Input value of [number={number}] must be an integer'''
raise TypeError(a_ )
if number < 0:
return False
__A = number * number
while number > 0:
if number % 1_0 != number_square % 1_0:
return False
number //= 1_0
number_square //= 1_0
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__)
# TODO Update this
SCREAMING_SNAKE_CASE :Dict = {
'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "esm"
def __init__( self : List[str] ,A : Dict=None ,A : Tuple=None ,A : Any=None ,A : Optional[Any]=7_68 ,A : Tuple=12 ,A : List[str]=12 ,A : Tuple=30_72 ,A : List[str]=0.1 ,A : List[Any]=0.1 ,A : int=10_26 ,A : List[str]=0.02 ,A : Union[str, Any]=1E-12 ,A : List[Any]="absolute" ,A : List[Any]=True ,A : Union[str, Any]=None ,A : Optional[int]=False ,A : Dict=False ,A : Tuple=None ,A : Optional[int]=None ,**A : List[Any] ,):
super().__init__(pad_token_id=A ,mask_token_id=A ,**A )
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = initializer_range
__A = layer_norm_eps
__A = position_embedding_type
__A = use_cache
__A = emb_layer_norm_before
__A = token_dropout
__A = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
__A = EsmFoldConfig()
elif isinstance(A ,A ):
__A = EsmFoldConfig(**A )
__A = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
__A = get_default_vocab_list()
else:
__A = vocab_list
else:
__A = None
__A = None
if self.esmfold_config is not None and getattr(self.esmfold_config ,"use_esm_attn_map" ,A ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def UpperCamelCase_ ( self : Optional[int] ):
__A = super().to_dict()
if isinstance(self.esmfold_config ,A ):
__A = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = None
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = 0
snake_case_ = True
snake_case_ = False
snake_case_ = 128
snake_case_ = None
def UpperCamelCase_ ( self : List[Any] ):
if self.trunk is None:
__A = TrunkConfig()
elif isinstance(self.trunk ,A ):
__A = TrunkConfig(**self.trunk )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = asdict(self )
__A = self.trunk.to_dict()
return output
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 48
snake_case_ = 1024
snake_case_ = 128
snake_case_ = 32
snake_case_ = 32
snake_case_ = 32
snake_case_ = 0
snake_case_ = 0
snake_case_ = False
snake_case_ = 4
snake_case_ = 128
snake_case_ = None
def UpperCamelCase_ ( self : List[Any] ):
if self.structure_module is None:
__A = StructureModuleConfig()
elif isinstance(self.structure_module ,A ):
__A = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
__A = self.sequence_state_dim // self.sequence_head_width
__A = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def UpperCamelCase_ ( self : Tuple ):
__A = asdict(self )
__A = self.structure_module.to_dict()
return output
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 384
snake_case_ = 128
snake_case_ = 16
snake_case_ = 128
snake_case_ = 12
snake_case_ = 4
snake_case_ = 8
snake_case_ = 0.1
snake_case_ = 8
snake_case_ = 1
snake_case_ = 2
snake_case_ = 7
snake_case_ = 10
snake_case_ = 1E-8
snake_case_ = 1E5
def UpperCamelCase_ ( self : Union[str, Any] ):
return asdict(self )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
from timeit import timeit
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError("the value of input must not be negative" )
__A = 0
while number:
number &= number - 1
result += 1
return result
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if number < 0:
raise ValueError("the value of input must not be negative" )
__A = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
def do_benchmark(a_ ) -> None:
__A = "import __main__ as z"
print(F'''Benchmark when {number = }:''' )
print(F'''{get_set_bits_count_using_modulo_operator(a_ ) = }''' )
__A = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=a_ )
print(F'''timeit() runs in {timing} seconds''' )
print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(a_ ) = }''' )
__A = timeit(
"z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=a_ , )
print(F'''timeit() runs in {timing} seconds''' )
for number in (2_5, 3_7, 5_8, 0):
do_benchmark(a_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :str = {
'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "efficientnet"
def __init__( self : Optional[int] ,A : int = 3 ,A : int = 6_00 ,A : float = 2.0 ,A : float = 3.1 ,A : int = 8 ,A : List[int] = [3, 3, 5, 3, 5, 5, 3] ,A : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] ,A : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] ,A : List[int] = [] ,A : List[int] = [1, 2, 2, 2, 1, 2, 1] ,A : List[int] = [1, 2, 2, 3, 3, 4, 1] ,A : List[int] = [1, 6, 6, 6, 6, 6, 6] ,A : float = 0.25 ,A : str = "swish" ,A : int = 25_60 ,A : str = "mean" ,A : float = 0.02 ,A : float = 0.0_01 ,A : float = 0.99 ,A : float = 0.5 ,A : float = 0.2 ,**A : Any ,):
super().__init__(**A )
__A = num_channels
__A = image_size
__A = width_coefficient
__A = depth_coefficient
__A = depth_divisor
__A = kernel_sizes
__A = in_channels
__A = out_channels
__A = depthwise_padding
__A = strides
__A = num_block_repeats
__A = expand_ratios
__A = squeeze_expansion_ratio
__A = hidden_act
__A = hidden_dim
__A = pooling_type
__A = initializer_range
__A = batch_norm_eps
__A = batch_norm_momentum
__A = dropout_rate
__A = drop_connect_rate
__A = sum(A ) * 4
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : Any ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 1E-5
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = botoa.client("iam" )
__A = {
"Version": "2012-10-17",
"Statement": [
{"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=a_ , AssumeRolePolicyDocument=json.dumps(a_ , indent=2 ) )
__A = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sagemaker:*",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage",
"ecr:BatchCheckLayerAvailability",
"ecr:GetAuthorizationToken",
"cloudwatch:PutMetricData",
"cloudwatch:GetMetricData",
"cloudwatch:GetMetricStatistics",
"cloudwatch:ListMetrics",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:PutLogEvents",
"logs:GetLogEvents",
"s3:CreateBucket",
"s3:ListBucket",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:PutObject",
],
"Resource": "*",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=a_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(a_ , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(F'''role {role_name} already exists. Using existing one''' )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = botoa.client("iam" )
return iam_client.get_role(RoleName=a_ )["Role"]["Arn"]
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = _ask_options(
"How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , a_ , )
__A = None
if credentials_configuration == 0:
__A = _ask_field("Enter your AWS Profile name: [default] " , default="default" )
__A = aws_profile
else:
print(
"Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
"`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" )
__A = _ask_field("AWS Access Key ID: " )
__A = aws_access_key_id
__A = _ask_field("AWS Secret Access Key: " )
__A = aws_secret_access_key
__A = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" )
__A = aws_region
__A = _ask_options(
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , a_ , )
if role_management == 0:
__A = _ask_field("Enter your IAM role name: " )
else:
__A = "accelerate_sagemaker_execution_role"
print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' )
_create_iam_role_for_sagemaker(a_ )
__A = _ask_field(
"Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
__A = None
if is_custom_docker_image:
__A = _ask_field("Enter your Docker image: " , lambda a_ : str(a_ ).lower() )
__A = _ask_field(
"Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
__A = None
if is_sagemaker_inputs_enabled:
__A = _ask_field(
"Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda a_ : str(a_ ).lower() , )
__A = _ask_field(
"Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
__A = None
if is_sagemaker_metrics_enabled:
__A = _ask_field(
"Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda a_ : str(a_ ).lower() , )
__A = _ask_options(
"What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , )
__A = {}
__A = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
if use_dynamo:
__A = "dynamo_"
__A = _ask_options(
"Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
__A = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
if use_custom_options:
__A = _ask_options(
"Which mode do you want to use?" , a_ , lambda a_ : TORCH_DYNAMO_MODES[int(a_ )] , default="default" , )
__A = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
__A = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=a_ , error_message="Please enter yes or no." , )
__A = "Which EC2 instance type you want to use for your training?"
if distributed_type != SageMakerDistributedType.NO:
__A = _ask_options(
a_ , a_ , lambda a_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(a_ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
__A = _ask_field(a_ , lambda a_ : str(a_ ).lower() , default="ml.p3.2xlarge" )
__A = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
__A = _ask_field(
"How many machines do you want use? [1]: " , a_ , default=1 , )
__A = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." )
return SageMakerConfig(
image_uri=a_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=a_ , use_cpu=a_ , dynamo_config=a_ , eca_instance_type=a_ , profile=a_ , region=a_ , iam_role_name=a_ , mixed_precision=a_ , num_machines=a_ , sagemaker_inputs_file=a_ , sagemaker_metrics_file=a_ , )
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "upernet"
def __init__( self : List[Any] ,A : List[Any]=None ,A : Optional[Any]=5_12 ,A : Union[str, Any]=0.02 ,A : Any=[1, 2, 3, 6] ,A : Dict=True ,A : List[Any]=0.4 ,A : Dict=3_84 ,A : List[str]=2_56 ,A : List[str]=1 ,A : Optional[Any]=False ,A : List[Any]=2_55 ,**A : str ,):
super().__init__(**A )
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__A = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] )
elif isinstance(A ,A ):
__A = backbone_config.get("model_type" )
__A = CONFIG_MAPPING[backbone_model_type]
__A = config_class.from_dict(A )
__A = backbone_config
__A = hidden_size
__A = initializer_range
__A = pool_scales
__A = use_auxiliary_head
__A = auxiliary_loss_weight
__A = auxiliary_in_channels
__A = auxiliary_channels
__A = auxiliary_num_convs
__A = auxiliary_concat_input
__A = loss_ignore_index
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = copy.deepcopy(self.__dict__ )
__A = self.backbone_config.to_dict()
__A = self.__class__.model_type
return output
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str ,A : List[str] ,A : List[Any]=13 ,A : Optional[int]=7 ,A : Tuple=True ,A : Tuple=True ,A : Tuple=True ,A : Optional[Any]=True ,A : Optional[int]=99 ,A : Optional[Any]=32 ,A : int=5 ,A : List[Any]=4 ,A : Union[str, Any]=37 ,A : int="gelu" ,A : int=0.1 ,A : List[Any]=0.1 ,A : List[str]=5_12 ,A : int=16 ,A : str=2 ,A : int=0.02 ,A : Optional[Any]=4 ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_attention_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_choices
def UpperCamelCase_ ( self : Dict ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_attention_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__A = AlbertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,)
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase_ ( self : Dict ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase_ ( self : List[Any] ):
__A = FlaxAlbertModelTester(self )
@slow
def UpperCamelCase_ ( self : List[Any] ):
for model_class_name in self.all_model_classes:
__A = model_class_name.from_pretrained("albert-base-v2" )
__A = model(np.ones((1, 1) ) )
self.assertIsNotNone(A )
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = FlaxAlbertModel.from_pretrained("albert-base-v2" )
__A = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__A = model(A ,attention_mask=A )[0]
__A = (1, 11, 7_68)
self.assertEqual(output.shape ,A )
__A = np.array(
[[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1E-4 ) )
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Tuple = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS}
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' )
if tokenizer_name is None:
__A = TOKENIZER_CLASSES
else:
__A = {tokenizer_name: getattr(a_ , tokenizer_name + "Fast" )}
logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' )
for tokenizer_name in tokenizer_names:
__A = TOKENIZER_CLASSES[tokenizer_name]
__A = True
if checkpoint_name is None:
__A = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__A = [checkpoint_name]
logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' )
for checkpoint in checkpoint_names:
logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' )
# Load tokenizer
__A = tokenizer_class.from_pretrained(a_ , force_download=a_ )
# Save fast tokenizer
logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' )
# For organization names we create sub-directories
if "/" in checkpoint:
__A , __A = checkpoint.split("/" )
__A = os.path.join(a_ , a_ )
elif add_prefix:
__A = checkpoint
__A = dump_path
else:
__A = None
__A = dump_path
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__A = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__A = file_path.split(a_ )[-1][0]
if next_char == "/":
__A = os.path.join(a_ , a_ )
__A = None
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
__A = tokenizer.save_pretrained(
a_ , legacy_format=a_ , filename_prefix=a_ )
logger.info(F'''=> File names {file_names}''' )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(a_ )
logger.info(F'''=> removing {file_name}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.'
)
parser.add_argument(
'--tokenizer_name',
default=None,
type=str,
help=(
f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
'download and convert all the checkpoints from AWS.'
),
)
parser.add_argument(
'--checkpoint_name',
default=None,
type=str,
help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.',
)
parser.add_argument(
'--force_download',
action='store_true',
help='Re-download checkpoints.',
)
SCREAMING_SNAKE_CASE :Dict = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["pixel_values"]
def __init__( self : Tuple ,A : bool = True ,A : Dict[str, int] = None ,A : PILImageResampling = PILImageResampling.BILINEAR ,A : bool = True ,A : Union[int, float] = 1 / 2_55 ,A : bool = True ,A : Dict[str, int] = None ,A : bool = True ,**A : List[Any] ,):
super().__init__(**A )
__A = size if size is not None else {"shortest_edge": 2_24}
__A = get_size_dict(A ,default_to_square=A )
__A = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56}
__A = get_size_dict(A ,param_name="crop_size" )
__A = do_resize
__A = size
__A = resample
__A = do_rescale
__A = rescale_factor
__A = do_center_crop
__A = crop_size
__A = do_flip_channel_order
def UpperCamelCase_ ( self : List[Any] ,A : np.ndarray ,A : Dict[str, int] ,A : PILImageResampling = PIL.Image.BILINEAR ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[Any] ,):
__A = get_size_dict(A ,default_to_square=A )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' )
__A = get_resize_output_image_size(A ,size=size["shortest_edge"] ,default_to_square=A )
return resize(A ,size=A ,resample=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Optional[int] ,A : np.ndarray ,A : Dict[str, int] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : Optional[int] ,):
__A = get_size_dict(A )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
return center_crop(A ,size=(size["height"], size["width"]) ,data_format=A ,**A )
def UpperCamelCase_ ( self : str ,A : np.ndarray ,A : Union[int, float] ,A : Optional[Union[str, ChannelDimension]] = None ,**A : List[Any] ,):
return rescale(A ,scale=A ,data_format=A ,**A )
def UpperCamelCase_ ( self : Tuple ,A : np.ndarray ,A : Optional[Union[str, ChannelDimension]] = None ):
return flip_channel_order(A ,data_format=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : ImageInput ,A : bool = None ,A : Dict[str, int] = None ,A : PILImageResampling = None ,A : bool = None ,A : float = None ,A : bool = None ,A : Dict[str, int] = None ,A : bool = None ,A : Optional[Union[str, TensorType]] = None ,A : ChannelDimension = ChannelDimension.FIRST ,**A : str ,):
__A = do_resize if do_resize is not None else self.do_resize
__A = resample if resample is not None else self.resample
__A = do_rescale if do_rescale is not None else self.do_rescale
__A = rescale_factor if rescale_factor is not None else self.rescale_factor
__A = do_center_crop if do_center_crop is not None else self.do_center_crop
__A = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
__A = size if size is not None else self.size
__A = get_size_dict(A ,default_to_square=A )
__A = crop_size if crop_size is not None else self.crop_size
__A = get_size_dict(A ,param_name="crop_size" )
__A = make_list_of_images(A )
if not valid_images(A ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
# All transformations expect numpy arrays.
__A = [to_numpy_array(A ) for image in images]
if do_resize:
__A = [self.resize(image=A ,size=A ,resample=A ) for image in images]
if do_center_crop:
__A = [self.center_crop(image=A ,size=A ) for image in images]
if do_rescale:
__A = [self.rescale(image=A ,scale=A ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
__A = [self.flip_channel_order(image=A ) for image in images]
__A = [to_channel_dimension_format(A ,A ) for image in images]
__A = {"pixel_values": images}
return BatchFeature(data=A ,tensor_type=A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[int] ,A : List[Tuple] = None ):
__A = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(A ) != len(A ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(A ):
__A = target_sizes.numpy()
__A = []
for idx in range(len(A ) ):
__A = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="bilinear" ,align_corners=A )
__A = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(A )
else:
__A = logits.argmax(dim=1 )
__A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE :int = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = PegasusTokenizer
snake_case_ = PegasusTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Dict ):
super().setUp()
# We have a SentencePiece fixture for testing
__A = PegasusTokenizer(A )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("google/pegasus-large" )
def UpperCamelCase_ ( self : int ,**A : Dict ):
return PegasusTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : List[str] ,A : str ):
return ("This is a test", "This is a test")
def UpperCamelCase_ ( self : Any ):
__A = "</s>"
__A = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A )
def UpperCamelCase_ ( self : List[str] ):
__A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"<pad>" )
self.assertEqual(vocab_keys[1] ,"</s>" )
self.assertEqual(vocab_keys[-1] ,"v" )
self.assertEqual(len(A ) ,11_03 )
def UpperCamelCase_ ( self : Union[str, Any] ):
self.assertEqual(self.get_tokenizer().vocab_size ,11_03 )
def UpperCamelCase_ ( self : int ):
__A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
__A = self.tokenizer_class.from_pretrained(self.tmpdirname )
__A = (
"Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"
" </s> <pad> <pad> <pad>"
)
__A = rust_tokenizer([raw_input_str] ,return_tensors=A ,add_special_tokens=A ).input_ids[0]
__A = py_tokenizer([raw_input_str] ,return_tensors=A ,add_special_tokens=A ).input_ids[0]
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
__A = "<mask_1> To ensure a <mask_2> flow of bank resolutions."
__A = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
__A = tokenizer([raw_input_str] ,return_tensors=A ).input_ids[0]
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_61_03
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_03
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 10_24
__A = "To ensure a smooth flow of bank resolutions."
__A = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
__A = tokenizer([raw_input_str] ,return_tensors=A ).input_ids[0]
self.assertListEqual(A ,A )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = ["This is going to be way too long." * 1_50, "short example"]
__A = ["not super long but more than 5 tokens", "tiny"]
__A = self._large_tokenizer(A ,padding=A ,truncation=A ,return_tensors="pt" )
__A = self._large_tokenizer(
text_target=A ,max_length=5 ,padding=A ,truncation=A ,return_tensors="pt" )
assert batch.input_ids.shape == (2, 10_24)
assert batch.attention_mask.shape == (2, 10_24)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
@slow
def UpperCamelCase_ ( self : List[str] ):
# fmt: off
__A = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=A ,model_name="google/bigbird-pegasus-large-arxiv" ,revision="ba85d0851d708441f91440d509690f1ab6353415" ,)
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = PegasusTokenizer
snake_case_ = PegasusTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Tuple ):
super().setUp()
# We have a SentencePiece fixture for testing
__A = PegasusTokenizer(A ,offset=0 ,mask_token_sent=A ,mask_token="[MASK]" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCamelCase_ ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" )
def UpperCamelCase_ ( self : str ,**A : Union[str, Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ):
return ("This is a test", "This is a test")
def UpperCamelCase_ ( self : int ):
__A = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
__A = self.tokenizer_class.from_pretrained(self.tmpdirname )
__A = (
"Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"
" <pad> <pad> <pad>"
)
__A = rust_tokenizer([raw_input_str] ,return_tensors=A ,add_special_tokens=A ).input_ids[0]
__A = py_tokenizer([raw_input_str] ,return_tensors=A ,add_special_tokens=A ).input_ids[0]
self.assertListEqual(A ,A )
@require_torch
def UpperCamelCase_ ( self : Optional[Any] ):
__A = ["This is going to be way too long." * 10_00, "short example"]
__A = ["not super long but more than 5 tokens", "tiny"]
__A = self._large_tokenizer(A ,padding=A ,truncation=A ,return_tensors="pt" )
__A = self._large_tokenizer(
text_target=A ,max_length=5 ,padding=A ,truncation=A ,return_tensors="pt" )
assert batch.input_ids.shape == (2, 40_96)
assert batch.attention_mask.shape == (2, 40_96)
assert targets["input_ids"].shape == (2, 5)
assert len(A ) == 2 # input_ids, attention_mask.
def UpperCamelCase_ ( self : Dict ):
__A = (
"This is an example string that is used to test the original TF implementation against the HF"
" implementation"
)
__A = self._large_tokenizer(A ).input_ids
self.assertListEqual(
A ,[1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] ,)
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
SCREAMING_SNAKE_CASE :Optional[Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
SCREAMING_SNAKE_CASE :int = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n'
SCREAMING_SNAKE_CASE :str = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage="http://www.cs.umd.edu/~snover/tercom/" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"predictions": datasets.Value("string" ,id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" ,id="sequence" ) ,id="references" ),
} ) ,codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] ,reference_urls=[
"https://github.com/jhclark/tercom",
] ,)
def UpperCamelCase_ ( self : Any ,A : Optional[int] ,A : str ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,):
__A = len(references[0] )
if any(len(A ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
__A = [[refs[i] for refs in references] for i in range(A )]
__A = TER(
normalized=A ,no_punct=A ,asian_support=A ,case_sensitive=A ,)
__A = sb_ter.corpus_score(A ,A )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = inspect.getfile(accelerate.test_utils )
__A = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
__A = test_metrics
@require_cpu
def UpperCamelCase_ ( self : str ):
debug_launcher(self.test_metrics.main ,num_processes=1 )
@require_cpu
def UpperCamelCase_ ( self : str ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def UpperCamelCase_ ( self : List[str] ):
self.test_metrics.main()
@require_multi_gpu
def UpperCamelCase_ ( self : int ):
print(f'''Found {torch.cuda.device_count()} devices.''' )
__A = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(A ,env=os.environ.copy() )
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
def UpperCAmelCase ( ) -> List[Any]:
"""simple docstring"""
__A = 0
for i in range(1 , 1_0_0_1 ):
total += i**i
return str(a_ )[-1_0:]
if __name__ == "__main__":
print(solution())
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.local_sgd import LocalSGD
########################################################################
# This is a fully working simple example to use Accelerate
# with LocalSGD, which is a method to synchronize model
# parameters every K batches. It is different, but complementary
# to gradient accumulation.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
SCREAMING_SNAKE_CASE :int = 16
SCREAMING_SNAKE_CASE :Any = 32
def UpperCAmelCase ( a_ , a_ = 1_6 ) -> List[Any]:
"""simple docstring"""
__A = AutoTokenizer.from_pretrained("bert-base-cased" )
__A = load_dataset("glue" , "mrpc" )
def tokenize_function(a_ ):
# max_length=None => use the model max length (it's actually the default)
__A = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=a_ , max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__A = datasets.map(
a_ , batched=a_ , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__A = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(a_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__A = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__A = 1_6
elif accelerator.mixed_precision != "no":
__A = 8
else:
__A = None
return tokenizer.pad(
a_ , padding="longest" , max_length=a_ , pad_to_multiple_of=a_ , return_tensors="pt" , )
# Instantiate dataloaders.
__A = DataLoader(
tokenized_datasets["train"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
__A = DataLoader(
tokenized_datasets["validation"] , shuffle=a_ , collate_fn=a_ , batch_size=a_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
SCREAMING_SNAKE_CASE :Any = mocked_dataloaders # noqa: F811
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
if os.environ.get("TESTING_MOCKED_DATALOADERS" , a_ ) == "1":
__A = 2
# New Code #
__A = int(args.gradient_accumulation_steps )
__A = int(args.local_sgd_steps )
# Initialize accelerator
__A = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=a_ )
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__A = config["lr"]
__A = int(config["num_epochs"] )
__A = int(config["seed"] )
__A = int(config["batch_size"] )
__A = evaluate.load("glue" , "mrpc" )
set_seed(a_ )
__A , __A = get_dataloaders(a_ , a_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__A = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=a_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__A = model.to(accelerator.device )
# Instantiate optimizer
__A = AdamW(params=model.parameters() , lr=a_ )
# Instantiate scheduler
__A = get_linear_schedule_with_warmup(
optimizer=a_ , num_warmup_steps=1_0_0 , num_training_steps=(len(a_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__A , __A , __A , __A , __A = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ )
# Now we train the model
for epoch in range(a_ ):
model.train()
with LocalSGD(
accelerator=a_ , model=a_ , local_sgd_steps=a_ , enabled=local_sgd_steps is not None ) as local_sgd:
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(a_ ):
__A = model(**a_ )
__A = output.loss
accelerator.backward(a_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# LocalSGD-specific line
local_sgd.step()
model.eval()
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__A = model(**a_ )
__A = outputs.logits.argmax(dim=-1 )
__A , __A = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=a_ , references=a_ , )
__A = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}:''' , a_ )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=a_ , default=a_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
# New Code #
parser.add_argument(
"--gradient_accumulation_steps" , type=a_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , )
parser.add_argument(
"--local_sgd_steps" , type=a_ , default=8 , help="Number of local SGD steps or None to disable local SGD" )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
__A = parser.parse_args()
__A = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6}
training_function(a_ , a_ )
if __name__ == "__main__":
main()
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
SCREAMING_SNAKE_CASE :Optional[Any] = 8.314462 # Unit - J mol-1 K-1
def UpperCAmelCase ( a_ , a_ , a_ ) -> float:
"""simple docstring"""
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("Invalid inputs. Enter positive value." )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def UpperCAmelCase ( a_ , a_ , a_ ) -> float:
"""simple docstring"""
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("Invalid inputs. Enter positive value." )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
try:
with open(a_ , "rb" ) as flax_state_f:
__A = from_bytes(a_ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(a_ ) as f:
if f.read().startswith("version" ):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please"
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
" folder you cloned." )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(a_ , a_ )
def UpperCAmelCase ( a_ , a_ ) -> List[Any]:
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
# check if we have bf16 weights
__A = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values()
if any(a_ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model." )
__A = jax.tree_util.tree_map(
lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ )
__A = ""
__A = flatten_dict(a_ , sep="." )
__A = pt_model.state_dict()
# keep track of unexpected & missing keys
__A = []
__A = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
__A = flax_key_tuple.split("." )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
__A = flax_key_tuple_array[:-1] + ["weight"]
__A = jnp.transpose(a_ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
__A = flax_key_tuple_array[:-1] + ["weight"]
__A = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
__A = flax_key_tuple_array[:-1] + ["weight"]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(a_ ):
__A = (
flax_key_tuple_string.replace("_0" , ".0" )
.replace("_1" , ".1" )
.replace("_2" , ".2" )
.replace("_3" , ".3" )
.replace("_4" , ".4" )
.replace("_5" , ".5" )
.replace("_6" , ".6" )
.replace("_7" , ".7" )
.replace("_8" , ".8" )
.replace("_9" , ".9" )
)
__A = ".".join(a_ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
__A = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor
__A = torch.from_numpy(a_ )
# remove from missing keys
missing_keys.remove(a_ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(a_ )
pt_model.load_state_dict(a_ )
# re-transform missing_keys to list
__A = list(a_ )
if len(a_ ) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)." )
if len(a_ ) > 0:
logger.warning(
F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
" use it for predictions and inference." )
return pt_model
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int:
"""simple docstring"""
__A = 3
__A = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 1_5 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BertJapaneseTokenizer
snake_case_ = False
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"こんにちは",
"こん",
"にちは",
"ばんは",
"##こん",
"##にちは",
"##ばんは",
"世界",
"##世界",
"、",
"##、",
"。",
"##。",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Dict ,A : Optional[Any] ):
__A = "こんにちは、世界。 \nこんばんは、世界。"
__A = "こんにちは 、 世界 。 こんばんは 、 世界 。"
return input_text, output_text
def UpperCamelCase_ ( self : int ,A : Tuple ):
__A , __A = self.get_input_output_texts(A )
__A = tokenizer.encode(A ,add_special_tokens=A )
__A = tokenizer.decode(A ,clean_up_tokenization_spaces=A )
return text, ids
def UpperCamelCase_ ( self : Any ):
pass # TODO add if relevant
def UpperCamelCase_ ( self : Tuple ):
pass # TODO add if relevant
def UpperCamelCase_ ( self : List[Any] ):
pass # TODO add if relevant
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" )
self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
def UpperCamelCase_ ( self : List[str] ):
__A = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="mecab" )
self.assertIsNotNone(A )
__A = "こんにちは、世界。\nこんばんは、世界。"
__A = tokenizer.tokenize(A )
self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
__A = os.path.join(self.tmpdirname ,"tokenizer.bin" )
with open(A ,"wb" ) as handle:
pickle.dump(A ,A )
with open(A ,"rb" ) as handle:
__A = pickle.load(A )
__A = tokenizer_new.tokenize(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = MecabTokenizer(mecab_dic="ipadic" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
try:
__A = MecabTokenizer(mecab_dic="unidic_lite" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,)
def UpperCamelCase_ ( self : Dict ):
try:
__A = MecabTokenizer(mecab_dic="unidic" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = MecabTokenizer(do_lower_case=A ,mecab_dic="ipadic" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
try:
__A = MecabTokenizer(
do_lower_case=A ,normalize_text=A ,mecab_option="-d /usr/local/lib/mecab/dic/jumandic" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = MecabTokenizer(normalize_text=A ,mecab_dic="ipadic" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] ,)
@require_sudachi
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="sudachi" )
self.assertIsNotNone(A )
__A = "こんにちは、世界。\nこんばんは、世界。"
__A = tokenizer.tokenize(A )
self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
__A = os.path.join(self.tmpdirname ,"tokenizer.bin" )
with open(A ,"wb" ) as handle:
pickle.dump(A ,A )
with open(A ,"rb" ) as handle:
__A = pickle.load(A )
__A = tokenizer_new.tokenize(A )
self.assertListEqual(A ,A )
@require_sudachi
def UpperCamelCase_ ( self : int ):
__A = SudachiTokenizer(sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] ,)
@require_sudachi
def UpperCamelCase_ ( self : str ):
__A = SudachiTokenizer(sudachi_dict_type="core" ,sudachi_split_mode="A" )
self.assertListEqual(tokenizer.tokenize("外国人参政権" ) ,["外国", "人", "参政", "権"] )
@require_sudachi
def UpperCamelCase_ ( self : Optional[Any] ):
__A = SudachiTokenizer(sudachi_dict_type="core" ,sudachi_split_mode="B" )
self.assertListEqual(tokenizer.tokenize("外国人参政権" ) ,["外国人", "参政権"] )
@require_sudachi
def UpperCamelCase_ ( self : int ):
__A = SudachiTokenizer(sudachi_dict_type="core" ,sudachi_split_mode="C" )
self.assertListEqual(tokenizer.tokenize("外国人参政権" ) ,["外国人参政権"] )
@require_sudachi
def UpperCamelCase_ ( self : Tuple ):
__A = SudachiTokenizer(do_lower_case=A ,sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,[" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] ,)
@require_sudachi
def UpperCamelCase_ ( self : List[Any] ):
__A = SudachiTokenizer(normalize_text=A ,sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] ,)
@require_sudachi
def UpperCamelCase_ ( self : Optional[Any] ):
__A = SudachiTokenizer(trim_whitespace=A ,sudachi_dict_type="core" )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] ,)
@require_jumanpp
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="jumanpp" )
self.assertIsNotNone(A )
__A = "こんにちは、世界。\nこんばんは、世界。"
__A = tokenizer.tokenize(A )
self.assertListEqual(A ,["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
__A = os.path.join(self.tmpdirname ,"tokenizer.bin" )
with open(A ,"wb" ) as handle:
pickle.dump(A ,A )
with open(A ,"rb" ) as handle:
__A = pickle.load(A )
__A = tokenizer_new.tokenize(A )
self.assertListEqual(A ,A )
@require_jumanpp
def UpperCamelCase_ ( self : Any ):
__A = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] ,)
@require_jumanpp
def UpperCamelCase_ ( self : Any ):
__A = JumanppTokenizer(do_lower_case=A )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] ,)
@require_jumanpp
def UpperCamelCase_ ( self : List[str] ):
__A = JumanppTokenizer(normalize_text=A )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] ,)
@require_jumanpp
def UpperCamelCase_ ( self : Tuple ):
__A = JumanppTokenizer(trim_whitespace=A )
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) ,["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] ,)
@require_jumanpp
def UpperCamelCase_ ( self : Tuple ):
__A = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) ,["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] ,)
def UpperCamelCase_ ( self : List[str] ):
__A = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"]
__A = {}
for i, token in enumerate(A ):
__A = i
__A = WordpieceTokenizer(vocab=A ,unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) ,[] )
self.assertListEqual(tokenizer.tokenize("こんにちは" ) ,["こんにちは"] )
self.assertListEqual(tokenizer.tokenize("こんばんは" ) ,["こん", "##ばんは"] )
self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) ,["こん", "##ばんは", "[UNK]", "こんにちは"] )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" )
__A = tokenizer.subword_tokenizer
__A = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" )
self.assertListEqual(A ,["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] )
__A = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" )
self.assertListEqual(A ,["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" )
__A = tokenizer.encode("ありがとう。" ,add_special_tokens=A )
__A = tokenizer.encode("どういたしまして。" ,add_special_tokens=A )
__A = tokenizer.build_inputs_with_special_tokens(A )
__A = tokenizer.build_inputs_with_special_tokens(A ,A )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BertJapaneseTokenizer
snake_case_ = False
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
__A = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : int ,**A : str ):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type="character" ,**A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ):
__A = "こんにちは、世界。 \nこんばんは、世界。"
__A = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
return input_text, output_text
def UpperCamelCase_ ( self : Optional[Any] ):
pass # TODO add if relevant
def UpperCamelCase_ ( self : str ):
pass # TODO add if relevant
def UpperCamelCase_ ( self : List[str] ):
pass # TODO add if relevant
def UpperCamelCase_ ( self : Any ):
__A = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type="character" )
__A = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" )
self.assertListEqual(
A ,["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
__A = {}
for i, token in enumerate(A ):
__A = i
__A = CharacterTokenizer(vocab=A ,unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) ,[] )
self.assertListEqual(tokenizer.tokenize("こんにちは" ) ,["こ", "ん", "に", "ち", "は"] )
self.assertListEqual(tokenizer.tokenize("こんにちほ" ) ,["こ", "ん", "に", "ち", "[UNK]"] )
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" )
__A = tokenizer.encode("ありがとう。" ,add_special_tokens=A )
__A = tokenizer.encode("どういたしまして。" ,add_special_tokens=A )
__A = tokenizer.build_inputs_with_special_tokens(A )
__A = tokenizer.build_inputs_with_special_tokens(A ,A )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = "cl-tohoku/bert-base-japanese"
__A = AutoTokenizer.from_pretrained(A )
self.assertIsInstance(A ,A )
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
__A = "cl-tohoku/bert-base-japanese"
with self.assertLogs("transformers" ,level="WARNING" ) as cm:
BertTokenizer.from_pretrained(A )
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from." ) )
__A = "bert-base-cased"
with self.assertLogs("transformers" ,level="WARNING" ) as cm:
BertJapaneseTokenizer.from_pretrained(A )
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from." ) )
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : Optional[int] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
__A = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n "
__A = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n "
__A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n "
# Force fetching the files so that we can use the cache
__A = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(A )
BertModel.from_pretrained(A )
BertTokenizer.from_pretrained(A )
pipeline(task="fill-mask" ,model=A )
# baseline - just load from_pretrained with normal network
__A = [sys.executable, "-c", "\n".join([load, run, mock] )]
# should succeed
__A = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
__A = "1"
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,0 ,result.stderr )
self.assertIn("success" ,result.stdout.decode() )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any] ):
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
__A = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n "
__A = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n "
__A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n "
# Force fetching the files so that we can use the cache
__A = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(A )
BertModel.from_pretrained(A )
BertTokenizer.from_pretrained(A )
pipeline(task="fill-mask" ,model=A )
# baseline - just load from_pretrained with normal network
__A = [sys.executable, "-c", "\n".join([load, run, mock] )]
# should succeed
__A = self.get_env()
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,0 ,result.stderr )
self.assertIn("success" ,result.stdout.decode() )
@require_torch
def UpperCamelCase_ ( self : Optional[int] ):
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
__A = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n "
__A = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n "
__A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n "
# baseline - just load from_pretrained with normal network
__A = [sys.executable, "-c", "\n".join([load, run] )]
# should succeed
__A = self.get_env()
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,0 ,result.stderr )
self.assertIn("success" ,result.stdout.decode() )
# next emulate no network
__A = [sys.executable, "-c", "\n".join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
__A = "1"
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,0 ,result.stderr )
self.assertIn("success" ,result.stdout.decode() )
@require_torch
def UpperCamelCase_ ( self : List[str] ):
__A = "\nfrom transformers import pipeline\n "
__A = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n "
__A = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n "
__A = self.get_env()
__A = "1"
__A = [sys.executable, "-c", "\n".join([load, mock, run] )]
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,1 ,result.stderr )
self.assertIn(
"You cannot infer task automatically within `pipeline` when using offline mode" ,result.stderr.decode().replace("\n" ,"" ) ,)
@require_torch
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = "\nfrom transformers import AutoModel\n "
__A = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n "
# baseline - just load from_pretrained with normal network
__A = [sys.executable, "-c", "\n".join([load, run] )]
# should succeed
__A = self.get_env()
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,0 ,result.stderr )
self.assertIn("success" ,result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
__A = "1"
__A = subprocess.run(A ,env=A ,check=A ,capture_output=A )
self.assertEqual(result.returncode ,0 ,result.stderr )
self.assertIn("success" ,result.stdout.decode() )
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import string
def UpperCAmelCase ( a_ ) -> None:
"""simple docstring"""
for key in range(len(string.ascii_uppercase ) ):
__A = ""
for symbol in message:
if symbol in string.ascii_uppercase:
__A = string.ascii_uppercase.find(a_ )
__A = num - key
if num < 0:
__A = num + len(string.ascii_uppercase )
__A = translated + string.ascii_uppercase[num]
else:
__A = translated + symbol
print(F'''Decryption using Key #{key}: {translated}''' )
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = input("Encrypted message: " )
__A = message.upper()
decrypt(a_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
debug_launcher(test_script.main )
def UpperCamelCase_ ( self : List[Any] ):
debug_launcher(test_ops.main )
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Dict ,A : str ,A : Any=13 ,A : Dict=7 ,A : Union[str, Any]=True ,A : Any=True ,A : Optional[int]=True ,A : Optional[Any]=True ,A : Union[str, Any]=True ,A : Tuple=False ,A : Optional[Any]=False ,A : Union[str, Any]=False ,A : Optional[int]=2 ,A : int=99 ,A : List[str]=0 ,A : Dict=32 ,A : int=5 ,A : Dict=4 ,A : List[Any]=0.1 ,A : Union[str, Any]=0.1 ,A : Any=5_12 ,A : str=2 ,A : Tuple=0.02 ,A : List[Any]=2 ,A : int=4 ,A : Dict="last" ,A : Optional[Any]=True ,A : Optional[Any]=None ,A : Tuple=0 ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_input_lengths
__A = use_token_type_ids
__A = use_labels
__A = gelu_activation
__A = sinusoidal_embeddings
__A = causal
__A = asm
__A = n_langs
__A = vocab_size
__A = n_special
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = num_choices
__A = summary_type
__A = use_proj
__A = scope
__A = bos_token_id
def UpperCamelCase_ ( self : Optional[int] ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
if self.use_input_lengths:
__A = (
ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs )
__A = None
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__A = ids_tensor([self.batch_size] ,2 ).float()
__A = ids_tensor([self.batch_size] ,self.num_choices )
__A = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase_ ( self : Union[str, Any] ):
return XLMConfig(
vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,)
def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : Any ,A : int ,A : Optional[int] ,A : List[str] ,A : str ,A : List[str] ,A : int ,A : Any ,):
__A = XLMModel(config=A )
model.to(A )
model.eval()
__A = model(A ,lengths=A ,langs=A )
__A = model(A ,langs=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Any ,A : Dict ,A : int ,A : Optional[int] ,A : Optional[Any] ,A : str ,A : List[str] ,A : int ,A : Union[str, Any] ,A : Tuple ,):
__A = XLMWithLMHeadModel(A )
model.to(A )
model.eval()
__A = model(A ,token_type_ids=A ,labels=A )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : List[Any] ,A : Tuple ,A : Union[str, Any] ,A : Optional[int] ,A : Dict ,A : List[Any] ,A : int ,A : int ,A : str ,A : Optional[int] ,):
__A = XLMForQuestionAnsweringSimple(A )
model.to(A )
model.eval()
__A = model(A )
__A = model(A ,start_positions=A ,end_positions=A )
__A = outputs
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Optional[Any] ,A : Dict ,A : Optional[int] ,A : List[str] ,A : List[str] ,A : Tuple ,):
__A = XLMForQuestionAnswering(A )
model.to(A )
model.eval()
__A = model(A )
__A = model(
A ,start_positions=A ,end_positions=A ,cls_index=A ,is_impossible=A ,p_mask=A ,)
__A = model(
A ,start_positions=A ,end_positions=A ,cls_index=A ,is_impossible=A ,)
((__A) , ) = result_with_labels.to_tuple()
__A = model(A ,start_positions=A ,end_positions=A )
((__A) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape ,() )
self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : Optional[int] ,A : Optional[Any] ,A : Any ,A : List[str] ,A : Optional[Any] ,A : List[Any] ,A : List[str] ,A : str ,):
__A = XLMForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Tuple ,A : List[Any] ,A : Tuple ,A : Union[str, Any] ,A : Optional[int] ,A : List[Any] ,A : int ,A : Optional[int] ,A : Optional[int] ,A : Any ,):
__A = self.num_labels
__A = XLMForTokenClassification(A )
model.to(A )
model.eval()
__A = model(A ,attention_mask=A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : str ,A : List[str] ,A : List[str] ,A : List[Any] ,A : Union[str, Any] ,A : Any ,A : str ,A : Any ,):
__A = self.num_choices
__A = XLMForMultipleChoice(config=A )
model.to(A )
model.eval()
__A = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__A = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__A = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
__A = model(
A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : Any ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
snake_case_ = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
snake_case_ = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : Any ,A : List[Any] ,A : Optional[Any] ,A : Dict ,A : List[str] ,A : Dict ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : str ,A : str=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
__A = XLMModelTester(self )
__A = ConfigTester(self ,config_class=A ,emb_dim=37 )
def UpperCamelCase_ ( self : List[str] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : List[str] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*A )
def UpperCamelCase_ ( self : List[str] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*A )
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*A )
def UpperCamelCase_ ( self : Dict ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*A )
def UpperCamelCase_ ( self : int ,A : Dict ,A : List[Any] ,A : List[str] ,A : List[str] ,A : Dict ,A : Union[str, Any]=False ,A : Union[str, Any]=1 ):
self.assertIsInstance(A ,A )
self.assertListEqual(
[isinstance(A ,A ) for iter_attentions in attentions] ,[True] * len(A ) )
self.assertEqual(len(A ) ,(max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(A ):
# adds PAD dummy token
__A = min_length + idx + 1
__A = min_length + idx + 1
__A = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(A ) )
def UpperCamelCase_ ( self : int ,A : int ,A : Optional[Any] ,A : Dict ,A : List[str] ,A : int ,A : Optional[Any]=False ,A : Optional[int]=1 ):
self.assertIsInstance(A ,A )
self.assertListEqual(
[isinstance(A ,A ) for iter_hidden_states in hidden_states] ,[True] * len(A ) ,)
self.assertEqual(len(A ) ,(max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(A ):
# adds PAD dummy token
__A = min_length + idx + 1
__A = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(A ) ,)
pass
@slow
def UpperCamelCase_ ( self : int ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = XLMModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" )
model.to(A )
__A = torch.tensor([[14, 4_47]] ,dtype=torch.long ,device=A ) # the president
__A = [
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
__A = model.generate(A ,do_sample=A )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,A )
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
from math import isqrt
def UpperCAmelCase ( a_ ) -> list[int]:
"""simple docstring"""
__A = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , a_ , a_ ):
__A = False
return [i for i in range(2 , a_ ) if is_prime[i]]
def UpperCAmelCase ( a_ = 1_0**8 ) -> int:
"""simple docstring"""
__A = calculate_prime_numbers(max_number // 2 )
__A = 0
__A = 0
__A = len(a_ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Any ,A : str ,A : Any ):
__A = question_encoder
__A = generator
__A = self.question_encoder
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
if os.path.isfile(A ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(A ,exist_ok=A )
__A = os.path.join(A ,"question_encoder_tokenizer" )
__A = os.path.join(A ,"generator_tokenizer" )
self.question_encoder.save_pretrained(A )
self.generator.save_pretrained(A )
@classmethod
def UpperCamelCase_ ( cls : Any ,A : str ,**A : Optional[Any] ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
__A = kwargs.pop("config" ,A )
if config is None:
__A = RagConfig.from_pretrained(A )
__A = AutoTokenizer.from_pretrained(
A ,config=config.question_encoder ,subfolder="question_encoder_tokenizer" )
__A = AutoTokenizer.from_pretrained(
A ,config=config.generator ,subfolder="generator_tokenizer" )
return cls(question_encoder=A ,generator=A )
def __call__( self : Tuple ,*A : List[str] ,**A : str ):
return self.current_tokenizer(*A ,**A )
def UpperCamelCase_ ( self : List[str] ,*A : List[str] ,**A : List[str] ):
return self.generator.batch_decode(*A ,**A )
def UpperCamelCase_ ( self : int ,*A : int ,**A : Union[str, Any] ):
return self.generator.decode(*A ,**A )
def UpperCamelCase_ ( self : Dict ):
__A = self.question_encoder
def UpperCamelCase_ ( self : Any ):
__A = self.generator
def UpperCamelCase_ ( self : Optional[Any] ,A : List[str] ,A : Optional[List[str]] = None ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "longest" ,A : str = None ,A : bool = True ,**A : Tuple ,):
warnings.warn(
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
"details" ,A ,)
if max_length is None:
__A = self.current_tokenizer.model_max_length
__A = self(
A ,add_special_tokens=A ,return_tensors=A ,max_length=A ,padding=A ,truncation=A ,**A ,)
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
__A = self.current_tokenizer.model_max_length
__A = self(
text_target=A ,add_special_tokens=A ,return_tensors=A ,padding=A ,max_length=A ,truncation=A ,**A ,)
__A = labels["input_ids"]
return model_inputs
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import pytest
import datasets
# Import fixture modules as plugins
SCREAMING_SNAKE_CASE :str = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec']
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ["integration", "unit"] ):
continue
item.add_marker(pytest.mark.unit )
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" )
@pytest.fixture(autouse=a_ )
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
__A = tmp_path_factory.getbasetemp() / "cache"
__A = test_hf_cache_home / "datasets"
__A = test_hf_cache_home / "metrics"
__A = test_hf_cache_home / "modules"
monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(a_ ) )
monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(a_ ) )
monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(a_ ) )
__A = test_hf_datasets_cache / "downloads"
monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(a_ ) )
__A = test_hf_datasets_cache / "downloads" / "extracted"
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(a_ ) )
@pytest.fixture(autouse=a_ , scope="session" )
def UpperCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=a_ )
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , a_ )
@pytest.fixture
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , a_ )
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
import functools
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
__A = len(a_ )
__A = len(a_ )
@functools.cache
def min_distance(a_ , a_ ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
__A = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , a_ ) , 1 + min_distance(a_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Dict ,A : Optional[Any] ,):
__A = parent
__A = 13
__A = 7
__A = 30
__A = self.seq_length + self.mem_len
__A = 15
__A = True
__A = True
__A = 99
__A = [10, 50, 80]
__A = 32
__A = 32
__A = 4
__A = 8
__A = 1_28
__A = 2
__A = 2
__A = None
__A = 1
__A = 0
__A = 3
__A = self.vocab_size - 1
__A = 0.01
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = TransfoXLConfig(
vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,)
return (config, input_ids_a, input_ids_a, lm_labels)
def UpperCamelCase_ ( self : Any ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : str ,A : Optional[Any] ,A : Union[str, Any] ):
__A = TFTransfoXLModel(A )
__A , __A = model(A ).to_tuple()
__A = {"input_ids": input_ids_a, "mems": mems_a}
__A , __A = model(A ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ,A : Any ,A : Any ,A : Optional[Any] ):
__A = TFTransfoXLLMHeadModel(A )
__A , __A = model(A ).to_tuple()
__A = {"input_ids": input_ids_a, "labels": lm_labels}
__A , __A = model(A ).to_tuple()
__A , __A = model([input_ids_a, mems_a] ).to_tuple()
__A = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels}
__A , __A = model(A ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,)
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : str ,A : Union[str, Any] ,A : Optional[int] ):
__A = TFTransfoXLForSequenceClassification(A )
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : int ):
__A = self.prepare_config_and_inputs()
((__A) , (__A) , (__A) , (__A)) = config_and_inputs
__A = {"input_ids": input_ids_a}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
snake_case_ = () if is_tf_available() else ()
snake_case_ = (
{
"feature-extraction": TFTransfoXLModel,
"text-classification": TFTransfoXLForSequenceClassification,
"text-generation": TFTransfoXLLMHeadModel,
"zero-shot": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[Any] ,A : Any ,A : Optional[Any] ,A : List[Any] ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def UpperCamelCase_ ( self : Optional[Any] ):
__A = TFTransfoXLModelTester(self )
__A = ConfigTester(self ,config_class=A ,d_embed=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Tuple ):
self.model_tester.set_seed()
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*A )
def UpperCamelCase_ ( self : str ):
self.model_tester.set_seed()
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*A )
def UpperCamelCase_ ( self : int ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Tuple ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
__A = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
__A = model_class(A )
assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
__A = model.get_output_embeddings()
assert isinstance(A ,tf.keras.layers.Layer )
__A = model.get_bias()
assert name is None
else:
__A = model.get_output_embeddings()
assert x is None
__A = model.get_bias()
assert name is None
def UpperCamelCase_ ( self : Union[str, Any] ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def UpperCamelCase_ ( self : List[Any] ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFTransfoXLModel.from_pretrained(A )
self.assertIsNotNone(A )
@unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip("Skip test until #12651 is resolved." )
@slow
def UpperCamelCase_ ( self : List[Any] ):
__A = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" )
# fmt: off
__A = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
__A = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
__A = model.generate(A ,max_length=2_00 ,do_sample=A )
self.assertListEqual(output_ids[0].numpy().tolist() ,A )
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ,A : List[Any] ):
__A = val
__A = None
__A = None
def UpperCamelCase_ ( self : List[str] ,A : Dict ):
if self.val:
if val < self.val:
if self.left is None:
__A = Node(A )
else:
self.left.insert(A )
elif val > self.val:
if self.right is None:
__A = Node(A )
else:
self.right.insert(A )
else:
__A = val
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
if root:
inorder(root.left , a_ )
res.append(root.val )
inorder(root.right , a_ )
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
if len(a_ ) == 0:
return arr
__A = Node(arr[0] )
for i in range(1 , len(a_ ) ):
root.insert(arr[i] )
# Traverse BST in order.
__A = []
inorder(a_ , a_ )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def UpperCAmelCase ( a_ , a_="shi-labs/oneformer_demo" ) -> Optional[int]:
"""simple docstring"""
with open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) as f:
__A = json.load(a_ )
__A = {}
__A = []
__A = []
for key, info in class_info.items():
__A = info["name"]
class_names.append(info["name"] )
if info["isthing"]:
thing_ids.append(int(a_ ) )
__A = thing_ids
__A = class_names
return metadata
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : str ,A : Optional[int] ,A : List[Any]=7 ,A : List[str]=3 ,A : Tuple=30 ,A : List[Any]=4_00 ,A : List[str]=None ,A : List[str]=True ,A : str=True ,A : Optional[Any]=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,A : List[Any]=10 ,A : Dict=False ,A : Any=2_55 ,A : int="shi-labs/oneformer_demo" ,A : Tuple="ade20k_panoptic.json" ,A : List[Any]=10 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size
__A = do_normalize
__A = image_mean
__A = image_std
__A = class_info_file
__A = prepare_metadata(A ,A )
__A = num_text
__A = repo_path
# for the post_process_functions
__A = 2
__A = 10
__A = 10
__A = 3
__A = 4
__A = num_labels
__A = do_reduce_labels
__A = ignore_index
def UpperCamelCase_ ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def UpperCamelCase_ ( self : Dict ,A : Optional[int] ,A : Tuple=False ):
if not batched:
__A = image_inputs[0]
if isinstance(A ,Image.Image ):
__A , __A = image.size
else:
__A , __A = image.shape[1], image.shape[2]
if w < h:
__A = int(self.size["shortest_edge"] * h / w )
__A = self.size["shortest_edge"]
elif w > h:
__A = self.size["shortest_edge"]
__A = int(self.size["shortest_edge"] * w / h )
else:
__A = self.size["shortest_edge"]
__A = self.size["shortest_edge"]
else:
__A = []
for image in image_inputs:
__A , __A = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__A = max(A ,key=lambda A : item[0] )[0]
__A = max(A ,key=lambda A : item[1] )[1]
return expected_height, expected_width
def UpperCamelCase_ ( self : Union[str, Any] ):
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) ,masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) ,)
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
snake_case_ = image_processing_class
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = OneFormerImageProcessorTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processing_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"ignore_index" ) )
self.assertTrue(hasattr(A ,"class_info_file" ) )
self.assertTrue(hasattr(A ,"num_text" ) )
self.assertTrue(hasattr(A ,"repo_path" ) )
self.assertTrue(hasattr(A ,"metadata" ) )
self.assertTrue(hasattr(A ,"do_reduce_labels" ) )
def UpperCamelCase_ ( self : Optional[int] ):
pass
def UpperCamelCase_ ( self : Any ):
# Initialize image_processor
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processor(image_inputs[0] ,["semantic"] ,return_tensors="pt" ).pixel_values
__A , __A = self.image_processing_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__A , __A = self.image_processing_tester.get_expected_values(A ,batched=A )
__A = image_processor(
A ,["semantic"] * len(A ) ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
# Initialize image_processor
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processor(image_inputs[0] ,["semantic"] ,return_tensors="pt" ).pixel_values
__A , __A = self.image_processing_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__A , __A = self.image_processing_tester.get_expected_values(A ,batched=A )
__A = image_processor(
A ,["semantic"] * len(A ) ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCamelCase_ ( self : Tuple ):
# Initialize image_processor
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processor(image_inputs[0] ,["semantic"] ,return_tensors="pt" ).pixel_values
__A , __A = self.image_processing_tester.get_expected_values(A )
self.assertEqual(
encoded_images.shape ,(1, self.image_processing_tester.num_channels, expected_height, expected_width) ,)
# Test batched
__A , __A = self.image_processing_tester.get_expected_values(A ,batched=A )
__A = image_processor(
A ,["semantic"] * len(A ) ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) ,)
def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple=False ,A : List[str]=False ,A : Optional[Any]="np" ):
__A = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__A = self.image_processing_tester.num_labels
__A = None
__A = None
__A = prepare_image_inputs(self.image_processing_tester ,equal_resolution=A )
if with_segmentation_maps:
__A = num_labels
if is_instance_map:
__A = list(range(A ) ) * 2
__A = dict(enumerate(A ) )
__A = [
np.random.randint(0 ,high * 2 ,(img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__A = [Image.fromarray(A ) for annotation in annotations]
__A = image_processor(
A ,["semantic"] * len(A ) ,A ,return_tensors="pt" ,instance_id_to_semantic_id=A ,pad_and_return_pixel_mask=A ,)
return inputs
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Tuple ):
def common(A : Optional[Any]=False ,A : str=None ):
__A = self.comm_get_image_processor_inputs(
with_segmentation_maps=A ,is_instance_map=A ,segmentation_type=A )
__A = inputs["mask_labels"]
__A = inputs["class_labels"]
__A = inputs["pixel_values"]
__A = inputs["text_inputs"]
# check the batch_size
for mask_label, class_label, text_input in zip(A ,A ,A ):
self.assertEqual(mask_label.shape[0] ,class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] ,pixel_values.shape[2:] )
self.assertEqual(len(A ) ,self.image_processing_tester.num_text )
common()
common(is_instance_map=A )
common(is_instance_map=A ,segmentation_type="pil" )
common(is_instance_map=A ,segmentation_type="pil" )
def UpperCamelCase_ ( self : List[Any] ):
__A = np.zeros((20, 50) )
__A = 1
__A = 1
__A = 1
__A = binary_mask_to_rle(A )
self.assertEqual(len(A ) ,4 )
self.assertEqual(rle[0] ,21 )
self.assertEqual(rle[1] ,45 )
def UpperCamelCase_ ( self : Dict ):
__A = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes ,max_seq_length=77 ,task_seq_length=77 ,class_info_file="ade20k_panoptic.json" ,num_text=self.image_processing_tester.num_text ,repo_path="shi-labs/oneformer_demo" ,)
__A = self.image_processing_tester.get_fake_oneformer_outputs()
__A = fature_extractor.post_process_semantic_segmentation(A )
self.assertEqual(len(A ) ,self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape ,(
self.image_processing_tester.height,
self.image_processing_tester.width,
) ,)
__A = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__A = fature_extractor.post_process_semantic_segmentation(A ,target_sizes=A )
self.assertEqual(segmentation[0].shape ,target_sizes[0] )
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes ,max_seq_length=77 ,task_seq_length=77 ,class_info_file="ade20k_panoptic.json" ,num_text=self.image_processing_tester.num_text ,repo_path="shi-labs/oneformer_demo" ,)
__A = self.image_processing_tester.get_fake_oneformer_outputs()
__A = image_processor.post_process_instance_segmentation(A ,threshold=0 )
self.assertTrue(len(A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("segmentation" in el )
self.assertTrue("segments_info" in el )
self.assertEqual(type(el["segments_info"] ) ,A )
self.assertEqual(
el["segmentation"].shape ,(self.image_processing_tester.height, self.image_processing_tester.width) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes ,max_seq_length=77 ,task_seq_length=77 ,class_info_file="ade20k_panoptic.json" ,num_text=self.image_processing_tester.num_text ,repo_path="shi-labs/oneformer_demo" ,)
__A = self.image_processing_tester.get_fake_oneformer_outputs()
__A = image_processor.post_process_panoptic_segmentation(A ,threshold=0 )
self.assertTrue(len(A ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("segmentation" in el )
self.assertTrue("segments_info" in el )
self.assertEqual(type(el["segments_info"] ) ,A )
self.assertEqual(
el["segmentation"].shape ,(self.image_processing_tester.height, self.image_processing_tester.width) )
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 1
@register_to_config
def __init__( self : List[Any] ,A : str=20_00 ,A : str=0.1 ,A : List[str]=20 ,A : int=1E-3 ):
__A = None
__A = None
__A = None
def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Union[str, torch.device] = None ):
__A = torch.linspace(1 ,self.config.sampling_eps ,A ,device=A )
def UpperCamelCase_ ( self : Dict ,A : List[Any] ,A : Optional[Any] ,A : Union[str, Any] ,A : Union[str, Any]=None ):
if self.timesteps is None:
raise ValueError(
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
__A = (
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
__A = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
__A = std.flatten()
while len(std.shape ) < len(score.shape ):
__A = std.unsqueeze(-1 )
__A = -score / std
# compute
__A = -1.0 / len(self.timesteps )
__A = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
__A = beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
__A = beta_t.unsqueeze(-1 )
__A = -0.5 * beta_t * x
__A = torch.sqrt(A )
__A = drift - diffusion**2 * score
__A = x + drift * dt
# add noise
__A = randn_tensor(x.shape ,layout=x.layout ,generator=A ,device=x.device ,dtype=x.dtype )
__A = x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self : Optional[Any] ):
return self.config.num_train_timesteps
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Dict = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "ibert"
def __init__( self : Union[str, Any] ,A : Tuple=3_05_22 ,A : Optional[Any]=7_68 ,A : List[Any]=12 ,A : Optional[Any]=12 ,A : List[str]=30_72 ,A : Union[str, Any]="gelu" ,A : str=0.1 ,A : int=0.1 ,A : Dict=5_12 ,A : str=2 ,A : Any=0.02 ,A : str=1E-12 ,A : List[str]=1 ,A : str=0 ,A : Optional[Any]=2 ,A : Union[str, Any]="absolute" ,A : Optional[int]=False ,A : Any="none" ,**A : str ,):
super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A )
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_act
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = initializer_range
__A = layer_norm_eps
__A = position_embedding_type
__A = quant_mode
__A = force_dequant
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Tuple ):
if self.task == "multiple-choice":
__A = {0: "batch", 1: "choice", 2: "sequence"}
else:
__A = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
SCREAMING_SNAKE_CASE :Dict = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE :Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS)
SCREAMING_SNAKE_CASE :int = transformers.models.auto.configuration_auto.CONFIG_MAPPING
SCREAMING_SNAKE_CASE :Union[str, Any] = {
# used to compute the property `self.chunk_length`
'EncodecConfig': ['overlap'],
# used as `self.bert_model = BertModel(config, ...)`
'DPRConfig': True,
# not used in modeling files, but it's an important information
'FSMTConfig': ['langs'],
# used internally in the configuration class file
'GPTNeoConfig': ['attention_types'],
# used internally in the configuration class file
'EsmConfig': ['is_folding_model'],
# used during training (despite we don't have training script for these models yet)
'Mask2FormerConfig': ['ignore_value'],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
'OneFormerConfig': ['ignore_value', 'norm'],
# used during preprocessing and collation, see `collating_graphormer.py`
'GraphormerConfig': ['spatial_pos_max'],
# used internally in the configuration class file
'T5Config': ['feed_forward_proj'],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
'MT5Config': ['feed_forward_proj', 'tokenizer_class'],
'UMT5Config': ['feed_forward_proj', 'tokenizer_class'],
# used internally in the configuration class file
'LongT5Config': ['feed_forward_proj'],
# used internally in the configuration class file
'SwitchTransformersConfig': ['feed_forward_proj'],
# having default values other than `1e-5` - we can't fix them without breaking
'BioGptConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'GLPNConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'SegformerConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'CvtConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'PerceiverConfig': ['layer_norm_eps'],
# used internally to calculate the feature size
'InformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate the feature size
'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate the feature size
'AutoformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate `mlp_dim`
'SamVisionConfig': ['mlp_ratio'],
# For (head) training, but so far not implemented
'ClapAudioConfig': ['num_classes'],
# Not used, but providing useful information to users
'SpeechT5HifiGanConfig': ['sampling_rate'],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
'CLIPSegConfig': True,
'DeformableDetrConfig': True,
'DetaConfig': True,
'DinatConfig': True,
'DonutSwinConfig': True,
'EfficientFormerConfig': True,
'FSMTConfig': True,
'JukeboxConfig': True,
'LayoutLMv2Config': True,
'MaskFormerSwinConfig': True,
'MT5Config': True,
'NatConfig': True,
'OneFormerConfig': True,
'PerceiverConfig': True,
'RagConfig': True,
'SpeechT5Config': True,
'SwinConfig': True,
'Swin2SRConfig': True,
'Swinv2Config': True,
'SwitchTransformersConfig': True,
'TableTransformerConfig': True,
'TapasConfig': True,
'TransfoXLConfig': True,
'UniSpeechConfig': True,
'UniSpeechSatConfig': True,
'WavLMConfig': True,
'WhisperConfig': True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
'JukeboxPriorConfig': True,
# TODO: @Younes (for `is_decoder`)
'Pix2StructTextConfig': True,
}
)
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> str:
"""simple docstring"""
__A = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
F'''config.{attribute}''' in modeling_source
or F'''getattr(config, "{attribute}"''' in modeling_source
or F'''getattr(self.config, "{attribute}"''' in modeling_source
):
__A = True
# Deal with multi-line cases
elif (
re.search(
rF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , a_ , )
is not None
):
__A = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
__A = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
__A = [
"bos_index",
"eos_index",
"pad_index",
"unk_index",
"mask_index",
"image_size",
"use_cache",
"out_features",
"out_indices",
]
__A = ["encoder_no_repeat_ngram_size"]
# Special cases to be allowed
__A = True
if not attribute_used:
__A = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
__A = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
__A = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
__A = True
elif attribute.endswith("_token_id" ):
__A = True
# configuration class specific cases
if not case_allowed:
__A = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
__A = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
__A = dict(inspect.signature(config_class.__init__ ).parameters )
__A = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]]
__A = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
__A = {}
if len(config_class.attribute_map ) > 0:
__A = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
__A = inspect.getsourcefile(a_ )
__A = os.path.dirname(a_ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
__A = [os.path.join(a_ , a_ ) for fn in os.listdir(a_ ) if fn.startswith("modeling_" )]
# Get the source code strings
__A = []
for path in modeling_paths:
if os.path.isfile(a_ ):
with open(a_ ) as fp:
modeling_sources.append(fp.read() )
__A = []
for config_param, default_value in zip(a_ , a_ ):
# `attributes` here is all the variant names for `config_param`
__A = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(a_ , a_ , a_ , a_ ):
unused_attributes.append(attributes[0] )
return sorted(a_ )
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
__A = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda a_ : inspect.isclass(a_ )
and issubclass(a_ , a_ )
and inspect.getmodule(a_ ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
__A = check_config_attributes_being_used(a_ )
if len(a_ ) > 0:
__A = unused_attributes
if len(a_ ) > 0:
__A = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
for name, attributes in configs_with_unused_attributes.items():
error += F'''{name}: {attributes}\n'''
raise ValueError(a_ )
if __name__ == "__main__":
check_config_attributes()
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if any(not isinstance(a_ , a_ ) or x < 0 for x in sequence ):
raise TypeError("Sequence must be list of non-negative integers" )
for _ in range(len(a_ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(a_ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__A = gray_code_sequence_string(a_ )
#
# convert them to integers
for i in range(len(a_ ) ):
__A = int(sequence[i] , 2 )
return sequence
def UpperCAmelCase ( a_ ) -> list:
"""simple docstring"""
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__A = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__A = gray_code_sequence_string(bit_count - 1 )
__A = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__A = "0" + smaller_sequence[i]
sequence.append(a_ )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__A = "1" + smaller_sequence[i]
sequence.append(a_ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
import os
from typing import Dict, List, Tuple, TypeVar, Union
SCREAMING_SNAKE_CASE :Optional[Any] = TypeVar('T')
SCREAMING_SNAKE_CASE :Dict = Union[List[T], Tuple[T, ...]]
SCREAMING_SNAKE_CASE :Optional[Any] = Union[T, List[T], Dict[str, T]]
SCREAMING_SNAKE_CASE :Any = Union[str, bytes, os.PathLike]
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = '▁'
SCREAMING_SNAKE_CASE :int = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
SCREAMING_SNAKE_CASE :Any = {
'facebook/s2t-small-librispeech-asr': 1024,
}
SCREAMING_SNAKE_CASE :List[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
SCREAMING_SNAKE_CASE :Optional[Any] = {'mustc': MUSTC_LANGS}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = MAX_MODEL_INPUT_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = []
def __init__( self : Optional[Any] ,A : int ,A : Dict ,A : int="<s>" ,A : List[Any]="</s>" ,A : Dict="<pad>" ,A : List[str]="<unk>" ,A : List[Any]=False ,A : List[str]=False ,A : Union[str, Any]=None ,A : Dict=None ,A : Optional[Dict[str, Any]] = None ,**A : Optional[int] ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=A ,eos_token=A ,unk_token=A ,pad_token=A ,do_upper_case=A ,do_lower_case=A ,tgt_lang=A ,lang_codes=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = do_upper_case
__A = do_lower_case
__A = load_json(A )
__A = {v: k for k, v in self.encoder.items()}
__A = spm_file
__A = load_spm(A ,self.sp_model_kwargs )
if lang_codes is not None:
__A = lang_codes
__A = LANGUAGES[lang_codes]
__A = [f'''<lang:{lang}>''' for lang in self.langs]
__A = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs}
__A = self.lang_tokens
__A = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
__A = {}
@property
def UpperCamelCase_ ( self : Optional[int] ):
return len(self.encoder )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self._tgt_lang
@tgt_lang.setter
def UpperCamelCase_ ( self : str ,A : Any ):
__A = new_tgt_lang
self.set_tgt_lang_special_tokens(A )
def UpperCamelCase_ ( self : List[str] ,A : str ):
__A = self.lang_code_to_id[tgt_lang]
__A = [lang_code_id]
def UpperCamelCase_ ( self : Dict ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ):
return self.encoder.get(A ,self.encoder[self.unk_token] )
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ):
return self.decoder.get(A ,self.unk_token )
def UpperCamelCase_ ( self : Tuple ,A : List[str] ):
__A = []
__A = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
__A = self.sp_model.decode(A )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
__A = []
else:
current_sub_tokens.append(A )
__A = self.sp_model.decode(A )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def UpperCamelCase_ ( self : Optional[int] ,A : int ,A : Union[str, Any]=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self : Dict ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
__A = [1] * len(self.prefix_tokens )
__A = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(A )) + suffix_ones
return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones
def UpperCamelCase_ ( self : List[Any] ):
__A = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : Optional[int] ,A : Dict ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = load_spm(self.spm_file ,self.sp_model_kwargs )
def UpperCamelCase_ ( self : Union[str, Any] ,A : str ,A : Optional[str] = None ):
__A = Path(A )
assert save_dir.is_dir(), f'''{save_directory} should be a directory'''
__A = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
__A = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder ,A )
if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file ,A )
elif not os.path.isfile(self.spm_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (str(A ), str(A ))
def UpperCAmelCase ( a_ , a_ ) -> sentencepiece.SentencePieceProcessor:
"""simple docstring"""
__A = sentencepiece.SentencePieceProcessor(**a_ )
spm.Load(str(a_ ) )
return spm
def UpperCAmelCase ( a_ ) -> Union[Dict, List]:
"""simple docstring"""
with open(a_ , "r" ) as f:
return json.load(a_ )
def UpperCAmelCase ( a_ , a_ ) -> None:
"""simple docstring"""
with open(a_ , "w" ) as f:
json.dump(a_ , a_ , indent=2 )
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
from __future__ import annotations
import math
from collections.abc import Callable
def UpperCAmelCase ( a_ , a_ , a_ , a_ = 1_0_0 , ) -> float:
"""simple docstring"""
__A = x_start
__A = fnc(a_ )
__A = 0.0
for _ in range(a_ ):
# Approximates curve as a sequence of linear lines and sums their length
__A = (x_end - x_start) / steps + xa
__A = fnc(a_ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
__A = xa
__A = fxa
return length
if __name__ == "__main__":
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return math.sin(1_0 * x )
print('f(x) = sin(10 * x)')
print('The length of the curve from x = -10 to x = 10 is:')
SCREAMING_SNAKE_CASE :Union[str, Any] = 10
while i <= 10_0000:
print(f'''With {i} steps: {line_length(f, -10, 10, i)}''')
i *= 10
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
SCREAMING_SNAKE_CASE :int = (
'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py'
)
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = "https://pypi.org/pypi/diffusers/json"
__A = json.loads(request.urlopen(a_ ).read() )["releases"].keys()
return sorted(a_ , key=lambda a_ : version.Version(a_ ) )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(a_ )
os.makedirs(a_ , exist_ok=a_ )
__A = Path(a_ ) / "__init__.py"
if not init_path.exists():
init_path.touch()
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
init_hf_modules()
__A = Path(a_ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(a_ , exist_ok=a_ )
__A = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
with open(a_ , "r" , encoding="utf-8" ) as f:
__A = f.read()
# Imports of the form `import .xxx`
__A = re.findall("^\s*import\s+\.(\S+)\s*$" , a_ , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , a_ , flags=re.MULTILINE )
# Unique-ify
return list(set(a_ ) )
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = False
__A = [module_file]
__A = []
# Let's recurse through all relative imports
while not no_change:
__A = []
for f in files_to_check:
new_imports.extend(get_relative_imports(a_ ) )
__A = Path(a_ ).parent
__A = [str(module_path / m ) for m in new_imports]
__A = [f for f in new_import_files if f not in all_relative_imports]
__A = [F'''{f}.py''' for f in new_import_files]
__A = len(a_ ) == 0
all_relative_imports.extend(a_ )
return all_relative_imports
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
with open(a_ , "r" , encoding="utf-8" ) as f:
__A = f.read()
# Imports of the form `import xxx`
__A = re.findall("^\s*import\s+(\S+)\s*$" , a_ , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import" , a_ , flags=re.MULTILINE )
# Only keep the top-level module
__A = [imp.split("." )[0] for imp in imports if not imp.startswith("." )]
# Unique-ify and test we got them all
__A = list(set(a_ ) )
__A = []
for imp in imports:
try:
importlib.import_module(a_ )
except ImportError:
missing_packages.append(a_ )
if len(a_ ) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
F'''{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`''' )
return get_relative_imports(a_ )
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
__A = module_path.replace(os.path.sep , "." )
__A = importlib.import_module(a_ )
if class_name is None:
return find_pipeline_class(a_ )
return getattr(a_ , a_ )
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
from ..pipelines import DiffusionPipeline
__A = dict(inspect.getmembers(a_ , inspect.isclass ) )
__A = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , a_ )
and cls.__module__.split("." )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:'''
F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in'''
F''' {loaded_module}.''' )
__A = cls
return pipeline_class
def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , ) -> Optional[Any]:
"""simple docstring"""
__A = str(a_ )
__A = os.path.join(a_ , a_ )
if os.path.isfile(a_ ):
__A = module_file_or_url
__A = "local"
elif pretrained_model_name_or_path.count("/" ) == 0:
__A = get_diffusers_versions()
# cut ".dev0"
__A = "v" + ".".join(__version__.split("." )[:3] )
# retrieve github version that matches
if revision is None:
__A = latest_version if latest_version[1:] in available_versions else "main"
logger.info(F'''Defaulting to latest_version: {revision}.''' )
elif revision in available_versions:
__A = F'''v{revision}'''
elif revision == "main":
__A = revision
else:
raise ValueError(
F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of'''
F''' {', '.join(available_versions + ['main'] )}.''' )
# community pipeline on GitHub
__A = COMMUNITY_PIPELINES_URL.format(revision=a_ , pipeline=a_ )
try:
__A = cached_download(
a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , )
__A = "git"
__A = pretrained_model_name_or_path + ".py"
except EnvironmentError:
logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' )
raise
else:
try:
# Load from URL or cache if already cached
__A = hf_hub_download(
a_ , a_ , cache_dir=a_ , force_download=a_ , proxies=a_ , resume_download=a_ , local_files_only=a_ , use_auth_token=a_ , )
__A = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) )
except EnvironmentError:
logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' )
raise
# Check we have all the requirements in our environment
__A = check_imports(a_ )
# Now we move the module inside our cached dynamic modules.
__A = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(a_ )
__A = Path(a_ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(a_ , submodule_path / module_file )
for module_needed in modules_needed:
__A = F'''{module_needed}.py'''
shutil.copy(os.path.join(a_ , a_ ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(a_ , a_ ):
__A = use_auth_token
elif use_auth_token is True:
__A = HfFolder.get_token()
else:
__A = None
__A = model_info(a_ , revision=a_ , token=a_ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
__A = submodule_path / commit_hash
__A = full_submodule + os.path.sep + commit_hash
create_dynamic_module(a_ )
if not (submodule_path / module_file).exists():
shutil.copy(a_ , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
a_ , F'''{module_needed}.py''' , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , )
return os.path.join(a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ = None , a_ = None , a_ = False , a_ = False , a_ = None , a_ = None , a_ = None , a_ = False , **a_ , ) -> Any:
"""simple docstring"""
__A = get_cached_module_file(
a_ , a_ , cache_dir=a_ , force_download=a_ , resume_download=a_ , proxies=a_ , use_auth_token=a_ , revision=a_ , local_files_only=a_ , )
return get_class_in_module(a_ , final_module.replace(".py" , "" ) )
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.