code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _A ( snake_case ) -> List[Any]: _lowercase : List[str] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) _lowercase : Optional[Any] = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , lowercase__ ) if matches: _lowercase : Optional[Any] = float(matches[1] ) _lowercase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowercase : Optional[Any] = 10_01 _lowercase : Dict = "imagenet-1k-id2label.json" _lowercase : Optional[int] = "huggingface/label-files" _lowercase : List[Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) _lowercase : Optional[Any] = {int(lowercase__ ) + 1: v for k, v in idalabel.items()} _lowercase : Dict = "background" _lowercase : int = idalabel _lowercase : str = {v: k for k, v in idalabel.items()} return config def _A ( ) -> Tuple: _lowercase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _A ( snake_case , snake_case , snake_case , snake_case=False ) -> List[str]: _lowercase : List[str] = get_mobilenet_va_config(lowercase__ ) # Load 🤗 model _lowercase : str = MobileNetVaForImageClassification(lowercase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase__ , lowercase__ , lowercase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowercase : str = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) _lowercase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowercase : str = model(**lowercase__ ) _lowercase : Any = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": _lowercase : Tuple = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _lowercase : Optional[Any] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _lowercase : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print("Pushing to the hub..." ) _lowercase : str = "google/" + model_name image_processor.push_to_hub(lowercase__ ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
245
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' UpperCAmelCase_ = '''mctct''' def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any]=80_65 , UpperCamelCase : int=15_36 , UpperCamelCase : int=36 , UpperCamelCase : Union[str, Any]=61_44 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : int=3_84 , UpperCamelCase : List[str]=9_20 , UpperCamelCase : Tuple=1E-5 , UpperCamelCase : Optional[int]=0.3 , UpperCamelCase : Optional[int]="relu" , UpperCamelCase : List[str]=0.02 , UpperCamelCase : Tuple=0.3 , UpperCamelCase : str=0.3 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[Any]=1 , UpperCamelCase : Optional[Any]=0.3 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[str]=(7,) , UpperCamelCase : int=(3,) , UpperCamelCase : Optional[Any]=80 , UpperCamelCase : str=1 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]="sum" , UpperCamelCase : Any=False , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowercase : str = vocab_size _lowercase : int = hidden_size _lowercase : int = num_hidden_layers _lowercase : int = intermediate_size _lowercase : Dict = num_attention_heads _lowercase : Dict = attention_head_dim _lowercase : Tuple = max_position_embeddings _lowercase : int = layer_norm_eps _lowercase : Optional[int] = layerdrop _lowercase : Optional[Any] = hidden_act _lowercase : Dict = initializer_range _lowercase : Tuple = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Optional[Any] = pad_token_id _lowercase : List[Any] = bos_token_id _lowercase : Dict = eos_token_id _lowercase : Any = conv_glu_dim _lowercase : Dict = conv_dropout _lowercase : Any = num_conv_layers _lowercase : Optional[Any] = input_feat_per_channel _lowercase : Optional[int] = input_channels _lowercase : List[Any] = conv_channels _lowercase : int = ctc_loss_reduction _lowercase : List[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json _lowercase : Optional[Any] = list(_lowerCAmelCase ) _lowercase : Optional[Any] = list(_lowerCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' )
322
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase = 50 ): """simple docstring""" _lowercase: Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A = logging.get_logger(__name__) __A = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class _A ( __lowercase , __lowercase ): """simple docstring""" lowerCamelCase : Union[str, Any] = 'dinat' lowerCamelCase : Any = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=4 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : List[Any]=64 , __SCREAMING_SNAKE_CASE : List[str]=[3, 4, 6, 5] , __SCREAMING_SNAKE_CASE : Union[str, Any]=[2, 4, 8, 16] , __SCREAMING_SNAKE_CASE : List[Any]=7 , __SCREAMING_SNAKE_CASE : List[str]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __SCREAMING_SNAKE_CASE : Tuple=3.0 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : str=1e-5 , __SCREAMING_SNAKE_CASE : List[str]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Dict , ) -> int: super().__init__(**_lowerCAmelCase ) __UpperCAmelCase =patch_size __UpperCAmelCase =num_channels __UpperCAmelCase =embed_dim __UpperCAmelCase =depths __UpperCAmelCase =len(_lowerCAmelCase ) __UpperCAmelCase =num_heads __UpperCAmelCase =kernel_size __UpperCAmelCase =dilations __UpperCAmelCase =mlp_ratio __UpperCAmelCase =qkv_bias __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =drop_path_rate __UpperCAmelCase =hidden_act __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase =int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) __UpperCAmelCase =layer_scale_init_value __UpperCAmelCase =["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCAmelCase ) + 1 )] __UpperCAmelCase , __UpperCAmelCase =get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
68
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE__ : Dict = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Dict = {} state_dict.pop('''pixel_mean''', lowercase__ ) state_dict.pop('''pixel_std''', lowercase__ ) __magic_name__ :List[str] = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __magic_name__ :str = key.replace(lowercase__, lowercase__ ) if re.match(lowercase__, lowercase__ ): __magic_name__ :str = int(re.match(lowercase__, lowercase__ ).group(2 ) ) if layer_nb == 0: __magic_name__ :Optional[Any] = key.replace('''layers.0''', '''proj_in''' ) elif layer_nb == 1: __magic_name__ :Optional[Any] = key.replace('''layers.1''', '''layers.0''' ) elif layer_nb == 2: __magic_name__ :List[Any] = key.replace('''layers.2''', '''proj_out''' ) __magic_name__ :List[str] = value __magic_name__ :str = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def __lowercase ( snake_case, snake_case, snake_case, snake_case="ybelkada/segment-anything" ): """simple docstring""" __magic_name__ :Union[str, Any] = hf_hub_download(lowercase__, f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: __magic_name__ :List[Any] = SamConfig() elif "sam_vit_l" in model_name: __magic_name__ :Optional[Any] = SamVisionConfig( hidden_size=1_0_2_4, num_hidden_layers=2_4, num_attention_heads=1_6, global_attn_indexes=[5, 1_1, 1_7, 2_3], ) __magic_name__ :str = SamConfig( vision_config=lowercase__, ) elif "sam_vit_h" in model_name: __magic_name__ :Union[str, Any] = SamVisionConfig( hidden_size=1_2_8_0, num_hidden_layers=3_2, num_attention_heads=1_6, global_attn_indexes=[7, 1_5, 2_3, 3_1], ) __magic_name__ :Union[str, Any] = SamConfig( vision_config=lowercase__, ) __magic_name__ :Union[str, Any] = torch.load(lowercase__, map_location='''cpu''' ) __magic_name__ :Optional[int] = replace_keys(lowercase__ ) __magic_name__ :int = SamImageProcessor() __magic_name__ :List[Any] = SamProcessor(image_processor=lowercase__ ) __magic_name__ :str = SamModel(lowercase__ ) hf_model.load_state_dict(lowercase__ ) __magic_name__ :List[str] = hf_model.to('''cuda''' ) __magic_name__ :Tuple = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __magic_name__ :List[Any] = Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ).convert('''RGB''' ) __magic_name__ :int = [[[4_0_0, 6_5_0]]] __magic_name__ :Optional[Any] = [[1]] __magic_name__ :Any = processor(images=np.array(lowercase__ ), return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __magic_name__ :Union[str, Any] = hf_model(**lowercase__ ) __magic_name__ :Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __magic_name__ :Tuple = processor( images=np.array(lowercase__ ), input_points=lowercase__, input_labels=lowercase__, return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __magic_name__ :Dict = hf_model(**lowercase__ ) __magic_name__ :Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __magic_name__ :List[Any] = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) __magic_name__ :int = processor(images=np.array(lowercase__ ), input_boxes=lowercase__, return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __magic_name__ :Optional[int] = hf_model(**lowercase__ ) __magic_name__ :List[Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __magic_name__ :Optional[int] = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] __magic_name__ :Union[str, Any] = [[1, 1]] __magic_name__ :List[Any] = processor( images=np.array(lowercase__ ), input_points=lowercase__, input_labels=lowercase__, return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __magic_name__ :int = hf_model(**lowercase__ ) __magic_name__ :int = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() SCREAMING_SNAKE_CASE__ : List[Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
from __future__ import annotations from typing import Any def __UpperCAmelCase ( UpperCAmelCase )-> Tuple: """simple docstring""" if not postfix_notation: return 0 lowercase = {'''+''', '''-''', '''*''', '''/'''} lowercase = [] for token in postfix_notation: if token in operations: lowercase ,lowercase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
604
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = set() # edges = list of graph's edges _UpperCamelCase : Dict = get_edges(lowercase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : int = edges.pop() chosen_vertices.add(lowercase__ ) chosen_vertices.add(lowercase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase__ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
624
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
"""simple docstring""" from scipy.stats import spearmanr import datasets __lowerCAmelCase : str =""" The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowerCAmelCase : Optional[Any] =""" Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowerCAmelCase : Dict =R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = spearmanr(_lowerCAmelCase , _lowerCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
359
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase (__lowercase ): def __init__( self : int , *__UpperCAmelCase : List[Any] , __UpperCAmelCase : Any=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Any ) -> List[str]: super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = eval_examples SCREAMING_SNAKE_CASE__ = post_process_function def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Optional[Dataset] = None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "eval" , **__UpperCAmelCase : Any , ) -> Dict[str, float]: SCREAMING_SNAKE_CASE__ = gen_kwargs.copy() SCREAMING_SNAKE_CASE__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE__ = gen_kwargs SCREAMING_SNAKE_CASE__ = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE__ = self.get_eval_dataloader(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE__ = eval_loop( _lowerCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE__ = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE__ = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str = "test" , **__UpperCAmelCase : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = gen_kwargs.copy() SCREAMING_SNAKE_CASE__ = self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE__ = self.compute_metrics SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE__ = eval_loop( _lowerCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: SCREAMING_SNAKE_CASE__ = compute_metrics SCREAMING_SNAKE_CASE__ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE__ = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , """predict""" ) SCREAMING_SNAKE_CASE__ = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE__ = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase )
196
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = os.path.join(args.tf_model_dir , 'parameters.json' ) _lowerCAmelCase : Optional[Any] = json.loads(open(lowercase__ ).read() ) if not params: raise ValueError( f"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('.pt' ): _lowerCAmelCase : str = args.output + '.pt' _lowerCAmelCase : List[str] = OrderedDict() with tf.device('/CPU:0' ): _lowerCAmelCase : Optional[int] = tf.train.load_checkpoint(args.tf_model_dir ) _lowerCAmelCase : Optional[int] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _lowerCAmelCase : Optional[int] = reader.get_tensor(lowercase__ ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): _lowerCAmelCase : List[str] = int(key_name[9] ) elif key_name.startswith('pasts/out' ): _lowerCAmelCase : Union[str, Any] = 8 _lowerCAmelCase : List[str] = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _lowerCAmelCase : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[Any] = torch.tensor(lowercase__ ) elif key_name.startswith('model/moe' ): _lowerCAmelCase : List[Any] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): _lowerCAmelCase : int = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player _lowerCAmelCase : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Tuple = torch.tensor(lowercase__ ) elif key_name.endswith('/softmlp/kernel' ): _lowerCAmelCase : Dict = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player _lowerCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Optional[Any] = torch.tensor(lowercase__ ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): _lowerCAmelCase : List[str] = key_name[-9:-7] for i in range(16 ): _lowerCAmelCase : str = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) _lowerCAmelCase : Tuple = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) elif key_name.startswith('model/mlp' ): _lowerCAmelCase : Any = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): _lowerCAmelCase : Union[str, Any] = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player _lowerCAmelCase : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Dict = torch.tensor(lowercase__ ) elif key_name.endswith('/p1/bias' ): _lowerCAmelCase : List[str] = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player _lowerCAmelCase : List[str] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Optional[int] = torch.tensor(lowercase__ ) elif key_name.endswith('/p2/kernel' ): _lowerCAmelCase : Any = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player _lowerCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : str = torch.tensor(lowercase__ ) elif key_name.endswith('/p2/bias' ): _lowerCAmelCase : Tuple = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player _lowerCAmelCase : Union[str, Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) elif key_name.startswith('model/ln' ): _lowerCAmelCase : List[Any] = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase : int = 'model.blocks.%d.feed_forward.norm.bias' % player _lowerCAmelCase : Dict = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Optional[int] = torch.tensor(lowercase__ ) elif key_name.endswith('/g' ): _lowerCAmelCase : str = 'model.blocks.%d.feed_forward.norm.weight' % player _lowerCAmelCase : Tuple = vnp.copy() # same because it is one dimensional _lowerCAmelCase : List[Any] = torch.tensor(lowercase__ ) elif key_name.startswith('model/att' ): _lowerCAmelCase : Union[str, Any] = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): _lowerCAmelCase : Dict = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _lowerCAmelCase : Dict = state[:, 0, :, :] _lowerCAmelCase : Dict = state[:, 1, :, :] _lowerCAmelCase : Tuple = state[:, 2, :, :] _lowerCAmelCase : Optional[int] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : int = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) _lowerCAmelCase : Any = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player _lowerCAmelCase : str = torch.tensor(lowercase__ ) _lowerCAmelCase : Tuple = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player _lowerCAmelCase : Union[str, Any] = torch.tensor(lowercase__ ) elif key_name.endswith('/o/kernel' ): _lowerCAmelCase : Optional[Any] = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player _lowerCAmelCase : str = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : Dict = torch.tensor(lowercase__ ) elif key_name.startswith('model/an' ): _lowerCAmelCase : str = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): _lowerCAmelCase : str = 'model.blocks.%d.self_attn.norm.bias' % player _lowerCAmelCase : Optional[int] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : int = torch.tensor(lowercase__ ) elif key_name.endswith('/g' ): _lowerCAmelCase : Tuple = 'model.blocks.%d.self_attn.norm.weight' % player _lowerCAmelCase : Optional[Any] = vnp.copy() # same because it is one dimensional _lowerCAmelCase : Tuple = torch.tensor(lowercase__ ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): _lowerCAmelCase : List[Any] = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] _lowerCAmelCase : Any = 'model.%s.weight' % nlayer _lowerCAmelCase : Union[str, Any] = vnp.copy() # same in embedded _lowerCAmelCase : List[str] = torch.tensor(lowercase__ ) if key_name.startswith('model/wte' ): _lowerCAmelCase : List[Any] = 'lm_head.weight' _lowerCAmelCase : Tuple = vnp.copy() # same in embedded _lowerCAmelCase : Any = torch.tensor(lowercase__ ) elif key_name.startswith('model/wob' ): _lowerCAmelCase : Optional[Any] = 'final_logits_bias' _lowerCAmelCase : Dict = vnp.copy() # same in embedded _lowerCAmelCase : List[Any] = state.reshape((1, -1) ) _lowerCAmelCase : Tuple = torch.tensor(lowercase__ ) elif key_name == "model/dense/kernel": _lowerCAmelCase : Optional[int] = 'model.last_project.weight' _lowerCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _lowerCAmelCase : str = torch.tensor(lowercase__ ) elif key_name == "model/dense_1/bias": _lowerCAmelCase : Any = 'model.last_project.bias' _lowerCAmelCase : Tuple = vnp.copy() # same because it is one dimensional _lowerCAmelCase : int = torch.tensor(lowercase__ ) torch.save(lowercase__ , args.output ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") _lowerCAmelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
259
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) _lowerCAmelCase : str = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _lowerCAmelCase : int = DDPMScheduler() _lowerCAmelCase : Optional[int] = AudioDiffusionPipeline(vqvae=_lowerCAmelCase , unet=self.dummy_unet , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _lowerCAmelCase : List[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) _lowerCAmelCase : Tuple = pipe(generator=_lowerCAmelCase , steps=4 ) _lowerCAmelCase : Tuple = output.audios[0] _lowerCAmelCase : List[Any] = output.images[0] _lowerCAmelCase : Dict = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) _lowerCAmelCase : Union[str, Any] = pipe(generator=_lowerCAmelCase , steps=4 , return_dict=_lowerCAmelCase ) _lowerCAmelCase : Tuple = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _lowerCAmelCase : Optional[Any] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Optional[Any] = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Optional[int] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase : Tuple = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _lowerCAmelCase : Union[str, Any] = DDIMScheduler() _lowerCAmelCase : List[str] = self.dummy_vqvae_and_unet _lowerCAmelCase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) _lowerCAmelCase : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _lowerCAmelCase : Union[str, Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) _lowerCAmelCase : int = pipe(raw_audio=_lowerCAmelCase , generator=_lowerCAmelCase , start_step=5 , steps=10 ) _lowerCAmelCase : str = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _lowerCAmelCase : List[Any] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Any = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _lowerCAmelCase : Tuple = self.dummy_unet_condition _lowerCAmelCase : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_lowerCAmelCase , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _lowerCAmelCase : List[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) _lowerCAmelCase : int = torch.rand((1, 1, 10) ) _lowerCAmelCase : str = pipe(generator=_lowerCAmelCase , encoding=_lowerCAmelCase ) _lowerCAmelCase : Tuple = output.images[0] _lowerCAmelCase : Tuple = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : int = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Tuple = torch_device _lowerCAmelCase : Dict = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _lowerCAmelCase : List[Any] = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : List[str] = torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) _lowerCAmelCase : int = pipe(generator=_lowerCAmelCase ) _lowerCAmelCase : Any = output.audios[0] _lowerCAmelCase : int = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _lowerCAmelCase : List[str] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _lowerCAmelCase : Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
429
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _A ( snake_case ) -> Any: _lowercase : int = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowercase : int = 1_28 elif "12-12" in model_name: _lowercase : List[str] = 12 _lowercase : Optional[Any] = 12 elif "14-14" in model_name: _lowercase : Dict = 14 _lowercase : List[Any] = 14 elif "16-16" in model_name: _lowercase : Any = 16 _lowercase : Dict = 16 else: raise ValueError("Model not supported" ) _lowercase : Tuple = "huggingface/label-files" if "speech-commands" in model_name: _lowercase : int = 35 _lowercase : Optional[int] = "speech-commands-v2-id2label.json" else: _lowercase : int = 5_27 _lowercase : Union[str, Any] = "audioset-id2label.json" _lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) _lowercase : Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowercase : Optional[Any] = idalabel _lowercase : Dict = {v: k for k, v in idalabel.items()} return config def _A ( snake_case ) -> Tuple: if "module.v" in name: _lowercase : Tuple = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: _lowercase : Tuple = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: _lowercase : Dict = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: _lowercase : Union[str, Any] = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _lowercase : Any = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: _lowercase : int = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: _lowercase : Optional[int] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _lowercase : int = name.replace("attn" , "attention.self" ) if "norm1" in name: _lowercase : List[str] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _lowercase : Any = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _lowercase : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowercase : Optional[int] = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: _lowercase : str = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: _lowercase : Any = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def _A ( snake_case , snake_case ) -> Dict: for key in orig_state_dict.copy().keys(): _lowercase : str = orig_state_dict.pop(lowercase__ ) if "qkv" in key: _lowercase : int = key.split("." ) _lowercase : Tuple = int(key_split[3] ) _lowercase : Dict = config.hidden_size if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : Optional[Any] = val[dim : dim * 2, :] _lowercase : Dict = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Optional[int] = val[dim : dim * 2] _lowercase : int = val[-dim:] else: _lowercase : Optional[Any] = val return orig_state_dict def _A ( snake_case ) -> List[str]: _lowercase : str = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) @torch.no_grad() def _A ( snake_case , snake_case , snake_case=False ) -> int: _lowercase : Optional[int] = get_audio_spectrogram_transformer_config(lowercase__ ) _lowercase : str = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict _lowercase : int = model_name_to_url[model_name] _lowercase : str = torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" ) # remove some keys remove_keys(lowercase__ ) # rename some keys _lowercase : str = convert_state_dict(lowercase__ , lowercase__ ) # load 🤗 model _lowercase : List[str] = ASTForAudioClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowercase : Tuple = -4.2677393 if "speech-commands" not in model_name else -6.845978 _lowercase : Dict = 4.5689974 if "speech-commands" not in model_name else 5.5654526 _lowercase : Optional[Any] = 10_24 if "speech-commands" not in model_name else 1_28 _lowercase : List[Any] = ASTFeatureExtractor(mean=lowercase__ , std=lowercase__ , max_length=lowercase__ ) if "speech-commands" in model_name: _lowercase : Any = load_dataset("speech_commands" , "v0.02" , split="validation" ) _lowercase : Union[str, Any] = dataset[0]["audio"]["array"] else: _lowercase : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) _lowercase , _lowercase : Tuple = torchaudio.load(lowercase__ ) _lowercase : Any = waveform.squeeze().numpy() _lowercase : Any = feature_extractor(lowercase__ , sampling_rate=1_60_00 , return_tensors="pt" ) # forward pass _lowercase : Optional[int] = model(**lowercase__ ) _lowercase : Optional[Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowercase : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowercase : Optional[Any] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowercase : Optional[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowercase : Tuple = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowercase : Any = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowercase : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowercase : int = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowercase : Any = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(lowercase__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
245
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py UpperCamelCase__ = """src/diffusers""" # Matches is_xxx_available() UpperCamelCase__ = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla UpperCamelCase__ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') UpperCamelCase__ = """ {0} = None """ UpperCamelCase__ = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ UpperCamelCase__ = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' _lowercase : str = _re_backend.findall(lowercase__ ) if len(lowercase__ ) == 0: return None return "_and_".join(lowercase__ ) def UpperCamelCase__ ( ) -> Any: '''simple docstring''' with open(os.path.join(lowercase__ , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase : Union[str, Any] = f.readlines() # Get to the point we do the actual imports for type checking _lowercase : Any = 0 _lowercase : Optional[int] = {} # Go through the end of the file while line_index < len(lowercase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _lowercase : str = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _lowercase : str = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase__ ) and len(lines[line_index] ) > 1: _lowercase : Union[str, Any] = lines[line_index] _lowercase : List[Any] = _re_single_line_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase__ ) > 0: _lowercase : Optional[Any] = objects else: line_index += 1 return backend_specific_objects def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Union[str, Any]: '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(lowercase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase__ , lowercase__ ) else: return DUMMY_CLASS.format(lowercase__ , lowercase__ ) def UpperCamelCase__ ( UpperCAmelCase_=None ) -> int: '''simple docstring''' if backend_specific_objects is None: _lowercase : Any = read_init() # For special correspondence backend to module name as used in the function requires_modulename _lowercase : Any = {} for backend, objects in backend_specific_objects.items(): _lowercase : Union[str, Any] = '''[''' + ''', '''.join(F'"{b}"' for b in backend.split('''_and_''' ) ) + ''']''' _lowercase : Tuple = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase__ , lowercase__ ) for o in objects] ) _lowercase : Optional[Any] = dummy_file return dummy_files def UpperCamelCase__ ( UpperCAmelCase_=False ) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _lowercase : str = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _lowercase : List[Any] = os.path.join(lowercase__ , '''utils''' ) _lowercase : int = { backend: os.path.join(lowercase__ , F'dummy_{short_names.get(lowercase__ , lowercase__ )}_objects.py' ) for backend in dummy_files.keys() } _lowercase : Optional[int] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase__ ): with open(lowercase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase : int = f.read() else: _lowercase : int = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(lowercase__ , lowercase__ )}_objects.py as the main ' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F'diffusers.utils.dummy_{short_names.get(lowercase__ , lowercase__ )}_objects.py. Run `make fix-copies` ' '''to fix this.''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
322
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase , _lowercase: Optional[int] = position _lowercase: Union[str, Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _lowercase: List[Any] = [] for position in positions: _lowercase , _lowercase: int = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowercase__ ) return permissible_positions def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if is_complete(lowercase__ ): return True for position in get_valid_pos(lowercase__ , len(lowercase__ ) ): _lowercase , _lowercase: str = position if board[y][x] == 0: _lowercase: Tuple = curr + 1 if open_knight_tour_helper(lowercase__ , lowercase__ , curr + 1 ): return True _lowercase: List[Any] = 0 return False def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: List[str] = [[0 for i in range(lowercase__ )] for j in range(lowercase__ )] for i in range(lowercase__ ): for j in range(lowercase__ ): _lowercase: int = 1 if open_knight_tour_helper(lowercase__ , (i, j) , 1 ): return board _lowercase: Union[str, Any] = 0 _lowercase: List[Any] = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
353
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
def lowercase__ ( A_: List[str] ) -> List[str]: """simple docstring""" if not head: return True # split the list to two parts __UpperCAmelCase , __UpperCAmelCase =head.next, head while fast and fast.next: __UpperCAmelCase =fast.next.next __UpperCAmelCase =slow.next __UpperCAmelCase =slow.next __UpperCAmelCase =None # Don't forget here! But forget still works! # reverse the second part __UpperCAmelCase =None while second: __UpperCAmelCase =second.next __UpperCAmelCase =node __UpperCAmelCase =second __UpperCAmelCase =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __UpperCAmelCase =node.next __UpperCAmelCase =head.next return True def lowercase__ ( A_: Optional[Any] ) -> Optional[Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __UpperCAmelCase =__UpperCAmelCase =__UpperCAmelCase =head while fast and fast.next: __UpperCAmelCase , __UpperCAmelCase =fast.next.next, slow.next # 2. Push the second half into the stack __UpperCAmelCase =[slow.val] while slow.next: __UpperCAmelCase =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __UpperCAmelCase =cur.next return True def lowercase__ ( A_: Optional[Any] ) -> Tuple: """simple docstring""" if not head or not head.next: return True __UpperCAmelCase ={} __UpperCAmelCase =0 while head: if head.val in d: d[head.val].append(lowercase__ ) else: __UpperCAmelCase =[pos] __UpperCAmelCase =head.next pos += 1 __UpperCAmelCase =pos - 1 __UpperCAmelCase =0 for v in d.values(): if len(lowercase__ ) % 2 != 0: middle += 1 else: __UpperCAmelCase =0 for i in range(0 , len(lowercase__ ) ): if v[i] + v[len(lowercase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
68
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE__ : List[str] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __lowercase ( unittest.TestCase ): @require_torch def __a ( self : Dict ) -> int: '''simple docstring''' lowercase = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) lowercase = load_dataset('''ashraq/esc50''' ) lowercase = dataset['''train''']['''audio'''][-1]['''array'''] lowercase = audio_classifier(_lowerCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def __a ( self : Optional[int] ) -> List[str]: '''simple docstring''' pass @slow @require_torch def __a ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog lowercase = load_dataset('''ashraq/esc50''' ) lowercase = dataset['''train''']['''audio'''][-1]['''array'''] lowercase = audio_classifier(_lowerCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) lowercase = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) lowercase = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def __a ( self : Tuple ) -> List[str]: '''simple docstring''' pass
604
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = 0.00 _UpperCamelCase : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: _UpperCamelCase : str = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : List[Any] = 0.00 _UpperCamelCase : List[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _UpperCamelCase : List[Any] = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
624
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase : List[str] ={ """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } __lowerCAmelCase : Union[str, Any] ={"""allegro/herbert-base-cased""": 5_1_4} __lowerCAmelCase : Union[str, Any] ={} class _A ( __lowercase ): snake_case__ : List[str] = VOCAB_FILES_NAMES snake_case__ : str = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : List[str] = HerbertTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase="</s>" , **__lowerCAmelCase , ): """simple docstring""" super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , **_lowerCAmelCase , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
359
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def A ( snake_case__ ): '''simple docstring''' return np.dot(lowercase__ , lowercase__ ) class lowerCamelCase : def __init__( self : List[Any] , *, __UpperCAmelCase : float = np.inf , __UpperCAmelCase : str = "linear" , __UpperCAmelCase : float = 0.0 , ) -> None: SCREAMING_SNAKE_CASE__ = regularization SCREAMING_SNAKE_CASE__ = gamma if kernel == "linear": SCREAMING_SNAKE_CASE__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) SCREAMING_SNAKE_CASE__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE__ = F"""Unknown kernel: {kernel}""" raise ValueError(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : ndarray , __UpperCAmelCase : ndarray ) -> float: return np.dot(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : ndarray , __UpperCAmelCase : ndarray ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : list[ndarray] , __UpperCAmelCase : ndarray ) -> None: SCREAMING_SNAKE_CASE__ = observations SCREAMING_SNAKE_CASE__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE__ ) , ) = np.shape(_lowerCAmelCase ) def to_minimize(__UpperCAmelCase : ndarray ) -> float: SCREAMING_SNAKE_CASE__ = 0 ((SCREAMING_SNAKE_CASE__ ) , ) = np.shape(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = LinearConstraint(_lowerCAmelCase , 0 , 0 ) SCREAMING_SNAKE_CASE__ = Bounds(0 , self.regularization ) SCREAMING_SNAKE_CASE__ = minimize( _lowerCAmelCase , np.ones(_lowerCAmelCase ) , bounds=_lowerCAmelCase , constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE__ = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE__ = 0 for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) SCREAMING_SNAKE_CASE__ = s / n def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : ndarray ) -> int: SCREAMING_SNAKE_CASE__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
196
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __UpperCamelCase : def __init__( self ,_A=None ,_A=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(poly_a or [0] )[:] _lowerCAmelCase : Optional[int] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCAmelCase : str = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCAmelCase : List[str] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCAmelCase : Tuple = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCAmelCase : Union[str, Any] = complex(mpmath.root(x=1 ,n=self.c_max_length ,k=1 ) ) # The product _lowerCAmelCase : int = self.__multiply() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_lowerCAmelCase ) <= 1: return dft[0] # _lowerCAmelCase : int = self.c_max_length // 2 while next_ncol > 0: _lowerCAmelCase : Optional[int] = [[] for i in range(_lowerCAmelCase )] _lowerCAmelCase : Union[str, Any] = self.root**next_ncol # First half of next step _lowerCAmelCase : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCAmelCase : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCAmelCase : str = new_dft _lowerCAmelCase : Optional[Any] = next_ncol // 2 return dft[0] def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = self.__dft('A' ) _lowerCAmelCase : Optional[Any] = self.__dft('B' ) _lowerCAmelCase : Dict = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCAmelCase : Dict = 2 while next_ncol <= self.c_max_length: _lowerCAmelCase : Optional[Any] = [[] for i in range(_lowerCAmelCase )] _lowerCAmelCase : Union[str, Any] = self.root ** (next_ncol // 2) _lowerCAmelCase : str = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCAmelCase : Dict = new_inverse_c next_ncol *= 2 # Unpack _lowerCAmelCase : List[Any] = [round(x[0].real ,8 ) + round(x[0].imag ,8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'A = ' + ' + '.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCAmelCase : str = 'B = ' + ' + '.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCAmelCase : Optional[Any] = 'A*B = ' + ' + '.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
259
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class __snake_case (__lowercase ): lowerCAmelCase__ = ["pixel_values"] def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} _lowerCAmelCase : List[str] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : Tuple = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="""crop_size""" ) _lowerCAmelCase : Optional[int] = do_resize _lowerCAmelCase : Optional[int] = size _lowerCAmelCase : int = resample _lowerCAmelCase : int = do_center_crop _lowerCAmelCase : Any = crop_size _lowerCAmelCase : int = do_rescale _lowerCAmelCase : Any = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCAmelCase : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCAmelCase : Dict = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' _lowerCAmelCase : List[Any] = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _lowerCAmelCase : Optional[Any] = get_resize_output_image_size(_lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' _lowerCAmelCase : Optional[int] = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ) -> int: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : Dict , ) -> PIL.Image.Image: '''simple docstring''' _lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : List[str] = size if size is not None else self.size _lowerCAmelCase : Optional[Any] = get_size_dict(_lowerCAmelCase , param_name="""size""" , default_to_square=_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = resample if resample is not None else self.resample _lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : Optional[int] = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" , default_to_square=_lowerCAmelCase ) _lowerCAmelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Dict = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCAmelCase : Tuple = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCAmelCase : Optional[int] = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCAmelCase : str = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase : int = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase : List[str] = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase : int = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase : Tuple = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] _lowerCAmelCase : List[str] = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase : int = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
429
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
'''simple docstring''' _snake_case = """Alexander Joslin""" import operator as op from .stack import Stack def _A ( snake_case ) -> Union[str, Any]: _lowercase : List[str] = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _lowercase : List[str] = Stack() _lowercase : Any = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase__ ) elif i == ")": # RULE 4 _lowercase : List[str] = operator_stack.peek() operator_stack.pop() _lowercase : Tuple = operand_stack.peek() operand_stack.pop() _lowercase : Tuple = operand_stack.peek() operand_stack.pop() _lowercase : str = operators[opr](lowercase__ , lowercase__ ) operand_stack.push(lowercase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _snake_case = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
245
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase__ ( UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) _lowercase : Tuple = precision _lowercase : int = ceil(precision / 14 ) _lowercase : Dict = 426880 * Decimal(10005 ).sqrt() _lowercase : Any = 1 _lowercase : str = 13591409 _lowercase : Any = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): _lowercase : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase__ = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
322
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __magic_name__ ( __lowercase ): UpperCamelCase_ = 42 class __magic_name__ ( __lowercase , __lowercase ): UpperCamelCase_ = True @register_to_config def __init__( self , A_ = 3 , A_ = 3 , A_ = ("DownEncoderBlock2D",) , A_ = ("UpDecoderBlock2D",) , A_ = (64,) , A_ = 1 , A_ = "silu" , A_ = 4 , A_ = 32 , A_ = 32 , A_ = 0.1_82_15 , ) -> Tuple: """simple docstring""" super().__init__() # pass init params to Encoder _lowercase: Optional[Any] = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) # pass init params to Decoder _lowercase: List[Any] = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , act_fn=_lowerCAmelCase , ) _lowercase: Tuple = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _lowercase: Optional[Any] = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) _lowercase: str = False _lowercase: List[str] = False # only relevant if vae tiling is enabled _lowercase: Optional[int] = self.config.sample_size _lowercase: List[str] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _lowercase: Tuple = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _lowercase: Optional[int] = 0.25 def lowercase_ ( self , A_ , A_=False ) -> Tuple: """simple docstring""" if isinstance(_lowerCAmelCase , (Encoder, Decoder) ): _lowercase: Tuple = value def lowercase_ ( self , A_ = True ) -> Optional[Any]: """simple docstring""" _lowercase: List[Any] = use_tiling def lowercase_ ( self ) -> Optional[int]: """simple docstring""" self.enable_tiling(_lowerCAmelCase ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: Any = True def lowercase_ ( self ) -> List[str]: """simple docstring""" _lowercase: Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: """simple docstring""" _lowercase: Tuple = {} def fn_recursive_add_processors(A_ , A_ , A_ ): if hasattr(_lowerCAmelCase , '''set_processor''' ): _lowercase: Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , _lowerCAmelCase , _lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return processors def lowercase_ ( self , A_ ) -> Optional[int]: """simple docstring""" _lowercase: Optional[Any] = len(self.attn_processors.keys() ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(_lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(A_ , A_ , A_ ): if hasattr(_lowerCAmelCase , '''set_processor''' ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): module.set_processor(_lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , _lowerCAmelCase , _lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowercase_ ( self ) -> int: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowercase_ ( self , A_ , A_ = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_lowerCAmelCase , return_dict=_lowerCAmelCase ) if self.use_slicing and x.shape[0] > 1: _lowercase: str = [self.encoder(_lowerCAmelCase ) for x_slice in x.split(1 )] _lowercase: str = torch.cat(_lowerCAmelCase ) else: _lowercase: Dict = self.encoder(_lowerCAmelCase ) _lowercase: List[str] = self.quant_conv(_lowerCAmelCase ) _lowercase: Optional[int] = DiagonalGaussianDistribution(_lowerCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCAmelCase ) def lowercase_ ( self , A_ , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_lowerCAmelCase , return_dict=_lowerCAmelCase ) _lowercase: Dict = self.post_quant_conv(_lowerCAmelCase ) _lowercase: Any = self.decoder(_lowerCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) @apply_forward_hook def lowercase_ ( self , A_ , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: _lowercase: Union[str, Any] = [self._decode(_lowerCAmelCase ).sample for z_slice in z.split(1 )] _lowercase: Tuple = torch.cat(_lowerCAmelCase ) else: _lowercase: Tuple = self._decode(_lowerCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_lowerCAmelCase ) def lowercase_ ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" _lowercase: Tuple = min(a.shape[2] , b.shape[2] , _lowerCAmelCase ) for y in range(_lowerCAmelCase ): _lowercase: Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowercase_ ( self , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" _lowercase: str = min(a.shape[3] , b.shape[3] , _lowerCAmelCase ) for x in range(_lowerCAmelCase ): _lowercase: List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowercase_ ( self , A_ , A_ = True ) -> AutoencoderKLOutput: """simple docstring""" _lowercase: Optional[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _lowercase: Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor ) _lowercase: List[Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowercase: List[str] = [] for i in range(0 , x.shape[2] , _lowerCAmelCase ): _lowercase: Any = [] for j in range(0 , x.shape[3] , _lowerCAmelCase ): _lowercase: Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowercase: int = self.encoder(_lowerCAmelCase ) _lowercase: Union[str, Any] = self.quant_conv(_lowerCAmelCase ) row.append(_lowerCAmelCase ) rows.append(_lowerCAmelCase ) _lowercase: List[Any] = [] for i, row in enumerate(_lowerCAmelCase ): _lowercase: List[str] = [] for j, tile in enumerate(_lowerCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowercase: List[str] = self.blend_v(rows[i - 1][j] , _lowerCAmelCase , _lowerCAmelCase ) if j > 0: _lowercase: Optional[int] = self.blend_h(row[j - 1] , _lowerCAmelCase , _lowerCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCAmelCase , dim=3 ) ) _lowercase: Tuple = torch.cat(_lowerCAmelCase , dim=2 ) _lowercase: int = DiagonalGaussianDistribution(_lowerCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCAmelCase ) def lowercase_ ( self , A_ , A_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" _lowercase: Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _lowercase: str = int(self.tile_sample_min_size * self.tile_overlap_factor ) _lowercase: Optional[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowercase: int = [] for i in range(0 , z.shape[2] , _lowerCAmelCase ): _lowercase: Optional[Any] = [] for j in range(0 , z.shape[3] , _lowerCAmelCase ): _lowercase: Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowercase: Optional[int] = self.post_quant_conv(_lowerCAmelCase ) _lowercase: int = self.decoder(_lowerCAmelCase ) row.append(_lowerCAmelCase ) rows.append(_lowerCAmelCase ) _lowercase: Tuple = [] for i, row in enumerate(_lowerCAmelCase ): _lowercase: Union[str, Any] = [] for j, tile in enumerate(_lowerCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowercase: str = self.blend_v(rows[i - 1][j] , _lowerCAmelCase , _lowerCAmelCase ) if j > 0: _lowercase: List[str] = self.blend_h(row[j - 1] , _lowerCAmelCase , _lowerCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCAmelCase , dim=3 ) ) _lowercase: Dict = torch.cat(_lowerCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def lowercase_ ( self , A_ , A_ = False , A_ = True , A_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" _lowercase: Union[str, Any] = sample _lowercase: str = self.encode(_lowerCAmelCase ).latent_dist if sample_posterior: _lowercase: Dict = posterior.sample(generator=_lowerCAmelCase ) else: _lowercase: Optional[int] = posterior.mode() _lowercase: Any = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
import logging import os import threading import time try: import warnings except ImportError: __A = None try: import msvcrt except ImportError: __A = None try: import fcntl except ImportError: __A = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __A = OSError # Data # ------------------------------------------------ __A = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] __A = """3.0.12""" __A = None def lowercase__ ( ) -> Any: """simple docstring""" global _logger __UpperCAmelCase =_logger or logging.getLogger(__name__ ) return _logger class _A ( __lowercase ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Any: __UpperCAmelCase =lock_file return None def __str__( self : List[str] ) -> Any: __UpperCAmelCase =f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class _A : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: __UpperCAmelCase =lock return None def __enter__( self : Tuple ) -> Optional[int]: return self.lock def __exit__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: self.lock.release() return None class _A : """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[Any]: __UpperCAmelCase =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __UpperCAmelCase =self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase ) # The path to the lock file. __UpperCAmelCase =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __UpperCAmelCase =None # The default timeout value. __UpperCAmelCase =timeout # We use this lock primarily for the lock counter. __UpperCAmelCase =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __UpperCAmelCase =0 return None @property def _a ( self : Tuple ) -> Union[str, Any]: return self._lock_file @property def _a ( self : Tuple ) -> int: return self._timeout @timeout.setter def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: __UpperCAmelCase =float(_lowerCAmelCase ) return None def _a ( self : Any ) -> Optional[Any]: raise NotImplementedError() def _a ( self : List[Any] ) -> List[str]: raise NotImplementedError() @property def _a ( self : Tuple ) -> Dict: return self._lock_file_fd is not None def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Dict=0.05 ) -> Tuple: if timeout is None: __UpperCAmelCase =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __UpperCAmelCase =id(self ) __UpperCAmelCase =self._lock_file __UpperCAmelCase =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(_lowerCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __UpperCAmelCase =max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any=False ) -> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __UpperCAmelCase =id(self ) __UpperCAmelCase =self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() __UpperCAmelCase =0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self : List[str] ) -> Optional[Any]: self.acquire() return self def __exit__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ) -> Tuple: self.release() return None def __del__( self : Dict ) -> Any: self.release(force=_lowerCAmelCase ) return None def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str: __UpperCAmelCase =os.path.basename(_lowerCAmelCase ) if len(_lowerCAmelCase ) > max_length and max_length > 0: __UpperCAmelCase =os.path.dirname(_lowerCAmelCase ) __UpperCAmelCase =str(hash(_lowerCAmelCase ) ) __UpperCAmelCase =filename[: max_length - len(_lowerCAmelCase ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(_lowerCAmelCase , _lowerCAmelCase ) else: return path class _A ( __lowercase ): """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=-1 , __SCREAMING_SNAKE_CASE : Tuple=None ) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) __UpperCAmelCase ="""\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __UpperCAmelCase =os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: try: msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_lowerCAmelCase ) else: __UpperCAmelCase =fd return None def _a ( self : int ) -> List[str]: __UpperCAmelCase =self._lock_file_fd __UpperCAmelCase =None msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(_lowerCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _A ( __lowercase ): """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str=-1 , __SCREAMING_SNAKE_CASE : Dict=None ) -> str: __UpperCAmelCase =os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Dict: __UpperCAmelCase =os.O_RDWR | os.O_CREAT | os.O_TRUNC __UpperCAmelCase =os.open(self._lock_file , _lowerCAmelCase ) try: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_lowerCAmelCase ) else: __UpperCAmelCase =fd return None def _a ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase =self._lock_file_fd __UpperCAmelCase =None fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) os.close(_lowerCAmelCase ) return None class _A ( __lowercase ): """simple docstring""" def _a ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __UpperCAmelCase =os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: __UpperCAmelCase =fd return None def _a ( self : Union[str, Any] ) -> int: os.close(self._lock_file_fd ) __UpperCAmelCase =None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __A = None if msvcrt: __A = WindowsFileLock elif fcntl: __A = UnixFileLock else: __A = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
68
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowercase ( snake_case ): """simple docstring""" def is_in_circle(snake_case, snake_case ) -> bool: __magic_name__ :Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ :Optional[int] = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(lowercase__ ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ :str = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def __lowercase ( snake_case, snake_case, snake_case = 0.0, snake_case = 1.0, ): """simple docstring""" return mean( function_to_integrate(uniform(lowercase__, lowercase__ ) ) for _ in range(lowercase__ ) ) * (max_value - min_value) def __lowercase ( snake_case, snake_case = 0.0, snake_case = 1.0 ): """simple docstring""" def identity_function(snake_case ) -> float: return x __magic_name__ :str = area_under_curve_estimator( lowercase__, lowercase__, lowercase__, lowercase__ ) __magic_name__ :Dict = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def __lowercase ( snake_case ): """simple docstring""" def function_to_integrate(snake_case ) -> float: return sqrt(4.0 - x * x ) __magic_name__ :Tuple = area_under_curve_estimator( lowercase__, lowercase__, 0.0, 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowercase : def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=1_00 , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : str=30 , __lowerCamelCase : str=2 , __lowerCamelCase : str=3 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=32 , __lowerCamelCase : str=4 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : str=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=10 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=[0, 1, 2, 3] , ) -> Optional[int]: '''simple docstring''' lowercase = parent lowercase = 1_00 lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = scope lowercase = out_indices lowercase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase = (image_size // patch_size) ** 2 lowercase = num_patches + 1 def __a ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> int: '''simple docstring''' lowercase = BeitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> Dict: '''simple docstring''' lowercase = BeitForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = self.type_sequence_label_size lowercase = BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase = 1 lowercase = BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : int ) -> str: '''simple docstring''' lowercase = self.num_labels lowercase = BeitForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() lowercase ,lowercase ,lowercase ,lowercase = config_and_inputs lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( __lowercase , __lowercase , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def __a ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = BeitModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def __a ( self : List[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def __a ( self : Union[str, Any] ) -> Any: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __a ( self : List[Any] ) -> Any: '''simple docstring''' pass def __a ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def __a ( self : str ) -> List[str]: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self : Any ) -> int: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self : str ) -> Tuple: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self : List[Any] ) -> Any: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def __a ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) def __a ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling]: continue lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowercase = model(**_lowerCAmelCase ).loss loss.backward() def __a ( self : List[Any] ) -> Any: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase = False lowercase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowercase = model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowercase = model(**_lowerCAmelCase ).loss loss.backward() def __a ( self : Tuple ) -> Dict: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = BeitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __UpperCAmelCase ( )-> int: """simple docstring""" lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).pixel_values.to(_lowerCAmelCase ) # prepare bool_masked_pos lowercase = torch.ones((1, 1_96) , dtype=torch.bool ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(pixel_values=_lowerCAmelCase , bool_masked_pos=_lowerCAmelCase ) lowercase = outputs.logits # verify the logits lowercase = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowercase = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCAmelCase , atol=1E-2 ) ) @slow def __a ( self : Optional[int] ) -> Any: '''simple docstring''' lowercase = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = outputs.logits # verify the logits lowercase = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) lowercase = 2_81 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def __a ( self : str ) -> Optional[int]: '''simple docstring''' lowercase = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( _lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = outputs.logits # verify the logits lowercase = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) lowercase = 23_96 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def __a ( self : str ) -> str: '''simple docstring''' lowercase = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase = model.to(_lowerCAmelCase ) lowercase = BeitImageProcessor(do_resize=_lowerCAmelCase , size=6_40 , do_center_crop=_lowerCAmelCase ) lowercase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase = Image.open(ds[0]['''file'''] ) lowercase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = outputs.logits # verify the logits lowercase = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowercase = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: lowercase = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_lowerCAmelCase , ) else: lowercase = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __a ( self : int ) -> Union[str, Any]: '''simple docstring''' lowercase = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) lowercase = model.to(_lowerCAmelCase ) lowercase = BeitImageProcessor(do_resize=_lowerCAmelCase , size=6_40 , do_center_crop=_lowerCAmelCase ) lowercase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) lowercase = Image.open(ds[0]['''file'''] ) lowercase = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) lowercase = outputs.logits.detach().cpu() lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(5_00, 3_00)] ) lowercase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) lowercase = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
604
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" from collections import defaultdict def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase : List[str] = 1 _UpperCamelCase : Any = True for v in tree[start]: if v not in visited: ret += dfs(lowercase__ ) if ret % 2 == 0: cuts.append(lowercase__ ) return ret def lowercase__ ( ) -> Dict: """simple docstring""" dfs(1 ) if __name__ == "__main__": lowerCamelCase__ = 10, 9 lowerCamelCase__ = defaultdict(list) lowerCamelCase__ = {} lowerCamelCase__ = [] lowerCamelCase__ = 0 lowerCamelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
624
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase : Optional[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCAmelCase : Union[str, Any] =""" def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) lowercase = self.transformer_dir shutil.copy( os.path.join(_lowerCAmelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def A__ ( self ): """simple docstring""" lowercase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: lowercase = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowercase = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) lowercase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def A__ ( self ): """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _lowerCAmelCase ) , ) # Copy consistency with a really long name lowercase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , f'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _lowerCAmelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , _lowerCAmelCase ) , ) def A__ ( self ): """simple docstring""" lowercase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) lowercase , lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) self.assertFalse(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) lowercase , lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCAmelCase ) lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) lowercase , lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
359
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase (__lowercase ,unittest.TestCase ): lowerCamelCase__ : Optional[int] = DDIMPipeline lowerCamelCase__ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ : Dict = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } lowerCamelCase__ : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler() SCREAMING_SNAKE_CASE__ = {"""unet""": unet, """scheduler""": scheduler} return components def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=0 ) -> Tuple: if str(_lowerCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = """cpu""" SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = pipe(**_lowerCAmelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) SCREAMING_SNAKE_CASE__ = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1e-3 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = """google/ddpm-cifar10-32""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = DDIMScheduler() SCREAMING_SNAKE_CASE__ = DDIMPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) ddim.to(_lowerCAmelCase ) ddim.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = ddim(generator=_lowerCAmelCase , eta=0.0 , output_type="""numpy""" ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = """google/ddpm-ema-bedroom-256""" SCREAMING_SNAKE_CASE__ = UNetaDModel.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = DDIMPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) ddpm.to(_lowerCAmelCase ) ddpm.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = ddpm(generator=_lowerCAmelCase , output_type="""numpy""" ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) SCREAMING_SNAKE_CASE__ = np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
196
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" import math def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ( not isinstance(lowercase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ( not isinstance(lowercase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
259
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
from manim import * class __snake_case (__lowercase ): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : str = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : Optional[int] = Rectangle(height=0.25 , width=0.25 ) _lowerCAmelCase : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCAmelCase : Union[str, Any] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] _lowerCAmelCase : Dict = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : List[Any] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : List[Any] = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : Dict = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : int = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) _lowerCAmelCase : Tuple = [mem.copy() for i in range(4 )] _lowerCAmelCase : Optional[Any] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : Any = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Tuple = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) _lowerCAmelCase : Tuple = [mem.copy() for i in range(6 )] _lowerCAmelCase : Tuple = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : Any = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = [] for i, rect in enumerate(_lowerCAmelCase ): rect.set_stroke(_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_lowerCAmelCase , buff=0.0 ) self.add(_lowerCAmelCase ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase , *_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : Optional[Any] = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : Dict = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : List[str] = [] for i, rect in enumerate(_lowerCAmelCase ): _lowerCAmelCase : Tuple = fill.copy().set_fill(_lowerCAmelCase , opacity=0.7 ) target.move_to(_lowerCAmelCase ) ckpt_arr.append(_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) _lowerCAmelCase : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : Dict = MarkupText( f"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase : Any = MarkupText( f"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) _lowerCAmelCase : str = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _lowerCAmelCase : Tuple = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = [meta_mem.copy() for i in range(6 )] _lowerCAmelCase : Union[str, Any] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : Optional[int] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : List[Any] = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) _lowerCAmelCase : int = Text("""Disk""" , font_size=24 ) _lowerCAmelCase : Any = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , Write(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) ) _lowerCAmelCase : Union[str, Any] = [] for i, rect in enumerate(_lowerCAmelCase ): _lowerCAmelCase : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_lowerCAmelCase , run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(FadeOut(_lowerCAmelCase ) ) _lowerCAmelCase : Optional[Any] = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , *_lowerCAmelCase ) , ) self.wait()
429
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = PriorTransformer _SCREAMING_SNAKE_CASE : Dict = 'hidden_states' @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = 4 _lowercase : Tuple = 8 _lowercase : List[str] = 7 _lowercase : Any = floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) _lowercase : int = floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) _lowercase : Optional[Any] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCamelCase ( self , _UpperCamelCase=0 ): """simple docstring""" torch.manual_seed(_lowerCAmelCase ) _lowercase : Any = 4 _lowercase : Union[str, Any] = 8 _lowercase : Any = 7 _lowercase : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) _lowercase : Dict = torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) _lowercase : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _lowerCamelCase ( self ): """simple docstring""" return (4, 8) @property def _lowerCamelCase ( self ): """simple docstring""" return (4, 8) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } _lowercase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : Tuple = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowercase : Dict = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() _lowercase : Any = self.model_class(**_lowerCAmelCase ) _lowercase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : int = [*signature.parameters.keys()] _lowercase : List[str] = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , _lowerCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) _lowercase : Union[str, Any] = model.to(_lowerCAmelCase ) if hasattr(_lowerCAmelCase , "set_default_attn_processor" ): model.set_default_attn_processor() _lowercase : Dict = self.get_dummy_seed_input() with torch.no_grad(): _lowercase : str = model(**_lowerCAmelCase )[0] _lowercase : List[str] = output[0, :5].flatten().cpu() print(_lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _lowercase : int = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def _lowerCamelCase ( self , _UpperCamelCase=1 , _UpperCamelCase=768 , _UpperCamelCase=77 , _UpperCamelCase=0 ): """simple docstring""" torch.manual_seed(_lowerCAmelCase ) _lowercase : Optional[int] = batch_size _lowercase : Optional[Any] = embedding_dim _lowercase : Dict = num_embeddings _lowercase : List[str] = torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) _lowercase : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) _lowercase : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(_lowerCAmelCase ) _lowercase : Union[str, Any] = self.get_dummy_seed_input(seed=_lowerCAmelCase ) with torch.no_grad(): _lowercase : Tuple = model(**_lowerCAmelCase )[0] assert list(sample.shape ) == [1, 768] _lowercase : int = sample[0, :8].flatten().cpu() print(_lowerCAmelCase ) _lowercase : Optional[int] = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 )
245
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
class UpperCAmelCase__ : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : str ): """simple docstring""" _lowercase : str = None _lowercase : List[Any] = None _lowercase : Union[str, Any] = graph self._normalize_graph(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = len(_lowerCAmelCase ) _lowercase : Tuple = None def lowerCAmelCase_ ( self : Tuple , UpperCamelCase : Any , UpperCamelCase : Dict ): """simple docstring""" if sources is int: _lowercase : Dict = [sources] if sinks is int: _lowercase : Union[str, Any] = [sinks] if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: return _lowercase : List[Any] = sources[0] _lowercase : int = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCAmelCase ) > 1 or len(_lowerCAmelCase ) > 1: _lowercase : Optional[int] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowercase : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _lowercase : Dict = max_input_flow _lowercase : Optional[Any] = 0 _lowercase : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowercase : Optional[int] = max_input_flow _lowercase : Any = size - 1 def lowerCAmelCase_ ( self : str ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : int , UpperCamelCase : Tuple ): """simple docstring""" _lowercase : str = algorithm(self ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : Union[str, Any] ): """simple docstring""" _lowercase : Any = flow_network _lowercase : List[str] = flow_network.verticesCount _lowercase : Optional[Any] = flow_network.sourceIndex _lowercase : Dict = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowercase : List[Any] = flow_network.graph _lowercase : Union[str, Any] = False def lowerCAmelCase_ ( self : int ): """simple docstring""" if not self.executed: self._algorithm() _lowercase : Any = True def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Optional[int] ): """simple docstring""" super().__init__(_lowerCAmelCase ) # use this to save your result _lowercase : Optional[Any] = -1 def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' def __init__( self : str , UpperCamelCase : List[Any] ): """simple docstring""" super().__init__(_lowerCAmelCase ) _lowercase : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] _lowercase : str = [0] * self.verticies_count _lowercase : Optional[Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowercase : List[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowercase : List[Any] = 0 while i < len(_lowerCAmelCase ): _lowercase : Tuple = vertices_list[i] _lowercase : Union[str, Any] = self.heights[vertex_index] self.process_vertex(_lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCAmelCase ) ) _lowercase : List[str] = 0 else: i += 1 _lowercase : Union[str, Any] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCAmelCase , _lowerCAmelCase ) self.relabel(_lowerCAmelCase ) def lowerCAmelCase_ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): """simple docstring""" _lowercase : Dict = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : str , UpperCamelCase : Any ): """simple docstring""" _lowercase : Any = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowercase : Any = self.heights[to_index] if min_height is not None: _lowercase : int = min_height + 1 if __name__ == "__main__": UpperCamelCase__ = [0] UpperCamelCase__ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCamelCase__ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCamelCase__ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCamelCase__ = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
322
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: List[str] = FileLock(str(tmpdir / '''foo.lock''' ) ) _lowercase: Tuple = FileLock(str(tmpdir / '''foo.lock''' ) ) _lowercase: int = 0.01 with locka.acquire(): with pytest.raises(lowercase__ ): _lowercase: Dict = time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Union[str, Any] = '''a''' * 1_000 + '''.lock''' _lowercase: str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 _lowercase: str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
353
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _A ( __lowercase ): """simple docstring""" lowerCamelCase : Optional[int] = 42 class _A ( __lowercase , __lowercase ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int = 65536 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : str = "fourier" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __SCREAMING_SNAKE_CASE : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __SCREAMING_SNAKE_CASE : Tuple[str] = "UNetMidBlock1D" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : Tuple[int] = (32, 32, 64) , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : bool = False , ) -> int: super().__init__() __UpperCAmelCase =sample_size # time if time_embedding_type == "fourier": __UpperCAmelCase =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_lowerCAmelCase , log=_lowerCAmelCase , flip_sin_to_cos=_lowerCAmelCase ) __UpperCAmelCase =2 * block_out_channels[0] elif time_embedding_type == "positional": __UpperCAmelCase =Timesteps( block_out_channels[0] , flip_sin_to_cos=_lowerCAmelCase , downscale_freq_shift=_lowerCAmelCase ) __UpperCAmelCase =block_out_channels[0] if use_timestep_embedding: __UpperCAmelCase =block_out_channels[0] * 4 __UpperCAmelCase =TimestepEmbedding( in_channels=_lowerCAmelCase , time_embed_dim=_lowerCAmelCase , act_fn=_lowerCAmelCase , out_dim=block_out_channels[0] , ) __UpperCAmelCase =nn.ModuleList([] ) __UpperCAmelCase =None __UpperCAmelCase =nn.ModuleList([] ) __UpperCAmelCase =None # down __UpperCAmelCase =in_channels for i, down_block_type in enumerate(_lowerCAmelCase ): __UpperCAmelCase =output_channel __UpperCAmelCase =block_out_channels[i] if i == 0: input_channel += extra_in_channels __UpperCAmelCase =i == len(_lowerCAmelCase ) - 1 __UpperCAmelCase =get_down_block( _lowerCAmelCase , num_layers=_lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_lowerCAmelCase ) # mid __UpperCAmelCase =get_mid_block( _lowerCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_lowerCAmelCase , add_downsample=_lowerCAmelCase , ) # up __UpperCAmelCase =list(reversed(_lowerCAmelCase ) ) __UpperCAmelCase =reversed_block_out_channels[0] if out_block_type is None: __UpperCAmelCase =out_channels else: __UpperCAmelCase =block_out_channels[0] for i, up_block_type in enumerate(_lowerCAmelCase ): __UpperCAmelCase =output_channel __UpperCAmelCase =( reversed_block_out_channels[i + 1] if i < len(_lowerCAmelCase ) - 1 else final_upsample_channels ) __UpperCAmelCase =i == len(_lowerCAmelCase ) - 1 __UpperCAmelCase =get_up_block( _lowerCAmelCase , num_layers=_lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_lowerCAmelCase ) __UpperCAmelCase =output_channel # out __UpperCAmelCase =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __UpperCAmelCase =get_out_block( out_block_type=_lowerCAmelCase , num_groups_out=_lowerCAmelCase , embed_dim=block_out_channels[0] , out_channels=_lowerCAmelCase , act_fn=_lowerCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, float, int] , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[UNetaDOutput, Tuple]: __UpperCAmelCase =timestep if not torch.is_tensor(_lowerCAmelCase ): __UpperCAmelCase =torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_lowerCAmelCase ) and len(timesteps.shape ) == 0: __UpperCAmelCase =timesteps[None].to(sample.device ) __UpperCAmelCase =self.time_proj(_lowerCAmelCase ) if self.config.use_timestep_embedding: __UpperCAmelCase =self.time_mlp(_lowerCAmelCase ) else: __UpperCAmelCase =timestep_embed[..., None] __UpperCAmelCase =timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __UpperCAmelCase =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __UpperCAmelCase =() for downsample_block in self.down_blocks: __UpperCAmelCase , __UpperCAmelCase =downsample_block(hidden_states=_lowerCAmelCase , temb=_lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __UpperCAmelCase =self.mid_block(_lowerCAmelCase , _lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __UpperCAmelCase =down_block_res_samples[-1:] __UpperCAmelCase =down_block_res_samples[:-1] __UpperCAmelCase =upsample_block(_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , temb=_lowerCAmelCase ) # 5. post-process if self.out_block: __UpperCAmelCase =self.out_block(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=_lowerCAmelCase )
68
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ): """simple docstring""" __magic_name__ :Optional[Any] = HfArgumentParser(lowercase__ ) __magic_name__ :Optional[int] = parser.parse_args_into_dataclasses()[0] __magic_name__ :Any = TensorFlowBenchmark(args=lowercase__ ) try: __magic_name__ :Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: __magic_name__ :Union[str, Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' __magic_name__ :Optional[int] = ''' '''.join(str(lowercase__ ).split(''' ''' )[:-1] ) __magic_name__ :Any = '''''' __magic_name__ :int = eval(str(lowercase__ ).split(''' ''' )[-1] ) __magic_name__ :Union[str, Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase__ ) if len(lowercase__ ) > 0: __magic_name__ :List[Any] = full_error_msg + begin_error_msg + str(lowercase__ ) raise ValueError(lowercase__ ) benchmark.run() if __name__ == "__main__": main()
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig A_ = logging.get_logger(__name__) # General docstring A_ = """PoolFormerConfig""" # Base docstring A_ = """sail/poolformer_s12""" A_ = [1, 512, 7, 7] # Image classification docstring A_ = """sail/poolformer_s12""" A_ = """tabby, tabby cat""" A_ = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase = 0.0, UpperCAmelCase = False )-> Optional[Any]: """simple docstring""" if drop_prob == 0.0 or not training: return input lowercase = 1 - drop_prob lowercase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase = keep_prob + torch.rand(lowercase__, dtype=input.dtype, device=input.device ) random_tensor.floor_() # binarize lowercase = input.div(lowercase__ ) * random_tensor return output class __lowercase ( nn.Module ): def __init__( self : Optional[Any] , __lowerCamelCase : Optional[float] = None ) -> None: '''simple docstring''' super().__init__() lowercase = drop_prob def __a ( self : Any , __lowerCamelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(_lowerCAmelCase , self.drop_prob , self.training ) def __a ( self : Tuple ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class __lowercase ( nn.Module ): def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any]=None ) -> List[str]: '''simple docstring''' super().__init__() lowercase = patch_size if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) lowercase = stride if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (stride, stride) lowercase = padding if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (padding, padding) lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase ) lowercase = norm_layer(_lowerCAmelCase ) if norm_layer else nn.Identity() def __a ( self : Any , __lowerCamelCase : str ) -> List[str]: '''simple docstring''' lowercase = self.projection(_lowerCAmelCase ) lowercase = self.norm(_lowerCAmelCase ) return embeddings class __lowercase ( nn.GroupNorm ): def __init__( self : int , __lowerCamelCase : int , **__lowerCamelCase : Any ) -> Tuple: '''simple docstring''' super().__init__(1 , _lowerCAmelCase , **_lowerCAmelCase ) class __lowercase ( nn.Module ): def __init__( self : Tuple , __lowerCamelCase : int ) -> List[Any]: '''simple docstring''' super().__init__() lowercase = nn.AvgPoolad(_lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_lowerCAmelCase ) def __a ( self : List[Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.pool(_lowerCAmelCase ) - hidden_states class __lowercase ( nn.Module ): def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ) -> Any: '''simple docstring''' super().__init__() lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) lowercase = PoolFormerDropPath(_lowerCAmelCase ) if isinstance(config.hidden_act , _lowerCAmelCase ): lowercase = ACTaFN[config.hidden_act] else: lowercase = config.hidden_act def __a ( self : str , __lowerCamelCase : int ) -> Optional[int]: '''simple docstring''' lowercase = self.conva(_lowerCAmelCase ) lowercase = self.act_fn(_lowerCAmelCase ) lowercase = self.drop(_lowerCAmelCase ) lowercase = self.conva(_lowerCAmelCase ) lowercase = self.drop(_lowerCAmelCase ) return hidden_states class __lowercase ( nn.Module ): def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> List[Any]: '''simple docstring''' super().__init__() lowercase = PoolFormerPooling(_lowerCAmelCase ) lowercase = PoolFormerOutput(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase = PoolFormerGroupNorm(_lowerCAmelCase ) lowercase = PoolFormerGroupNorm(_lowerCAmelCase ) # Useful for training neural nets lowercase = PoolFormerDropPath(_lowerCAmelCase ) if drop_path > 0.0 else nn.Identity() lowercase = config.use_layer_scale if config.use_layer_scale: lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) def __a ( self : Tuple , __lowerCamelCase : List[str] ) -> List[Any]: '''simple docstring''' if self.use_layer_scale: lowercase = self.pooling(self.before_norm(_lowerCAmelCase ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase = hidden_states + self.drop_path(_lowerCAmelCase ) lowercase = () lowercase = self.output(self.after_norm(_lowerCAmelCase ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase = hidden_states + self.drop_path(_lowerCAmelCase ) lowercase = (output,) + outputs return outputs else: lowercase = self.drop_path(self.pooling(self.before_norm(_lowerCAmelCase ) ) ) # First residual connection lowercase = pooling_output + hidden_states lowercase = () # Second residual connection inside the PoolFormerOutput block lowercase = self.drop_path(self.output(self.after_norm(_lowerCAmelCase ) ) ) lowercase = hidden_states + layer_output lowercase = (output,) + outputs return outputs class __lowercase ( nn.Module ): def __init__( self : Union[str, Any] , __lowerCamelCase : Dict ) -> str: '''simple docstring''' super().__init__() lowercase = config # stochastic depth decay rule lowercase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowercase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowercase = nn.ModuleList(_lowerCAmelCase ) # Transformer blocks lowercase = [] lowercase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_lowerCAmelCase ) ) lowercase = nn.ModuleList(_lowerCAmelCase ) def __a ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Dict=True ) -> str: '''simple docstring''' lowercase = () if output_hidden_states else None lowercase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowercase ,lowercase = layers # Get patch embeddings from hidden_states lowercase = embedding_layer(_lowerCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_lowerCAmelCase ): lowercase = blk(_lowerCAmelCase ) lowercase = layer_outputs[0] if output_hidden_states: lowercase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) class __lowercase ( __lowercase ): lowercase = PoolFormerConfig lowercase = 'poolformer' lowercase = 'pixel_values' lowercase = True def __a ( self : Tuple , __lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __a ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=False ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase = value A_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __lowercase , ) class __lowercase ( __lowercase ): def __init__( self : Any , __lowerCamelCase : List[Any] ) -> str: '''simple docstring''' super().__init__(_lowerCAmelCase ) lowercase = config lowercase = PoolFormerEncoder(_lowerCAmelCase ) # Initialize weights and apply final processing self.post_init() def __a ( self : str ) -> int: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self : Any , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) lowercase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class __lowercase ( nn.Module ): def __init__( self : str , __lowerCamelCase : Dict ) -> Dict: '''simple docstring''' super().__init__() lowercase = nn.Linear(config.hidden_size , config.hidden_size ) def __a ( self : Dict , __lowerCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' lowercase = self.dense(_lowerCAmelCase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __lowercase , ) class __lowercase ( __lowercase ): def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> Dict: '''simple docstring''' super().__init__(_lowerCAmelCase ) lowercase = config.num_labels lowercase = PoolFormerModel(_lowerCAmelCase ) # Final norm lowercase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self : Dict , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.LongTensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.poolformer( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) lowercase = outputs[0] lowercase = self.classifier(self.norm(_lowerCAmelCase ).mean([-2, -1] ) ) lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase = '''single_label_classification''' else: lowercase = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase = MSELoss() if self.num_labels == 1: lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase = BCEWithLogitsLoss() lowercase = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
604
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = CLIPTokenizer SCREAMING_SNAKE_CASE__ :int = CLIPTokenizerFast SCREAMING_SNAKE_CASE__ :Any = True SCREAMING_SNAKE_CASE__ :Optional[int] = {} SCREAMING_SNAKE_CASE__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: super().setUp() # fmt: off _UpperCamelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCamelCase : Dict = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _UpperCamelCase : str = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] _UpperCamelCase : List[Any] = {"unk_token": "<unk>"} _UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( self : str , **__a : Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__a : Optional[int] ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Dict ) -> int: _UpperCamelCase : Dict = "lower newer" _UpperCamelCase : int = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase : str = "lower newer" _UpperCamelCase : int = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] _UpperCamelCase : Any = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _UpperCamelCase : List[str] = tokens + [tokenizer.unk_token] _UpperCamelCase : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) _UpperCamelCase : Any = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." _UpperCamelCase : int = tokenizer_s.tokenize(_lowerCAmelCase ) _UpperCamelCase : List[Any] = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _UpperCamelCase : Union[str, Any] = "xa\u0303y" + " " + "x\xe3y" _UpperCamelCase : Optional[Any] = tokenizer_s.tokenize(_lowerCAmelCase ) _UpperCamelCase : List[str] = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that the tokenization is identical on unicode of space type _UpperCamelCase : List[str] = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _UpperCamelCase : Dict = tokenizer_s.tokenize(_lowerCAmelCase ) _UpperCamelCase : Optional[Any] = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that the tokenization is identical on unicode of line break type _UpperCamelCase : int = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _UpperCamelCase : int = tokenizer_s.tokenize(_lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = tokenizer_r.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` _UpperCamelCase : str = F'''{text_of_1_token} {text_of_1_token}''' _UpperCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , ) _UpperCamelCase : Optional[Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCAmelCase ) + 1, len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) _UpperCamelCase : List[Any] = F''' {text}''' _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained( _lowerCAmelCase , use_fast=_lowerCAmelCase , ) _UpperCamelCase : Optional[Any] = tokenizer_r(_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCAmelCase ) + 1, 1 + len(_lowerCAmelCase ) + 1 + len(_lowerCAmelCase )) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: with self.assertRaises(_lowerCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self : Any ) -> Any: super().test_tokenization_python_rust_equals() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: pass
624
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase : Any ={ """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } __lowerCAmelCase : Union[str, Any] ={ """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } __lowerCAmelCase : Dict ="""▁""" class _A ( __lowercase ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) lowercase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase = len(self.sp_model ) - 1 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ): """simple docstring""" return len(self.sp_model ) def A__ ( self ): """simple docstring""" lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(_lowerCAmelCase ) return spm_id if spm_id else self.unk_token_id def A__ ( self , __lowerCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_lowerCAmelCase ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = [] lowercase = """""" lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = True lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) lowercase = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def __getstate__( self ): """simple docstring""" lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
359
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE__ = [6, 6, 6, 6] SCREAMING_SNAKE_CASE__ = 60 SCREAMING_SNAKE_CASE__ = [6, 6, 6, 6] SCREAMING_SNAKE_CASE__ = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1_26 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 2_55.0 SCREAMING_SNAKE_CASE__ = """""" return config def A ( snake_case__ , snake_case__ ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: SCREAMING_SNAKE_CASE__ = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: SCREAMING_SNAKE_CASE__ = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: SCREAMING_SNAKE_CASE__ = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: SCREAMING_SNAKE_CASE__ = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: SCREAMING_SNAKE_CASE__ = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: SCREAMING_SNAKE_CASE__ = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE__ = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE__ = """layernorm.bias""" if "conv_first" in name: SCREAMING_SNAKE_CASE__ = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: SCREAMING_SNAKE_CASE__ = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: SCREAMING_SNAKE_CASE__ = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: SCREAMING_SNAKE_CASE__ = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: SCREAMING_SNAKE_CASE__ = name.replace("""upsample.2""" , """upsample.convolution_1""" ) SCREAMING_SNAKE_CASE__ = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": SCREAMING_SNAKE_CASE__ = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) SCREAMING_SNAKE_CASE__ = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: SCREAMING_SNAKE_CASE__ = """swin2sr.""" + name return name def A ( snake_case__ , snake_case__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(lowercase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split(""".""" ) SCREAMING_SNAKE_CASE__ = int(key_split[1] ) SCREAMING_SNAKE_CASE__ = int(key_split[4] ) SCREAMING_SNAKE_CASE__ = config.embed_dim if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] pass else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_config(lowercase__ ) SCREAMING_SNAKE_CASE__ = SwinaSRForImageSuperResolution(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ = convert_state_dict(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values SCREAMING_SNAKE_CASE__ = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE__ = 1_26 if """Jpeg""" in checkpoint_url else 2_56 SCREAMING_SNAKE_CASE__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) SCREAMING_SNAKE_CASE__ = transforms(lowercase__ ).unsqueeze(0 ) if config.num_channels == 1: SCREAMING_SNAKE_CASE__ = pixel_values[:, 0, :, :].unsqueeze(1 ) SCREAMING_SNAKE_CASE__ = model(lowercase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 5_12, 5_12] ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 5_12, 5_12] ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 10_24, 10_24] ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase__ , atol=1e-3 ) print("""Looks ok!""" ) SCREAMING_SNAKE_CASE__ = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } SCREAMING_SNAKE_CASE__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") A_ : str = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
196
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: _lowerCAmelCase : str = 1 - (matter_density + radiation_density + dark_energy) _lowerCAmelCase : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _lowerCAmelCase : List[str] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
259
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] = 0 , UpperCamelCase_ : Optional[int] = 0 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
429
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _A ( snake_case ) -> Dict: _lowercase : str = torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): _lowercase : str = torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights _lowercase : str = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) _lowercase : Optional[Any] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowercase : Dict = sd.pop(lowercase__ ) _lowercase : Dict = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowercase : Union[str, Any] = sd[key] # We split QKV in separate Q,K,V _lowercase : List[Any] = key.replace(".qkv_proj." , ".q_proj." ) _lowercase : str = key.replace(".qkv_proj." , ".k_proj." ) _lowercase : int = key.replace(".qkv_proj." , ".v_proj." ) _lowercase : Union[str, Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowercase , _lowercase , _lowercase : Dict = torch.split(lowercase__ , depth // 3 , dim=0 ) _lowercase : List[str] = q _lowercase : List[str] = k _lowercase : str = v del sd[key] return sd @torch.no_grad() def _A ( snake_case , snake_case , snake_case=None ) -> Optional[Any]: _lowercase : Any = load_checkpoint(lowercase__ ) if config is not None: _lowercase : List[str] = OPTConfig.from_pretrained(lowercase__ ) else: _lowercase : int = OPTConfig() _lowercase : List[Any] = OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
245
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: '''simple docstring''' _lowercase : List[str] = list(lowercase__ ) _lowercase : Union[str, Any] = list(lowercase__ ) _lowercase : str = 0 for i in range(len(lowercase__ ) ): if lista[i] != lista[i]: count += 1 _lowercase : Tuple = '''_''' if count > 1: return False else: return "".join(lowercase__ ) def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[Any]: '''simple docstring''' _lowercase : List[str] = [] while True: _lowercase : Any = ['''$'''] * len(lowercase__ ) _lowercase : Tuple = [] for i in range(len(lowercase__ ) ): for j in range(i + 1 , len(lowercase__ ) ): _lowercase : Union[str, Any] = compare_string(binary[i] , binary[j] ) if k is False: _lowercase : Any = '''*''' _lowercase : Tuple = '''*''' temp.append('''X''' ) for i in range(len(lowercase__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowercase__ ) == 0: return pi _lowercase : Tuple = list(set(lowercase__ ) ) def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> str: '''simple docstring''' _lowercase : int = [] for minterm in minterms: _lowercase : Optional[int] = '''''' for _ in range(lowercase__ ): _lowercase : str = str(minterm % 2 ) + string minterm //= 2 temp.append(lowercase__ ) return temp def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = list(lowercase__ ) _lowercase : List[str] = list(lowercase__ ) _lowercase : Any = 0 for i in range(len(lowercase__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: '''simple docstring''' _lowercase : int = [] _lowercase : Optional[int] = [0] * len(lowercase__ ) for i in range(len(chart[0] ) ): _lowercase : int = 0 _lowercase : List[Any] = -1 for j in range(len(lowercase__ ) ): if chart[j][i] == 1: count += 1 _lowercase : Dict = j if count == 1: _lowercase : List[str] = 1 for i in range(len(lowercase__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowercase__ ) ): _lowercase : Optional[Any] = 0 temp.append(prime_implicants[i] ) while True: _lowercase : List[Any] = 0 _lowercase : str = -1 _lowercase : Union[str, Any] = 0 for i in range(len(lowercase__ ) ): _lowercase : List[str] = chart[i].count(1 ) if count_n > max_n: _lowercase : str = count_n _lowercase : List[str] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowercase__ ) ): _lowercase : Dict = 0 def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = [[0 for x in range(len(lowercase__ ) )] for x in range(len(lowercase__ ) )] for i in range(len(lowercase__ ) ): _lowercase : List[Any] = prime_implicants[i].count('''_''' ) for j in range(len(lowercase__ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowercase__ ): _lowercase : Tuple = 1 return chart def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = int(input('''Enter the no. of variables\n''' ) ) _lowercase : Optional[Any] = [ float(lowercase__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] _lowercase : Optional[int] = decimal_to_binary(lowercase__ , lowercase__ ) _lowercase : Optional[int] = check(lowercase__ ) print('''Prime Implicants are:''' ) print(lowercase__ ) _lowercase : Optional[int] = prime_implicant_chart(lowercase__ , lowercase__ ) _lowercase : List[Any] = selection(lowercase__ , lowercase__ ) print('''Essential Prime Implicants are:''' ) print(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
322
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Any = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
from __future__ import annotations import os from collections.abc import Mapping __A = tuple[int, int] class _A : """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : set[int] , __SCREAMING_SNAKE_CASE : Mapping[EdgeT, int] ) -> None: __UpperCAmelCase =vertices __UpperCAmelCase ={ (min(_lowerCAmelCase ), max(_lowerCAmelCase )): weight for edge, weight in edges.items() } def _a ( self : int , __SCREAMING_SNAKE_CASE : EdgeT , __SCREAMING_SNAKE_CASE : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __UpperCAmelCase =weight def _a ( self : str ) -> Graph: __UpperCAmelCase =Graph({min(self.vertices )} , {} ) __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =42 while len(subgraph.vertices ) < len(self.vertices ): __UpperCAmelCase =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __UpperCAmelCase =edge __UpperCAmelCase =weight subgraph.add_edge(_lowerCAmelCase , _lowerCAmelCase ) return subgraph def lowercase__ ( A_: int = "p107_network.txt" ) -> Any: """simple docstring""" __UpperCAmelCase =os.path.abspath(os.path.dirname(lowercase__ ) ) __UpperCAmelCase =os.path.join(lowercase__ , lowercase__ ) __UpperCAmelCase ={} __UpperCAmelCase =42 __UpperCAmelCase =42 __UpperCAmelCase =42 with open(lowercase__ ) as f: __UpperCAmelCase =f.read().strip().split("""\n""" ) __UpperCAmelCase =[line.split(""",""" ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": __UpperCAmelCase =int(adjaceny_matrix[edgea][edgea] ) __UpperCAmelCase =Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) __UpperCAmelCase =graph.prims_algorithm() __UpperCAmelCase =sum(graph.edges.values() ) __UpperCAmelCase =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
68
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[int] = [] for line in lines: __magic_name__ :Tuple = re.sub(R'''#.*''', '''''', lowercase__ ) # remove comments if line: filtered_lines.append(lowercase__ ) __magic_name__ :List[Any] = '''\n'''.join(lowercase__ ) # Make a hash from all this code __magic_name__ :Optional[Any] = full_str.encode('''utf-8''' ) return shaaaa(lowercase__ ).hexdigest() # get importable module names and hash for caching SCREAMING_SNAKE_CASE__ : Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions SCREAMING_SNAKE_CASE__ : Optional[int] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) SCREAMING_SNAKE_CASE__ : Dict = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name SCREAMING_SNAKE_CASE__ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class __lowercase ( __lowercase , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def __a ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = PegasusTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self : List[Any] ) -> int: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __a ( self : Dict , **__lowerCamelCase : int ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self : Tuple , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' return ("This is a test", "This is a test") def __a ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase = '''</s>''' lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self : int ) -> List[str]: '''simple docstring''' lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_lowerCAmelCase ) , 11_03 ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __a ( self : Any ) -> List[Any]: '''simple docstring''' lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowercase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] lowercase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowercase = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] lowercase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 lowercase = '''To ensure a smooth flow of bank resolutions.''' lowercase = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] lowercase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __a ( self : str ) -> Any: '''simple docstring''' lowercase = ['''This is going to be way too long.''' * 1_50, '''short example'''] lowercase = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) lowercase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def __a ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( __lowercase , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def __a ( self : List[str] ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = PegasusTokenizer(_lowerCAmelCase , offset=0 , mask_token_sent=_lowerCAmelCase , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __a ( self : List[str] , **__lowerCamelCase : Tuple ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self : Optional[int] , __lowerCamelCase : Any ) -> List[str]: '''simple docstring''' return ("This is a test", "This is a test") def __a ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowercase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] lowercase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_torch def __a ( self : Dict ) -> Tuple: '''simple docstring''' lowercase = ['''This is going to be way too long.''' * 10_00, '''short example'''] lowercase = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) lowercase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. def __a ( self : List[Any] ) -> int: '''simple docstring''' lowercase = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowercase = self._large_tokenizer(_lowerCAmelCase ).input_ids self.assertListEqual( _lowerCAmelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
604
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ,lowercase_ ) -> Any: """simple docstring""" if b == 0: return (1, 0) ((_UpperCamelCase), (_UpperCamelCase)) : List[Any] = extended_euclid(lowercase__ ,a % b ) _UpperCamelCase : int = a // b return (y, x - k * y) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" ((_UpperCamelCase), (_UpperCamelCase)) : Optional[int] = extended_euclid(lowercase__ ,lowercase__ ) _UpperCamelCase : Union[str, Any] = na * na _UpperCamelCase : List[Any] = ra * x * na + ra * y * na return (n % m + m) % m def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" ((_UpperCamelCase), (_UpperCamelCase)) : int = extended_euclid(lowercase__ ,lowercase__ ) if b < 0: _UpperCamelCase : Tuple = (b % n + n) % n return b def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase, _UpperCamelCase : Tuple = invert_modulo(lowercase__ ,lowercase__ ), invert_modulo(lowercase__ ,lowercase__ ) _UpperCamelCase : Any = na * na _UpperCamelCase : Tuple = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
624
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : int = logging.get_logger(__name__) class lowerCamelCase (__lowercase ): lowerCamelCase__ : int = ['pixel_values'] def __init__( self : List[Any] , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[int, float] = 1 / 2_5_5 , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , **__UpperCAmelCase : Optional[int] , ) -> None: super().__init__(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"""shortest_edge""": 3_8_4} SCREAMING_SNAKE_CASE__ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size # Default value set here for backwards compatibility where the value in config is None SCREAMING_SNAKE_CASE__ = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : float , __UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Any , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE__ = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct SCREAMING_SNAKE_CASE__ = int(shortest_edge / crop_pct ) SCREAMING_SNAKE_CASE__ = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[int, float] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : str , ) -> Optional[Any]: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Union[float, List[float]] , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : Dict , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : float = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : float = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[float, List[float]]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : Optional[Any] , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE__ = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
196
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart _lowerCAmelCase = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } _lowerCAmelCase = { """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class __UpperCamelCase ( __lowercase ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] _UpperCAmelCase = BartTokenizer def __init__( self ,_A=None ,_A=None ,_A=None ,_A="replace" ,_A="<s>" ,_A="</s>" ,_A="</s>" ,_A="<s>" ,_A="<unk>" ,_A="<pad>" ,_A="<mask>" ,_A=False ,_A=True ,**_A ,): '''simple docstring''' super().__init__( _lowerCAmelCase ,_lowerCAmelCase ,tokenizer_file=_lowerCAmelCase ,errors=_lowerCAmelCase ,bos_token=_lowerCAmelCase ,eos_token=_lowerCAmelCase ,sep_token=_lowerCAmelCase ,cls_token=_lowerCAmelCase ,unk_token=_lowerCAmelCase ,pad_token=_lowerCAmelCase ,mask_token=_lowerCAmelCase ,add_prefix_space=_lowerCAmelCase ,trim_offsets=_lowerCAmelCase ,**_lowerCAmelCase ,) _lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,_lowerCAmelCase ) != add_prefix_space: _lowerCAmelCase : str = getattr(_lowerCAmelCase ,pre_tok_state.pop('type' ) ) _lowerCAmelCase : Tuple = add_prefix_space _lowerCAmelCase : Tuple = pre_tok_class(**_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCAmelCase : Optional[Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer ,_lowerCAmelCase ,_lowerCAmelCase ) if tokenizer_component_instance: _lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : List[Any] = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : Tuple = False if state.get('add_prefix_space' ,_lowerCAmelCase ) != add_prefix_space: _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : Any = True if state.get('trim_offsets' ,_lowerCAmelCase ) != trim_offsets: _lowerCAmelCase : List[Any] = trim_offsets _lowerCAmelCase : Tuple = True if changes_to_apply: _lowerCAmelCase : List[str] = getattr(_lowerCAmelCase ,state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer ,_lowerCAmelCase ,_lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = AddedToken(_lowerCAmelCase ,lstrip=_lowerCAmelCase ,rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else value _lowerCAmelCase : Dict = value def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' _lowerCAmelCase : str = kwargs.get('is_split_into_words' ,_lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_lowerCAmelCase ,**_lowerCAmelCase ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Tuple = kwargs.get('is_split_into_words' ,_lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_lowerCAmelCase ,**_lowerCAmelCase ) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : Any = self._tokenizer.model.save(_lowerCAmelCase ,name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
259
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): '''simple docstring''' if len(lowercase__ ) == 0: return False _lowerCAmelCase : Any = len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": _lowerCamelCase : Tuple = input("Enter numbers separated by comma:\n").strip() _lowerCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(",")] _lowerCamelCase : List[Any] = int(input("Enter the number to be found in the list:\n").strip()) _lowerCamelCase : Optional[Any] = """""" if binary_search(sequence, target) else """not """ print(F'''{target} was {not_str}found in {sequence}''')
429
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"""vocab_file""": """vocab.txt"""} _snake_case = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _snake_case = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } _snake_case = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class a__ ( __lowercase ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Dict = ConvBertTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : str = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) _lowercase : Any = do_lower_case _lowercase : Union[str, Any] = strip_accents _lowercase : Tuple = tokenize_chinese_chars _lowercase : Optional[Any] = normalizer_class(**_lowerCAmelCase ) _lowercase : Tuple = do_lower_case def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : Optional[Any] = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : List[Any] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
245
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
from __future__ import annotations def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) -> Optional[int]: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
322
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , A_ , A_ , A_ = None , A_ = None ) -> List[Any]: """simple docstring""" super().__init__() _lowercase: str = pad_token_id _lowercase: List[Any] = max_length _lowercase: str = vocab _lowercase: Any = merges _lowercase: List[str] = BytePairTokenizer(_lowerCAmelCase , _lowerCAmelCase , sequence_length=_lowerCAmelCase ) @classmethod def lowercase_ ( cls , A_ , *A_ , **A_ ) -> List[Any]: """simple docstring""" _lowercase: Optional[Any] = [''' '''.join(_lowerCAmelCase ) for m in tokenizer.bpe_ranks.keys()] _lowercase: Any = tokenizer.get_vocab() return cls(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowercase_ ( cls , A_ , *A_ , **A_ ) -> List[Any]: """simple docstring""" _lowercase: Tuple = GPTaTokenizer.from_pretrained(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) return cls.from_tokenizer(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowercase_ ( cls , A_ ) -> List[Any]: """simple docstring""" return cls(**_lowerCAmelCase ) def lowercase_ ( self ) -> int: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase_ ( self , A_ , A_ = None ) -> Optional[Any]: """simple docstring""" _lowercase: List[Any] = self.tf_tokenizer(_lowerCAmelCase ) _lowercase: Any = tf.ones_like(_lowerCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length _lowercase: Optional[Any] = max_length if max_length is not None else self.max_length if max_length is not None: _lowercase , _lowercase: List[Any] = pad_model_inputs( _lowerCAmelCase , max_seq_length=_lowerCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
353
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _A ( __lowercase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict=0 ) -> Dict: __UpperCAmelCase =floats_tensor((1, 3, 128, 128) , rng=random.Random(_lowerCAmelCase ) ) __UpperCAmelCase =np.random.RandomState(_lowerCAmelCase ) __UpperCAmelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : Any ) -> Any: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _a ( self : Dict ) -> Tuple: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : int ) -> Dict: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # warmup pass to apply optimizations __UpperCAmelCase =pipe(**self.get_dummy_inputs() ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : List[str] ) -> Optional[int]: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : str ) -> Optional[int]: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self : Optional[int] ) -> str: __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __UpperCAmelCase =np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" @property def _a ( self : List[str] ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : List[str] ) -> Tuple: __UpperCAmelCase =ort.SessionOptions() __UpperCAmelCase =False return options def _a ( self : Any ) -> List[Any]: __UpperCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase =init_image.resize((768, 512) ) # using the PNDM scheduler by default __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase ="""A fantasy landscape, trending on artstation""" __UpperCAmelCase =np.random.RandomState(0 ) __UpperCAmelCase =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" , ) __UpperCAmelCase =output.images __UpperCAmelCase =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase =np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _a ( self : str ) -> Union[str, Any]: __UpperCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase =init_image.resize((768, 512) ) __UpperCAmelCase =LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __UpperCAmelCase =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase ="""A fantasy landscape, trending on artstation""" __UpperCAmelCase =np.random.RandomState(0 ) __UpperCAmelCase =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCAmelCase , output_type="""np""" , ) __UpperCAmelCase =output.images __UpperCAmelCase =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __UpperCAmelCase =np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
68
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase_ : @staticmethod def A ( *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" pass def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Tuple = np.array(lowercase__ ) __magic_name__ :List[Any] = npimg.shape return {"hash": hashimage(lowercase__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase_ ( unittest.TestCase ): a__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) a__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = MaskGenerationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def A ( self ): """simple docstring""" pass @slow @require_torch def A ( self ): """simple docstring""" __magic_name__ :List[Any] = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) __magic_name__ :int = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_5_6 ) # Shortening by hashing __magic_name__ :int = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_lowerCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def A ( self ): """simple docstring""" __magic_name__ :List[str] = '''facebook/sam-vit-huge''' __magic_name__ :Optional[Any] = pipeline('''mask-generation''' , model=_lowerCAmelCase ) __magic_name__ :Any = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing __magic_name__ :Any = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(_lowerCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0053}, ] , )
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> Tuple: """simple docstring""" lowercase = checkpoint lowercase = {} lowercase = vae_state_dict['''encoder.conv_in.weight'''] lowercase = vae_state_dict['''encoder.conv_in.bias'''] lowercase = vae_state_dict['''encoder.conv_out.weight'''] lowercase = vae_state_dict['''encoder.conv_out.bias'''] lowercase = vae_state_dict['''encoder.norm_out.weight'''] lowercase = vae_state_dict['''encoder.norm_out.bias'''] lowercase = vae_state_dict['''decoder.conv_in.weight'''] lowercase = vae_state_dict['''decoder.conv_in.bias'''] lowercase = vae_state_dict['''decoder.conv_out.weight'''] lowercase = vae_state_dict['''decoder.conv_out.bias'''] lowercase = vae_state_dict['''decoder.norm_out.weight'''] lowercase = vae_state_dict['''decoder.norm_out.bias'''] lowercase = vae_state_dict['''quant_conv.weight'''] lowercase = vae_state_dict['''quant_conv.bias'''] lowercase = vae_state_dict['''post_quant_conv.weight'''] lowercase = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) lowercase = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowercase__ ) } # Retrieves the keys for the decoder up blocks only lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) lowercase = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowercase__ ) } for i in range(lowercase__ ): lowercase = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: lowercase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) lowercase = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''encoder.mid.block''' in key] lowercase = 2 for i in range(1, num_mid_res_blocks + 1 ): lowercase = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] lowercase = renew_vae_attention_paths(lowercase__ ) lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) conv_attn_to_linear(lowercase__ ) for i in range(lowercase__ ): lowercase = num_up_blocks - 1 - i lowercase = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: lowercase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] lowercase = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''decoder.mid.block''' in key] lowercase = 2 for i in range(1, num_mid_res_blocks + 1 ): lowercase = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] lowercase = renew_vae_resnet_paths(lowercase__ ) lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) lowercase = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] lowercase = renew_vae_attention_paths(lowercase__ ) lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase__, lowercase__, lowercase__, additional_replacements=[meta_path], config=lowercase__ ) conv_attn_to_linear(lowercase__ ) return new_checkpoint def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, )-> List[str]: """simple docstring""" lowercase = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) lowercase = io.BytesIO(r.content ) lowercase = OmegaConf.load(lowercase__ ) lowercase = 512 lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open lowercase = {} with safe_open(lowercase__, framework='''pt''', device='''cpu''' ) as f: for key in f.keys(): lowercase = f.get_tensor(lowercase__ ) else: lowercase = torch.load(lowercase__, map_location=lowercase__ )['''state_dict'''] # Convert the VAE model. lowercase = create_vae_diffusers_config(lowercase__, image_size=lowercase__ ) lowercase = custom_convert_ldm_vae_checkpoint(lowercase__, lowercase__ ) lowercase = AutoencoderKL(**lowercase__ ) vae.load_state_dict(lowercase__ ) vae.save_pretrained(lowercase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") A_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
604
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp lowerCamelCase__ = 5 lowerCamelCase__ = 10 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = SpeechaTextTokenizer SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :Dict = True def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: super().setUp() _UpperCamelCase : Dict = sp.SentencePieceProcessor() spm_model.Load(_lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowerCAmelCase ) )] _UpperCamelCase : List[str] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _UpperCamelCase : Dict = Path(self.tmpdirname ) save_json(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Optional[int] = "<pad>" _UpperCamelCase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: _UpperCamelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_lowerCAmelCase ) , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) _UpperCamelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [289, 50, 14, 174, 386] , ) _UpperCamelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) _UpperCamelCase : int = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = "valhalla/s2t_mustc_multilinguial_medium" SCREAMING_SNAKE_CASE__ :Any = "C\'est trop cool" SCREAMING_SNAKE_CASE__ :Union[str, Any] = "Esto es genial" @classmethod def __SCREAMING_SNAKE_CASE ( cls : str ) -> Optional[int]: _UpperCamelCase : Tuple = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> int: self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) _UpperCamelCase : Optional[Any] = [ES_CODE, 4, 1601, 47, 7647, 2] _UpperCamelCase : Optional[Any] = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _UpperCamelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : Tuple = "fr" _UpperCamelCase : Tuple = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowerCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Dict = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) _UpperCamelCase : Union[str, Any] = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
624
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
"""simple docstring""" class _A : def __init__( self ): """simple docstring""" lowercase = 0 lowercase = 0 lowercase = {} def A__ ( self , __lowerCAmelCase ): """simple docstring""" if vertex not in self.adjacency: lowercase = {} self.num_vertices += 1 def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" self.add_vertex(_lowerCAmelCase ) self.add_vertex(_lowerCAmelCase ) if head == tail: return lowercase = weight lowercase = weight def A__ ( self ): """simple docstring""" lowercase = self.get_edges() for edge in edges: lowercase , lowercase , lowercase = edge edges.remove((tail, head, weight) ) for i in range(len(_lowerCAmelCase ) ): lowercase = list(edges[i] ) edges.sort(key=lambda __lowerCAmelCase : e[2] ) for i in range(len(_lowerCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase = edges[i][2] + 1 for edge in edges: lowercase , lowercase , lowercase = edge lowercase = weight lowercase = weight def __str__( self ): """simple docstring""" lowercase = """""" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip("""\n""" ) def A__ ( self ): """simple docstring""" lowercase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def A__ ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def A__ ( __lowerCAmelCase=None , __lowerCAmelCase=None ): """simple docstring""" lowercase = Graph() if vertices is None: lowercase = [] if edges is None: lowercase = [] for vertex in vertices: g.add_vertex(_lowerCAmelCase ) for edge in edges: g.add_edge(*_lowerCAmelCase ) return g class _A : def __init__( self ): """simple docstring""" lowercase = {} lowercase = {} def __len__( self ): """simple docstring""" return len(self.parent ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if item in self.parent: return self.find(_lowerCAmelCase ) lowercase = item lowercase = 0 return item def A__ ( self , __lowerCAmelCase ): """simple docstring""" if item not in self.parent: return self.make_set(_lowerCAmelCase ) if item != self.parent[item]: lowercase = self.find(self.parent[item] ) return self.parent[item] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.find(_lowerCAmelCase ) lowercase = self.find(_lowerCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase = roota return roota if self.rank[roota] < self.rank[roota]: lowercase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase = roota return roota return None @staticmethod def A__ ( __lowerCAmelCase ): """simple docstring""" lowercase = graph.num_vertices lowercase = Graph.UnionFind() lowercase = [] while num_components > 1: lowercase = {} for vertex in graph.get_vertices(): lowercase = -1 lowercase = graph.get_edges() for edge in edges: lowercase , lowercase , lowercase = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase , lowercase , lowercase = edge lowercase = union_find.find(_lowerCAmelCase ) lowercase = union_find.find(_lowerCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase , lowercase , lowercase = cheap_edge[vertex] if union_find.find(_lowerCAmelCase ) != union_find.find(_lowerCAmelCase ): union_find.union(_lowerCAmelCase , _lowerCAmelCase ) mst_edges.append(cheap_edge[vertex] ) lowercase = num_components - 1 lowercase = Graph.build(edges=_lowerCAmelCase ) return mst
359
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A ( snake_case__ , snake_case__ , snake_case__=10_24 , snake_case__=10_24 , snake_case__=False , **snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE__ = SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="""train""" , **lowercase__ ) SCREAMING_SNAKE_CASE__ = tok.pad_token_id def get_lens(snake_case__ ): SCREAMING_SNAKE_CASE__ = tqdm( DataLoader(lowercase__ , batch_size=5_12 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) SCREAMING_SNAKE_CASE__ = [] for batch in dl: SCREAMING_SNAKE_CASE__ = batch["""input_ids"""].ne(lowercase__ ).sum(1 ).tolist() SCREAMING_SNAKE_CASE__ = batch["""labels"""].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens SCREAMING_SNAKE_CASE__ = get_lens(lowercase__ ) SCREAMING_SNAKE_CASE__ = SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="""val""" , **lowercase__ ) SCREAMING_SNAKE_CASE__ = get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
196
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = jnp.ones((batch_size, length) ) / length return scores def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : int = 20 _lowerCAmelCase : str = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore _lowerCAmelCase : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCAmelCase : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCAmelCase : Any = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) _lowerCAmelCase : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCAmelCase : Dict = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) _lowerCAmelCase : List[str] = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = 10 _lowerCAmelCase : Tuple = 2 # create ramp distribution _lowerCAmelCase : str = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() _lowerCAmelCase : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCAmelCase : List[Any] = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase : Any = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCAmelCase : Optional[Any] = 5 _lowerCAmelCase : Any = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) _lowerCAmelCase : str = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() _lowerCAmelCase : int = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = None _lowerCAmelCase : Union[str, Any] = 10 _lowerCAmelCase : Tuple = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCAmelCase : List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) _lowerCAmelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) _lowerCAmelCase : List[Any] = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCAmelCase : List[str] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits _lowerCAmelCase : str = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCAmelCase : Any = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _lowerCAmelCase : Dict = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) _lowerCAmelCase : Dict = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Any = 20 _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : str = 0 _lowerCAmelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 _lowerCAmelCase : Optional[Any] = ids_tensor((batch_size, 20) ,vocab_size=20 ) _lowerCAmelCase : List[Any] = 5 _lowerCAmelCase : Optional[int] = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : List[str] = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 _lowerCAmelCase : str = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : Dict = 15 _lowerCAmelCase : Dict = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 20 _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score _lowerCAmelCase : List[str] = ids_tensor((batch_size, 1) ,vocab_size=20 ) _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : str = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : str = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : str = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = 20 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : Any = 0 _lowerCAmelCase : Tuple = 5 _lowerCAmelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCAmelCase : Optional[int] = ids_tensor((batch_size, 4) ,vocab_size=20 ) _lowerCAmelCase : str = 4 _lowerCAmelCase : Optional[Any] = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : List[Any] = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : int = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = 4 _lowerCAmelCase : Optional[int] = 10 _lowerCAmelCase : Union[str, Any] = 15 _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Any = 15 # dummy input_ids and scores _lowerCAmelCase : int = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = input_ids.copy() _lowerCAmelCase : List[Any] = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : int = scores.copy() # instantiate all dist processors _lowerCAmelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase : List[Any] = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCAmelCase : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) _lowerCAmelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) _lowerCAmelCase : str = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) _lowerCAmelCase : int = 10 # no processor list _lowerCAmelCase : Optional[Any] = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : Tuple = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : int = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : int = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list _lowerCAmelCase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCAmelCase : str = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : str = 15 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Dict = 15 # dummy input_ids and scores _lowerCAmelCase : Dict = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) _lowerCAmelCase : Dict = input_ids.copy() _lowerCAmelCase : List[Any] = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : Tuple = scores.copy() # instantiate all dist processors _lowerCAmelCase : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase : int = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCAmelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) _lowerCAmelCase : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) _lowerCAmelCase : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) _lowerCAmelCase : int = 10 # no processor list def run_no_processor_list(_A ,_A ,_A ): _lowerCAmelCase : Tuple = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : Tuple = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : List[str] = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : List[str] = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) _lowerCAmelCase : int = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_A ,_A ,_A ): _lowerCAmelCase : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCAmelCase : Optional[Any] = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores _lowerCAmelCase : str = jax.jit(_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = jax.jit(_lowerCAmelCase ) _lowerCAmelCase : List[Any] = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) _lowerCAmelCase : List[str] = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
259
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class __snake_case (__lowercase ): def __init__( self : int , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Dict ) -> None: '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
429
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = MODEL_FOR_MASKED_LM_MAPPING _SCREAMING_SNAKE_CASE : List[str] = TF_MODEL_FOR_MASKED_LM_MAPPING def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf" ) _lowercase : Dict = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 25506, "token_str": " accuser"}, ] , ) _lowercase : str = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-0_5, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-0_5, "token": 25506, "token_str": " accuser", }, ] , ) _lowercase : Union[str, Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt" ) _lowercase : Any = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-0_5, "token": 16416, "token_str": "ELS"}, ] , ) _lowercase : List[str] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-0_5, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 16416, "token_str": "ELS"}, ] , ) _lowercase : Optional[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ {"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-0_5, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13606, "token_str": " Clara"}, ] , ) _lowercase : Optional[Any] = unmasker("My name is <mask> <mask>" , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=6 ) , [ [ { "score": 2.2E-0_5, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-0_5, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-0_5, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-0_5, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt" ) # convert model to fp16 pipe.model.half() _lowercase : Any = pipe("Paris is the [MASK] of France." ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) @slow @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt" ) self.run_large_test(_lowerCAmelCase ) @slow @require_tf def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf" ) self.run_large_test(_lowerCAmelCase ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : int = unmasker("My name is <mask>" ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"sequence": "My name is John", "score": 0.0_0_8, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_0_7, "token": 1573, "token_str": " Chris"}, ] , ) _lowercase : Optional[int] = unmasker("The largest city in France is <mask>" ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_5_1, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_1_4, "token": 12790, "token_str": " Lyon", }, ] , ) _lowercase : int = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"sequence": "My name is Patrick", "score": 0.0_0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_0_0, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_0_0, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt" ) _lowercase : int = None _lowercase : List[Any] = None self.run_pipeline_test(_lowerCAmelCase , [] ) @require_tf def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf" ) _lowercase : Tuple = None _lowercase : Optional[int] = None self.run_pipeline_test(_lowerCAmelCase , [] ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)" ) _lowercase : Any = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowercase : Dict = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Tuple = fill_masker.tokenizer _lowercase : Tuple = fill_masker.model _lowercase : Optional[Any] = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowerCAmelCase , [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ] , ) _lowercase : Tuple = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowerCAmelCase , [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ] , ) _lowercase : Union[str, Any] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowerCAmelCase , [ [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ], [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ], ] , ) with self.assertRaises(_lowerCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowerCAmelCase ): fill_masker("This is" ) self.run_test_top_k(_lowerCAmelCase , _lowerCAmelCase ) self.run_test_targets(_lowerCAmelCase , _lowerCAmelCase ) self.run_test_top_k_targets(_lowerCAmelCase , _lowerCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCAmelCase , _lowerCAmelCase ) self.fill_mask_with_multiple_masks(_lowerCAmelCase , _lowerCAmelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Any = tokenizer.get_vocab() _lowercase : Any = sorted(vocab.keys() )[:2] # Pipeline argument _lowercase : Any = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , targets=_lowerCAmelCase ) _lowercase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCAmelCase , [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ] , ) _lowercase : List[str] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _lowerCAmelCase ) _lowercase : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_lowerCAmelCase ) ) # Call argument _lowercase : List[Any] = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowercase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ] , ) _lowercase : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , _lowerCAmelCase ) _lowercase : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(_lowerCAmelCase ) ) # Score equivalence _lowercase : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCAmelCase ) _lowercase : List[str] = [top_mask["token_str"] for top_mask in outputs] _lowercase : Any = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCAmelCase ) == set(_lowerCAmelCase ): _lowercase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCAmelCase ) _lowercase : Optional[Any] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCAmelCase ) , nested_simplify(_lowerCAmelCase ) ) # Raises with invalid with self.assertRaises(_lowerCAmelCase ): _lowercase : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCAmelCase ): _lowercase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""] ) with self.assertRaises(_lowerCAmelCase ): _lowercase : Any = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="" ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : str = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , top_k=2 ) _lowercase : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCAmelCase , [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ] , ) _lowercase : Dict = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowercase : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCAmelCase , [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ] , ) self.assertEqual(nested_simplify(_lowerCAmelCase ) , nested_simplify(_lowerCAmelCase ) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Any = tokenizer.get_vocab() _lowercase : Tuple = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # top_k=2, ntargets=3 _lowercase : List[str] = sorted(vocab.keys() )[:3] _lowercase : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowerCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results _lowercase : List[str] = [el["token_str"] for el in sorted(_lowerCAmelCase , key=lambda _UpperCamelCase : x["score"] , reverse=_lowerCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCAmelCase ).issubset(_lowerCAmelCase ): _lowercase : str = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowerCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCAmelCase ) , nested_simplify(_lowerCAmelCase ) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowercase : Tuple = tokenizer.get_vocab() # String duplicates + id duplicates _lowercase : str = sorted(vocab.keys() )[:3] _lowercase : List[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _lowercase : str = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_lowerCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCAmelCase ) , 3 ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = FillMaskPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowercase : List[str] = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCAmelCase , [ [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ], [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ], [ {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, {"sequence": ANY(_lowerCAmelCase ), "score": ANY(_lowerCAmelCase ), "token": ANY(_lowerCAmelCase ), "token_str": ANY(_lowerCAmelCase )}, ], ] , )
245
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] UpperCamelCase__ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] UpperCamelCase__ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: '''simple docstring''' for tf_name, hf_name in patterns: _lowercase : Tuple = k.replace(lowercase__ , lowercase__ ) return k def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Union[str, Any]: '''simple docstring''' _lowercase : Union[str, Any] = BigBirdPegasusConfig(**lowercase__ ) _lowercase : Any = BigBirdPegasusForConditionalGeneration(lowercase__ ) _lowercase : Any = torch_model.state_dict() _lowercase : int = {} # separating decoder weights _lowercase : int = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} _lowercase : Tuple = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): _lowercase : Tuple = [k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE] if any(lowercase__ ): continue _lowercase : Dict = DECODER_PATTERNS _lowercase : Optional[Any] = rename_state_dict_key(lowercase__ , lowercase__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _lowercase : Optional[int] = v.T _lowercase : Dict = torch.from_numpy(lowercase__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): _lowercase : Optional[int] = [k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE] if any(lowercase__ ): continue _lowercase : Dict = REMAINING_PATTERNS _lowercase : int = rename_state_dict_key(lowercase__ , lowercase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _lowercase : Optional[Any] = v.T _lowercase : int = torch.from_numpy(lowercase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _lowercase : List[Any] = mapping['''model.embed_positions.weight'''] _lowercase : List[str] = mapping.pop('''model.embed_positions.weight''' ) _lowercase , _lowercase : int = torch_model.load_state_dict(lowercase__ , strict=lowercase__ ) _lowercase : Optional[Any] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCamelCase__ ( UpperCAmelCase_ ) -> List[Any]: '''simple docstring''' _lowercase : Optional[int] = tf.train.list_variables(lowercase__ ) _lowercase : Optional[int] = {} _lowercase : List[Any] = ['''global_step'''] for name, shape in tqdm(lowercase__ , desc='''converting tf checkpoint to dict''' ): _lowercase : List[str] = any(pat in name for pat in ignore_name ) if skip_key: continue _lowercase : Optional[Any] = tf.train.load_variable(lowercase__ , lowercase__ ) _lowercase : Union[str, Any] = array return tf_weights def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = get_tf_weights_as_numpy(lowercase__ ) _lowercase : Any = convert_bigbird_pegasus(lowercase__ , lowercase__ ) torch_model.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
322
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) A__ : Tuple = logging.getLogger(__name__) A__ : Optional[int] = tf.data.AUTOTUNE def _lowerCAmelCase ( ): """simple docstring""" _lowercase: Dict = argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=lowercase__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=lowercase__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=lowercase__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=lowercase__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=lowercase__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=lowercase__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=lowercase__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=lowercase__ , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=lowercase__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=lowercase__ , default=1e-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=lowercase__ , default=1e-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=lowercase__ , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=lowercase__ , default=0.15 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=lowercase__ , required=lowercase__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=lowercase__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) _lowercase: Optional[int] = parser.parse_args() return args def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" try: if args.tpu_name: _lowercase: List[str] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: _lowercase: List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Optional[Any] = 0 for file in file_list: _lowercase: int = file.split('''/''' )[-1] _lowercase: List[Any] = re.search(R'''-\d+-(\d+)\.tfrecord''' , lowercase__ ).group(1 ) _lowercase: Optional[Any] = int(lowercase__ ) num_samples += sample_count return num_samples def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase: Optional[int] = count_samples(lowercase__ ) _lowercase: int = tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: _lowercase: List[Any] = dataset.shuffle(len(lowercase__ ) ) _lowercase: Optional[int] = tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _lowercase: List[str] = dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) _lowercase: Optional[int] = dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None _lowercase: List[str] = dataset.shuffle(args.shuffle_buffer_size ) _lowercase: Optional[Any] = dataset.batch(lowercase__ , drop_remainder=lowercase__ ) _lowercase: Any = dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) _lowercase: Optional[Any] = dataset.prefetch(lowercase__ ) return dataset def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" if not args.no_tpu: _lowercase: Union[str, Any] = initialize_tpu(lowercase__ ) _lowercase: Any = tf.distribute.TPUStrategy(lowercase__ ) else: _lowercase: Dict = tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) _lowercase: Tuple = AutoTokenizer.from_pretrained(args.tokenizer ) _lowercase: str = AutoConfig.from_pretrained(args.pretrained_model_config ) _lowercase: List[str] = tokenizer.vocab_size _lowercase: Tuple = tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) _lowercase: str = tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) _lowercase: Optional[Any] = count_samples(lowercase__ ) _lowercase: Optional[int] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _lowercase: Union[str, Any] = steps_per_epoch * args.num_epochs with strategy.scope(): _lowercase: Any = TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _lowercase , _lowercase: List[str] = create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=['''accuracy'''] ) def decode_fn(_UpperCamelCase ): _lowercase: Dict = { '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _lowercase: Tuple = DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors='''tf''' ) def mask_with_collator(_UpperCamelCase ): # TF really needs an isin() function _lowercase: Optional[int] = ( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) _lowercase , _lowercase: Optional[int] = data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch _lowercase: int = args.per_replica_batch_size * strategy.num_replicas_in_sync _lowercase: Optional[int] = prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) _lowercase: Optional[Any] = prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) _lowercase: List[Any] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": A__ : Union[str, Any] = parse_args() main(args)
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = StableDiffusionInstructPixaPixPipeline lowerCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowerCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self : Tuple ) -> int: torch.manual_seed(0 ) __UpperCAmelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __UpperCAmelCase =PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) torch.manual_seed(0 ) __UpperCAmelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCAmelCase =CLIPTextModel(_lowerCAmelCase ) __UpperCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __UpperCAmelCase ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> Optional[int]: __UpperCAmelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __UpperCAmelCase =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCAmelCase =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" ) if str(_lowerCAmelCase ).startswith("""mps""" ): __UpperCAmelCase =torch.manual_seed(_lowerCAmelCase ) else: __UpperCAmelCase =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __UpperCAmelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a ( self : Optional[int] ) -> str: __UpperCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase =self.get_dummy_components() __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) __UpperCAmelCase =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs(_lowerCAmelCase ) __UpperCAmelCase =sd_pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase =np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Any ) -> Union[str, Any]: __UpperCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase =self.get_dummy_components() __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) __UpperCAmelCase =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs(_lowerCAmelCase ) __UpperCAmelCase ="""french fries""" __UpperCAmelCase =sd_pipe(**_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) __UpperCAmelCase =output.images __UpperCAmelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCAmelCase =np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Optional[int] ) -> Tuple: __UpperCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase =self.get_dummy_components() __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) __UpperCAmelCase =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs(_lowerCAmelCase ) __UpperCAmelCase =[inputs["""prompt"""]] * 2 __UpperCAmelCase =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 __UpperCAmelCase =torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ).to(_lowerCAmelCase ) __UpperCAmelCase =image / 2 + 0.5 __UpperCAmelCase =image.permute(0 , 3 , 1 , 2 ) __UpperCAmelCase =image.repeat(2 , 1 , 1 , 1 ) __UpperCAmelCase =sd_pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __UpperCAmelCase =np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Union[str, Any] ) -> str: __UpperCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase =self.get_dummy_components() __UpperCAmelCase =EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) __UpperCAmelCase =sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =self.get_dummy_inputs(_lowerCAmelCase ) __UpperCAmelCase =sd_pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1] __UpperCAmelCase =[round(_lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(_lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __UpperCAmelCase =np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Optional[int] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _a ( self : str ) -> Dict: __UpperCAmelCase =self.get_dummy_components() __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline(**_lowerCAmelCase ) __UpperCAmelCase =VaeImageProcessor(do_resize=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) __UpperCAmelCase =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __UpperCAmelCase =pipe(**self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type="""pt""" ) )[0] __UpperCAmelCase =components["""vae"""] __UpperCAmelCase =self.get_dummy_inputs_by_type(_lowerCAmelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __UpperCAmelCase =vae.encode(inputs[image_param] ).latent_dist.mode() __UpperCAmelCase =pipe(**_lowerCAmelCase )[0] __UpperCAmelCase =np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCAmelCase , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=0 ) -> Tuple: __UpperCAmelCase =torch.manual_seed(_lowerCAmelCase ) __UpperCAmelCase =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) __UpperCAmelCase ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def _a ( self : Optional[Any] ) -> int: __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() __UpperCAmelCase =self.get_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase =np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self : Optional[int] ) -> Dict: __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase ) __UpperCAmelCase =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() __UpperCAmelCase =self.get_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase =np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self : Dict ) -> str: __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase ) __UpperCAmelCase =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() __UpperCAmelCase =self.get_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ).images __UpperCAmelCase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCAmelCase =np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _a ( self : Dict ) -> Optional[int]: __UpperCAmelCase =0 def callback_fn(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor ) -> None: __UpperCAmelCase =True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCAmelCase =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __UpperCAmelCase =latents[0, -3:, -3:, -1] __UpperCAmelCase =np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __UpperCAmelCase =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __UpperCAmelCase =latents[0, -3:, -3:, -1] __UpperCAmelCase =np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __UpperCAmelCase =False __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa ) __UpperCAmelCase =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() __UpperCAmelCase =self.get_inputs() pipe(**_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_lowerCAmelCase , torch_dtype=torch.floataa ) __UpperCAmelCase =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCAmelCase =self.get_inputs() __UpperCAmelCase =pipe(**_lowerCAmelCase ) __UpperCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _a ( self : Dict ) -> str: __UpperCAmelCase =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCAmelCase =inputs["""image"""].resize((504, 504) ) __UpperCAmelCase ="""timbrooks/instruct-pix2pix""" __UpperCAmelCase =StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() __UpperCAmelCase =pipe(**_lowerCAmelCase ) __UpperCAmelCase =output.images[0] __UpperCAmelCase =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __UpperCAmelCase =np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
68
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
from math import sqrt def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :str = 0 for i in range(1, int(sqrt(lowercase__ ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase__ ): total += i + n // i elif i == sqrt(lowercase__ ): total += i return total - n def __lowercase ( snake_case = 1_0_0_0_0 ): """simple docstring""" __magic_name__ :List[str] = sum( i for i in range(1, lowercase__ ) if sum_of_divisors(sum_of_divisors(lowercase__ ) ) == i and sum_of_divisors(lowercase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( __lowercase ): lowercase = 42 lowercase = 42 def __init__( self : Tuple , __lowerCamelCase : UNetaDModel , __lowerCamelCase : ScoreSdeVeScheduler ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self : int , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 20_00 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , **__lowerCamelCase : Tuple , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowercase = self.unet.config.sample_size lowercase = (batch_size, 3, img_size, img_size) lowercase = self.unet lowercase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase ) * self.scheduler.init_noise_sigma lowercase = sample.to(self.device ) self.scheduler.set_timesteps(_lowerCAmelCase ) self.scheduler.set_sigmas(_lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample lowercase = self.scheduler.step_correct(_lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample # prediction step lowercase = model(_lowerCAmelCase , _lowerCAmelCase ).sample lowercase = self.scheduler.step_pred(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) lowercase ,lowercase = output.prev_sample, output.prev_sample_mean lowercase = sample_mean.clamp(0 , 1 ) lowercase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCAmelCase )
604
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE__ :int = "Pix2StructImageProcessor" SCREAMING_SNAKE_CASE__ :Optional[Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Optional[Any] , __a : Optional[Any] , __a : List[str] ) -> int: _UpperCamelCase : Tuple = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self : Tuple , __a : str=None , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : Optional[int] = 2048 , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : int , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCamelCase : Optional[int] = self.tokenizer _UpperCamelCase : Any = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCamelCase : str = self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , max_patches=_lowerCAmelCase , **_lowerCAmelCase ) else: # add pixel_values and bbox _UpperCamelCase : Union[str, Any] = self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCamelCase : Optional[int] = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) if "attention_mask" in text_encoding: _UpperCamelCase : Tuple = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: _UpperCamelCase : Optional[Any] = text_encoding.pop("input_ids" ) else: _UpperCamelCase : Any = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def __SCREAMING_SNAKE_CASE ( self : Optional[int] , *__a : Any , **__a : int ) -> Optional[Any]: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : str , *__a : List[str] , **__a : List[str] ) -> int: return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: _UpperCamelCase : Any = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
624
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ): """simple docstring""" lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" def extract(*__lowerCAmelCase , **__lowerCAmelCase ): class _A : def __init__( self ): """simple docstring""" lowercase = torch.ones([0] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ) lowercase = output.images lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A__ ( self ): """simple docstring""" lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase = init_image.resize((760, 504) ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] lowercase = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ): """simple docstring""" lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase = init_image.resize((768, 512) ) lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
359
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def A ( snake_case__ , snake_case__=10_00 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd SCREAMING_SNAKE_CASE__ = n - 1 SCREAMING_SNAKE_CASE__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) SCREAMING_SNAKE_CASE__ = 0 while count < prec: SCREAMING_SNAKE_CASE__ = random.randint(2 , n - 1 ) SCREAMING_SNAKE_CASE__ = bin_exp_mod(lowercase__ , lowercase__ , lowercase__ ) if b != 1: SCREAMING_SNAKE_CASE__ = True for _ in range(lowercase__ ): if b == n - 1: SCREAMING_SNAKE_CASE__ = False break SCREAMING_SNAKE_CASE__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A_ : str = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
196
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase = False class __UpperCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe( image=_lowerCAmelCase ,generator=_lowerCAmelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ,).images _lowerCAmelCase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : str = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
259
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class __snake_case (__lowercase ): lowerCAmelCase__ = "bridgetower_vision_model" def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : List[Any]=288 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[Any]=1E-05 , _UpperCAmelCase : int=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : str = initializer_factor _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = stop_gradient _lowerCAmelCase : Dict = share_layernorm _lowerCAmelCase : Optional[Any] = remove_last_layer @classmethod def SCREAMING_SNAKE_CASE ( cls : str , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Dict ) -> "PretrainedConfig": '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowerCAmelCase : Union[str, Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class __snake_case (__lowercase ): lowerCAmelCase__ = "bridgetower_text_model" def __init__( self : List[str] , _UpperCAmelCase : List[str]=5_0265 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : List[str]=3072 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=514 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[Any]=1E-05 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int="absolute" , _UpperCAmelCase : Tuple=True , **_UpperCAmelCase : Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Optional[int] = initializer_factor _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : str = use_cache _lowerCAmelCase : str = pad_token_id _lowerCAmelCase : List[str] = bos_token_id _lowerCAmelCase : Tuple = eos_token_id @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : str ) -> "PretrainedConfig": '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Tuple = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _lowerCAmelCase : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class __snake_case (__lowercase ): lowerCAmelCase__ = "bridgetower" def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Optional[int]=1E-05 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Union[str, Any]="add" , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Dict , ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Dict = kwargs.pop("""text_config_dict""" , _lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = kwargs.pop("""vision_config_dict""" , _lowerCAmelCase ) super().__init__(**_lowerCAmelCase ) _lowerCAmelCase : List[Any] = share_cross_modal_transformer_layers _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : int = initializer_factor _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = share_link_tower_layers _lowerCAmelCase : List[str] = link_tower_type _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = tie_word_embeddings _lowerCAmelCase : Tuple = init_layernorm_from_vision_encoder if text_config is None: _lowerCAmelCase : List[str] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _lowerCAmelCase : Optional[int] = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _lowerCAmelCase : List[str] = BridgeTowerTextConfig(**_lowerCAmelCase ) _lowerCAmelCase : int = BridgeTowerVisionConfig(**_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , _UpperCAmelCase : BridgeTowerTextConfig , _UpperCAmelCase : BridgeTowerVisionConfig , **_UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: '''simple docstring''' _lowerCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : Union[str, Any] = self.text_config.to_dict() _lowerCAmelCase : List[str] = self.vision_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
429
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class a__ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _SCREAMING_SNAKE_CASE : Optional[Any] = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE : Any = Features({'text': Value('string' )} ) _SCREAMING_SNAKE_CASE : Any = Features({'summary': Value('string' )} ) _SCREAMING_SNAKE_CASE : Optional[Any] = 'text' _SCREAMING_SNAKE_CASE : str = 'summary' @property def _lowerCamelCase ( self ): """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
245
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): """simple docstring""" _lowercase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , '''num_heads''' ) ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : str=13 , UpperCamelCase : List[Any]=64 , UpperCamelCase : str=3 , UpperCamelCase : str=[16, 48, 96] , UpperCamelCase : Union[str, Any]=[1, 3, 6] , UpperCamelCase : Union[str, Any]=[1, 2, 10] , UpperCamelCase : List[Any]=[7, 3, 3] , UpperCamelCase : Dict=[4, 2, 2] , UpperCamelCase : Optional[int]=[2, 1, 1] , UpperCamelCase : List[str]=[2, 2, 2] , UpperCamelCase : Optional[int]=[False, False, True] , UpperCamelCase : Any=[0.0, 0.0, 0.0] , UpperCamelCase : str=0.02 , UpperCamelCase : Any=1E-12 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[Any]=2 , ): """simple docstring""" _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : List[str] = image_size _lowercase : Union[str, Any] = patch_sizes _lowercase : List[Any] = patch_stride _lowercase : List[str] = patch_padding _lowercase : Union[str, Any] = is_training _lowercase : str = use_labels _lowercase : Optional[Any] = num_labels _lowercase : str = num_channels _lowercase : int = embed_dim _lowercase : List[str] = num_heads _lowercase : List[str] = stride_kv _lowercase : List[Any] = depth _lowercase : Dict = cls_token _lowercase : Any = attention_drop_rate _lowercase : Dict = initializer_range _lowercase : List[str] = layer_norm_eps def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Union[str, Any] = None if self.use_labels: # create a random int32 tensor of given shape _lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] ): """simple docstring""" _lowercase : int = TFCvtModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , training=_lowerCAmelCase ) _lowercase : Optional[Any] = (self.image_size, self.image_size) _lowercase , _lowercase : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowercase : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowercase : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] ): """simple docstring""" _lowercase : Optional[Any] = self.num_labels _lowercase : List[str] = TFCvtForImageClassification(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _lowercase : Optional[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Dict = config_and_inputs _lowercase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCAmelCase_ = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Tuple = TFCvtModelTester(self ) _lowercase : Any = TFCvtConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : str ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def lowerCAmelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def lowerCAmelCase_ ( self : int ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : List[str] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(_lowerCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Dict = model_class(_lowerCAmelCase ) _lowercase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Dict = [*signature.parameters.keys()] _lowercase : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase : Tuple , UpperCamelCase : str , UpperCamelCase : int ): _lowercase : Tuple = model_class(_lowerCAmelCase ) _lowercase : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Dict = outputs.hidden_states _lowercase : Dict = len(self.model_tester.depth ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Dict = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[int] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = TFCvtModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCamelCase__ ( ) -> List[Any]: '''simple docstring''' _lowercase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : str = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowercase : Dict = self.default_image_processor _lowercase : int = prepare_img() _lowercase : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors='''tf''' ) # forward pass _lowercase : int = model(**_lowerCAmelCase ) # verify the logits _lowercase : Union[str, Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : Optional[int] = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1E-4 ) )
322
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
"""simple docstring""" from __future__ import annotations class __magic_name__ : def __init__( self , A_ ) -> None: """simple docstring""" _lowercase: Optional[Any] = order # a_{0} ... a_{k} _lowercase: Optional[int] = [1.0] + [0.0] * order # b_{0} ... b_{k} _lowercase: Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _lowercase: int = [0.0] * self.order # y[n-1] ... y[n-k] _lowercase: Union[str, Any] = [0.0] * self.order def lowercase_ ( self , A_ , A_ ) -> None: """simple docstring""" if len(_lowerCAmelCase ) < self.order: _lowercase: List[str] = [1.0, *a_coeffs] if len(_lowerCAmelCase ) != self.order + 1: _lowercase: Tuple = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowerCAmelCase )}''' ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != self.order + 1: _lowercase: List[str] = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowerCAmelCase )}''' ) raise ValueError(_lowerCAmelCase ) _lowercase: List[str] = a_coeffs _lowercase: str = b_coeffs def lowercase_ ( self , A_ ) -> float: """simple docstring""" _lowercase: List[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _lowercase: int = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _lowercase: int = self.input_history[:-1] _lowercase: Optional[Any] = self.output_history[:-1] _lowercase: str = sample _lowercase: Dict = result return result
353
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase =tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __UpperCAmelCase =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __UpperCAmelCase =tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above __UpperCAmelCase =tf_top_k_top_p_filtering(_lowerCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __UpperCAmelCase =output[output != -float("""inf""" )] __UpperCAmelCase =tf.cast( tf.where(tf.not_equal(_lowerCAmelCase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-12 ) tf.debugging.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) @require_tf class _A ( unittest.TestCase , __lowercase ): """simple docstring""" if is_tf_available(): lowerCamelCase : Optional[int] = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def _a ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __UpperCAmelCase =2 __UpperCAmelCase =2 class _A ( tf.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: super(_lowerCAmelCase , self ).__init__() __UpperCAmelCase =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_lowerCAmelCase , ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: __UpperCAmelCase =self.model.generate( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , max_new_tokens=_lowerCAmelCase , return_dict_in_generate=_lowerCAmelCase , ) return {"sequences": outputs["sequences"]} __UpperCAmelCase =[[2, 0], [102, 103]] __UpperCAmelCase =[[1, 0], [1, 1]] __UpperCAmelCase =DummyModel(model=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowerCAmelCase , _lowerCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) __UpperCAmelCase =tf.saved_model.load(_lowerCAmelCase ).signatures["""serving_default"""] for batch_size in range(1 , len(_lowerCAmelCase ) + 1 ): __UpperCAmelCase ={ """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __UpperCAmelCase =serving_func(**_lowerCAmelCase )["""sequences"""] __UpperCAmelCase =test_model.generate(**_lowerCAmelCase , max_new_tokens=_lowerCAmelCase ) tf.debugging.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) @slow def _a ( self : str ) -> Optional[int]: __UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __UpperCAmelCase =1 __UpperCAmelCase =2 class _A ( tf.Module ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: super(_lowerCAmelCase , self ).__init__() __UpperCAmelCase =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_lowerCAmelCase , ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: __UpperCAmelCase =self.model.generate( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , max_new_tokens=_lowerCAmelCase , return_dict_in_generate=_lowerCAmelCase , ) return {"sequences": outputs["sequences"]} __UpperCAmelCase =[[2], [102, 103]] __UpperCAmelCase =[[1], [1, 1]] __UpperCAmelCase =DummyModel(model=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowerCAmelCase , _lowerCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) __UpperCAmelCase =tf.saved_model.load(_lowerCAmelCase ).signatures["""serving_default"""] for input_row in range(len(_lowerCAmelCase ) ): __UpperCAmelCase ={ """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __UpperCAmelCase =serving_func(**_lowerCAmelCase )["""sequences"""] __UpperCAmelCase =test_model.generate(**_lowerCAmelCase , max_new_tokens=_lowerCAmelCase ) tf.debugging.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) @slow @require_tensorflow_text def _a ( self : List[Any] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_lowerCAmelCase ) class _A ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] ) -> List[str]: super().__init__() __UpperCAmelCase =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_lowerCAmelCase , """spiece.model""" ) , """rb""" ).read() ) __UpperCAmelCase =TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: __UpperCAmelCase =self.tokenizer.tokenize(_lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase =text.pad_model_inputs( _lowerCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __UpperCAmelCase =self.model.generate(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) return self.tokenizer.detokenize(_lowerCAmelCase ) __UpperCAmelCase =CompleteSentenceTransformer() __UpperCAmelCase =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __UpperCAmelCase =complete_model(_lowerCAmelCase ) __UpperCAmelCase =tf.keras.Model(_lowerCAmelCase , _lowerCAmelCase ) keras_model.save(_lowerCAmelCase ) def _a ( self : List[str] ) -> str: __UpperCAmelCase ={ """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __UpperCAmelCase =14 __UpperCAmelCase =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __UpperCAmelCase ="""Hello, my dog is cute and""" __UpperCAmelCase =tokenizer(_lowerCAmelCase , return_tensors="""tf""" ) __UpperCAmelCase =TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __UpperCAmelCase =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __UpperCAmelCase =model.generate(**_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __UpperCAmelCase =[638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __UpperCAmelCase =model.generate(**_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _a ( self : List[Any] ) -> Any: __UpperCAmelCase =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __UpperCAmelCase ="""Hugging Face is a technology company based in New York and Paris.""" __UpperCAmelCase =bart_tokenizer(_lowerCAmelCase , return_tensors="""tf""" ).input_ids __UpperCAmelCase =TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __UpperCAmelCase =bart_model.generate(_lowerCAmelCase ).numpy() class _A ( __lowercase ): """simple docstring""" def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> str: return super().call(_lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase =FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __UpperCAmelCase =bart_model.generate(_lowerCAmelCase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_lowerCAmelCase , _lowerCAmelCase ) ) class _A ( bart_model.model.encoder.__class__ ): """simple docstring""" def _a ( self : int , __SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Tuple ) -> int: return super().call(_lowerCAmelCase , **_lowerCAmelCase ) __UpperCAmelCase =FakeEncoder(bart_model.config , bart_model.model.shared ) __UpperCAmelCase =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __UpperCAmelCase =bart_model.generate(_lowerCAmelCase ).numpy() with self.assertRaises(_lowerCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_lowerCAmelCase , foo="""bar""" )
68
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Optional[int] = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowercase ( ): """simple docstring""" __magic_name__ :List[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) __magic_name__ :Dict = g.get_repo('''huggingface/transformers''' ) __magic_name__ :Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __magic_name__ :Optional[Any] = sorted([comment for comment in issue.get_comments()], key=lambda snake_case : i.created_at, reverse=lowercase__ ) __magic_name__ :int = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class __lowercase ( __lowercase ): lowercase = ['pixel_values'] def __init__( self : Tuple , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PIL.Image.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : Union[int, float] = 1 / 2_55 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , **__lowerCamelCase : Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase = size if size is not None else {'''height''': 2_56, '''width''': 2_56} lowercase = get_size_dict(_lowerCAmelCase ) lowercase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase = get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : str , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PIL.Image.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( _lowerCAmelCase , size=(size['''height'''], size['''width''']) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : int , ) -> Any: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def __a ( self : Union[str, Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : str=None , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(_lowerCAmelCase ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(_lowerCAmelCase , param_name='''crop_size''' ) lowercase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: lowercase = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: lowercase = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: lowercase = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] lowercase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] lowercase = {'''pixel_values''': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
604
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ) -> None: _UpperCamelCase : int = {} # Mapping from char to TrieNode _UpperCamelCase : Any = False def __SCREAMING_SNAKE_CASE ( self : int , __a : list[str] ) -> None: for word in words: self.insert(_lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : str ) -> None: _UpperCamelCase : Dict = self for char in word: if char not in curr.nodes: _UpperCamelCase : int = TrieNode() _UpperCamelCase : List[Any] = curr.nodes[char] _UpperCamelCase : Tuple = True def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : str ) -> bool: _UpperCamelCase : Optional[Any] = self for char in word: if char not in curr.nodes: return False _UpperCamelCase : str = curr.nodes[char] return curr.is_leaf def __SCREAMING_SNAKE_CASE ( self : str , __a : str ) -> None: def _delete(__a : TrieNode , __a : str , __a : int ) -> bool: if index == len(_lowerCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCamelCase : str = False return len(curr.nodes ) == 0 _UpperCamelCase : List[Any] = word[index] _UpperCamelCase : List[str] = curr.nodes.get(_lowerCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCamelCase : int = _delete(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowerCAmelCase , 0 ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Any: """simple docstring""" if node.is_leaf: print(lowercase__ ,end=" " ) for key, value in node.nodes.items(): print_words(lowercase__ ,word + key ) def lowercase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase : Dict = "banana bananas bandana band apple all beast".split() _UpperCamelCase : Tuple = TrieNode() root.insert_many(lowercase__ ) # print_words(root, "") assert all(root.find(lowercase__ ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowercase__ ( lowercase_ ,lowercase_ ) -> Any: """simple docstring""" print(str(lowercase__ ) ,"works!" if passes else "doesn't work :(" ) def lowercase__ ( ) -> Optional[int]: """simple docstring""" assert test_trie() def lowercase__ ( ) -> List[Any]: """simple docstring""" print_results("Testing trie functionality" ,test_trie() ) if __name__ == "__main__": main()
624
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
"""simple docstring""" from math import ceil def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' lowercase = list(range(0 , lowercase__ ) ) lowercase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase = [] for i in device_map_blocks: if device_map_blocks.count(lowercase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase__ ) # Missing blocks lowercase = [i for i in blocks if i not in device_map_blocks] lowercase = [i for i in device_map_blocks if i not in blocks] if len(lowercase__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(lowercase__ ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase = list(range(lowercase__ ) ) lowercase = int(ceil(n_layers / len(lowercase__ ) ) ) lowercase = [layers[i : i + n_blocks] for i in range(0 , lowercase__ , lowercase__ )] return dict(zip(lowercase__ , lowercase__ ) )
359
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A_ : Any = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCamelCase (datasets.BuilderConfig ): lowerCamelCase__ : str = None lowerCamelCase__ : List[Any] = 'utf-8' lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Dict = None lowerCamelCase__ : List[Any] = True # deprecated lowerCamelCase__ : Optional[Any] = None # deprecated lowerCamelCase__ : Optional[int] = 1_0 << 2_0 # 10MB lowerCamelCase__ : Dict = None class lowerCamelCase (datasets.ArrowBasedBuilder ): lowerCamelCase__ : Tuple = JsonConfig def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) SCREAMING_SNAKE_CASE__ = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : int ) -> str: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) SCREAMING_SNAKE_CASE__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE__ = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = [files] SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] SCREAMING_SNAKE_CASE__ = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = [files] SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE__ = self.config.features.arrow_schema.field(_lowerCAmelCase ).type SCREAMING_SNAKE_CASE__ = pa_table.append_column(_lowerCAmelCase , pa.array([None] * len(_lowerCAmelCase ) , type=_lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__ = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : int ) -> Tuple: for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE__ = json.load(_lowerCAmelCase ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCAmelCase , (list, tuple) ): SCREAMING_SNAKE_CASE__ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE__ = {col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE__ = dataset SCREAMING_SNAKE_CASE__ = pa.Table.from_pydict(_lowerCAmelCase ) yield file_idx, self._cast_table(_lowerCAmelCase ) # If the file has one json object per line else: with open(_lowerCAmelCase , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE__ = max(self.config.chunksize // 3_2 , 1_6 << 1_0 ) SCREAMING_SNAKE_CASE__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: SCREAMING_SNAKE_CASE__ = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE__ = batch.decode(self.config.encoding , errors=_lowerCAmelCase ).encode("""utf-8""" ) try: while True: try: SCREAMING_SNAKE_CASE__ = paj.read_json( io.BytesIO(_lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=_lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCAmelCase ) or block_size > len(_lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(_lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE__ = json.load(_lowerCAmelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE__ = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE__ = {col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE__ = pa.Table.from_pydict(_lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(_lowerCAmelCase ) break else: logger.error(F"""Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) batch_idx += 1
196
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' if len(lowercase__ ) == 0: return array _lowerCAmelCase, _lowerCAmelCase : str = min(lowercase__ ), max(lowercase__ ) # Compute the variables _lowerCAmelCase : str = _max - _min + 1 _lowerCAmelCase, _lowerCAmelCase : str = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowerCAmelCase : Dict = i - _min _lowerCAmelCase : Union[str, Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowerCAmelCase : Tuple = 0 for i in range(lowercase__ ): while holes_repeat[i] > 0: _lowerCAmelCase : Optional[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = input("""Enter numbers separated by comma:\n""") _lowerCAmelCase = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
259
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
import collections import os import re from pathlib import Path _lowerCamelCase : Tuple = """src/transformers""" # Matches is_xxx_available() _lowerCamelCase : Union[str, Any] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _lowerCamelCase : List[str] = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowerCamelCase : Optional[int] = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _lowerCamelCase : Any = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _lowerCamelCase : Optional[Any] = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowerCamelCase : Optional[int] = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _lowerCamelCase : List[Any] = re.compile(R"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _lowerCamelCase : Optional[int] = re.compile(R"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _lowerCamelCase : Union[str, Any] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _lowerCamelCase : Optional[int] = re.compile(R"^\s*try:") # Catches a line with else: _lowerCamelCase : Union[str, Any] = re.compile(R"^\s*else:") def _UpperCAmelCase (UpperCamelCase_ : str ): '''simple docstring''' if _re_test_backend.search(lowercase__ ) is None: return None _lowerCAmelCase : Optional[Any] = [b[0] for b in _re_backend.findall(lowercase__ )] backends.sort() return "_and_".join(lowercase__ ) def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _lowerCAmelCase : List[str] = f.readlines() _lowerCAmelCase : Optional[Any] = 0 while line_index < len(lowercase__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase__ ): return None # First grab the objects without a specific backend in _import_structure _lowerCAmelCase : Dict = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _lowerCAmelCase : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase__ ): _lowerCAmelCase : Dict = _re_one_line_import_struct.search(lowercase__ ).groups()[0] _lowerCAmelCase : List[str] = re.findall(R"""\[([^\]]+)\]""" , lowercase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _lowerCAmelCase : Optional[int] = _re_import_struct_key_value.search(lowercase__ ) if single_line_import_search is not None: _lowerCAmelCase : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _lowerCAmelCase : Any = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _lowerCAmelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCAmelCase : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _lowerCAmelCase : List[str] = lines[line_index] if _re_import_struct_add_one.search(lowercase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase__ ) is not None: _lowerCAmelCase : List[str] = _re_import_struct_add_many.search(lowercase__ ).groups()[0].split(""", """ ) _lowerCAmelCase : Tuple = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_between_brackets.search(lowercase__ ) is not None: _lowerCAmelCase : List[Any] = _re_between_brackets.search(lowercase__ ).groups()[0].split(""", """ ) _lowerCAmelCase : Optional[int] = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_quote_object.search(lowercase__ ) is not None: objects.append(_re_quote_object.search(lowercase__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _lowerCAmelCase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _lowerCAmelCase : Dict = [] while ( line_index < len(lowercase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _lowerCAmelCase : int = lines[line_index] _lowerCAmelCase : Dict = _re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _lowerCAmelCase : List[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase__ ): # If the line is an if is_backend_available, we grab all objects associated. _lowerCAmelCase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _lowerCAmelCase : Any = lines[line_index] _lowerCAmelCase : Optional[int] = _re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ): '''simple docstring''' def find_duplicates(UpperCamelCase_ : Optional[Any] ): return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _lowerCAmelCase : str = [] for key in import_dict_objects.keys(): _lowerCAmelCase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) _lowerCAmelCase : Any = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _lowerCAmelCase : Optional[Any] = """base imports""" if key == """none""" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: _lowerCAmelCase : Union[str, Any] = os.path.join(lowercase__ , """__init__.py""" ) _lowerCAmelCase : Optional[Any] = parse_init(lowercase__ ) if objects is not None: _lowerCAmelCase : List[str] = analyze_results(*lowercase__ ) if len(lowercase__ ) > 0: _lowerCAmelCase : int = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(lowercase__ ) ) if len(lowercase__ ) > 0: raise ValueError("""\n\n""".join(lowercase__ ) ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for path, directories, files in os.walk(lowercase__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase__ ) / folder).glob("""*.py""" ) ) ) == 0: continue _lowerCAmelCase : Union[str, Any] = str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) ) _lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowercase__ ) for fname in files: if fname == "__init__.py": continue _lowerCAmelCase : str = str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) ) _lowerCAmelCase : List[Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase__ ) return submodules _lowerCamelCase : Optional[Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def _UpperCAmelCase (): '''simple docstring''' from transformers.utils import direct_transformers_import _lowerCAmelCase : Union[str, Any] = direct_transformers_import(lowercase__ ) _lowerCAmelCase : List[Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase__ , """__init__.py""" ) , """r""" ) as f: _lowerCAmelCase : str = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , lowercase__ ) ) ) _lowerCAmelCase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase__ ) > 0: _lowerCAmelCase : str = """\n""".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
429
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = torch.device('cpu') def _A ( ) -> Optional[int]: _lowercase : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase : Dict = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def _A ( snake_case ) -> Dict: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] ) def _A ( snake_case , snake_case , snake_case ) -> Any: _lowercase : List[str] = dct.pop(lowercase__ ) _lowercase : Dict = val def _A ( snake_case ) -> Dict: _lowercase : List[Any] = [] for k in state_dict.keys(): _lowercase : int = k if ".pwconv" in k: _lowercase : int = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: _lowercase : Optional[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: _lowercase : Optional[Any] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: _lowercase : str = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: _lowercase : Tuple = k_new.split("." ) if ls[2].isdigit(): _lowercase : Any = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: _lowercase : List[str] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _A ( snake_case , snake_case , snake_case ) -> Optional[Any]: _lowercase : int = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _lowercase : List[str] = 10_00 _lowercase : List[str] = "huggingface/label-files" _lowercase : Optional[int] = "imagenet-1k-id2label.json" _lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) _lowercase : str = {int(lowercase__ ): v for k, v in idalabel.items()} _lowercase : Union[str, Any] = idalabel _lowercase : Tuple = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _lowercase : str = [3, 3, 6, 4] _lowercase : List[Any] = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": _lowercase : List[Any] = [3, 3, 9, 6] _lowercase : Optional[Any] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": _lowercase : Union[str, Any] = [4, 3, 10, 5] _lowercase : Tuple = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": _lowercase : List[str] = [4, 4, 12, 6] _lowercase : str = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): _lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" , check_hash=lowercase__ ) else: _lowercase : Tuple = torch.load(lowercase__ , map_location="cpu" ) _lowercase : Optional[int] = checkpoint _lowercase : int = create_rename_keys(lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model _lowercase : Optional[int] = SwiftFormerForImageClassification(lowercase__ ).eval() hf_model.load_state_dict(lowercase__ ) # prepare test inputs _lowercase : Tuple = prepare_img() _lowercase : Any = ViTImageProcessor.from_pretrained("preprocessor_config" ) _lowercase : Tuple = processor(images=lowercase__ , return_tensors="pt" ) # compare outputs from both models _lowercase : Optional[Any] = get_expected_output(lowercase__ ) _lowercase : Optional[Any] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase__ , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _snake_case = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
245
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
import requests def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: '''simple docstring''' _lowercase : Any = {'''Content-Type''': '''application/json'''} _lowercase : Optional[Any] = requests.post(lowercase__ , json={'''text''': message_body} , headers=lowercase__ ) if response.status_code != 200: _lowercase : Optional[int] = ( '''Request to slack returned an error ''' F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
322
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
"""simple docstring""" def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: List[str] = [0 for i in range(r + 1 )] # nc0 = 1 _lowercase: List[str] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowercase: int = min(lowercase__ , lowercase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A = random.Random() def lowercase__ ( A_: Tuple , A_: Optional[Any]=1.0 , A_: str=None , A_: Tuple=None ) -> Any: """simple docstring""" if rng is None: __UpperCAmelCase =global_rng __UpperCAmelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : Optional[int]=400 , __SCREAMING_SNAKE_CASE : Optional[Any]=2000 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : Optional[int]=160 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=4000 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Optional[Any]=True , ) -> Dict: __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =min_seq_length __UpperCAmelCase =max_seq_length __UpperCAmelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase =padding_value __UpperCAmelCase =sampling_rate __UpperCAmelCase =return_attention_mask __UpperCAmelCase =do_normalize __UpperCAmelCase =feature_size __UpperCAmelCase =chunk_length __UpperCAmelCase =hop_length def _a ( self : Union[str, Any] ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Dict=False ) -> str: def _flatten(__SCREAMING_SNAKE_CASE : List[str] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: __UpperCAmelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCAmelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCAmelCase =[np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _A ( __lowercase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = WhisperFeatureExtractor if is_speech_available() else None def _a ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase =WhisperFeatureExtractionTester(self ) def _a ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase =feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) __UpperCAmelCase =self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) __UpperCAmelCase =feat_extract_first.to_dict() __UpperCAmelCase =feat_extract_second.to_dict() __UpperCAmelCase =feat_extract_first.mel_filters __UpperCAmelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: __UpperCAmelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase =os.path.join(_lowerCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowerCAmelCase ) __UpperCAmelCase =self.feature_extraction_class.from_json_file(_lowerCAmelCase ) __UpperCAmelCase =feat_extract_first.to_dict() __UpperCAmelCase =feat_extract_second.to_dict() __UpperCAmelCase =feat_extract_first.mel_filters __UpperCAmelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[str] ) -> Optional[Any]: __UpperCAmelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCAmelCase =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase =feature_extractor(_lowerCAmelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCAmelCase =feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features __UpperCAmelCase =feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test batched __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_features __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __UpperCAmelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCAmelCase =np.asarray(_lowerCAmelCase ) __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_features __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test truncation required __UpperCAmelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCAmelCase =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] __UpperCAmelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCAmelCase =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs_truncated] __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_features __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def _a ( self : str ) -> Tuple: import torch __UpperCAmelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCAmelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase =feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCAmelCase =feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: __UpperCAmelCase =load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __UpperCAmelCase =ds.sort("""id""" ).select(range(_lowerCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _a ( self : str ) -> Tuple: __UpperCAmelCase =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on __UpperCAmelCase =self._load_datasamples(1 ) __UpperCAmelCase =WhisperFeatureExtractor() __UpperCAmelCase =feature_extractor(_lowerCAmelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _lowerCAmelCase , atol=1e-4 ) ) def _a ( self : str ) -> Any: __UpperCAmelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCAmelCase =self._load_datasamples(1 )[0] __UpperCAmelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCAmelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(_lowerCAmelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase ) - 1 ) < 1e-3 ) )
68
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
class lowerCamelCase_ : # Public class to implement a graph def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = row __magic_name__ :Optional[int] = col __magic_name__ :str = graph def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __magic_name__ :str = [-1, 0, 1, -1, 1, -1, 0, 1] __magic_name__ :Union[str, Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ) def A ( self ): # And finally, count all islands. """simple docstring""" __magic_name__ :Optional[int] = [[False for j in range(self.COL )] for i in range(self.ROW )] __magic_name__ :Optional[int] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += 1 return count
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowercase : def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=13 , __lowerCamelCase : str=7 , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Any=5_12 , __lowerCamelCase : str=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : str=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=None , ) -> Dict: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def __a ( self : List[str] ) -> Any: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : int ) -> Union[str, Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __a ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ) -> Tuple: '''simple docstring''' lowercase = LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : int , ) -> Tuple: '''simple docstring''' lowercase = True lowercase = LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , ) -> Tuple: '''simple docstring''' lowercase = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , ) -> str: '''simple docstring''' lowercase = True lowercase = True lowercase = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['''hidden_states'''][0] lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['''hidden_states'''][0] # select random slice lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) def __a ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) , ) = config_and_inputs lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def __a ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase = LlamaModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __a ( self : Optional[int] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = input_dict['''input_ids'''] lowercase = input_ids.ne(1 ).to(_lowerCAmelCase ) lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = '''single_label_classification''' lowercase = input_dict['''input_ids'''] lowercase = input_ids.ne(1 ).to(_lowerCAmelCase ) lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = 3 lowercase = '''multi_label_classification''' lowercase = input_dict['''input_ids'''] lowercase = input_ids.ne(1 ).to(_lowerCAmelCase ) lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __a ( self : Dict ) -> Tuple: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __a ( self : List[str] , __lowerCamelCase : Any ) -> Tuple: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = ids_tensor([1, 10] , config.vocab_size ) lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase = LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() lowercase = original_model(_lowerCAmelCase ).last_hidden_state lowercase = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase = {'''type''': scaling_type, '''factor''': 10.0} lowercase = LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() lowercase = scaled_model(_lowerCAmelCase ).last_hidden_state lowercase = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) @require_torch class __lowercase ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __a ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowercase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __a ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowercase = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 lowercase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __a ( self : str ) -> Any: '''simple docstring''' lowercase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowercase = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 lowercase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __a ( self : Tuple ) -> int: '''simple docstring''' lowercase = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] lowercase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowercase = model(torch.tensor(_lowerCAmelCase ) ) lowercase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off lowercase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi''' lowercase = '''Simply put, the theory of relativity states that ''' lowercase = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowercase = tokenizer.encode(_lowerCAmelCase , return_tensors='''pt''' ) lowercase = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=_lowerCAmelCase ) # greedy generation outputs lowercase = model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) lowercase = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
604
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCamelCase__ = False try: lowerCamelCase__ = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : str = None , __a : list = [] ) -> Optional[Any]: _UpperCamelCase : Dict = 0 _UpperCamelCase : Optional[int] = choices _UpperCamelCase : int = prompt if sys.platform == "win32": _UpperCamelCase : Dict = "*" else: _UpperCamelCase : Union[str, Any] = "➔ " def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Dict , __a : str = "" ) -> int: if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowerCAmelCase ) else: forceWrite(self.choices[index] , _lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( self : int , __a : int ) -> Optional[Any]: if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(_lowerCAmelCase ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Direction , __a : int = 1 ) -> Dict: _UpperCamelCase : List[str] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowerCAmelCase ) move_cursor(_lowerCAmelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowerCAmelCase )] for number in range(10 )] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: _UpperCamelCase : List[Any] = int(chr(self.current_selection ) ) _UpperCamelCase : Dict = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowerCAmelCase ) else: return else: return def __SCREAMING_SNAKE_CASE ( self : int , __a : int = 0 ) -> Dict: if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) _UpperCamelCase : Union[str, Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowerCAmelCase ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: _UpperCamelCase : Optional[int] = int(builtins.input() ) except ValueError: _UpperCamelCase : str = default_choice else: _UpperCamelCase : Optional[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(_lowerCAmelCase , "\n" ) return choice
624
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any]=0.999 , lowerCAmelCase__ :Optional[int]="cosine" , ) -> Union[str, Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase__ :str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase__ :str ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) lowercase = [] for i in range(lowercase__ ): lowercase = i / num_diffusion_timesteps lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _A ( __lowercase , __lowercase ): snake_case__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] snake_case__ : Tuple = 2 @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = 0.0_0_0_8_5 , __lowerCAmelCase = 0.0_1_2 , __lowerCAmelCase = "linear" , __lowerCAmelCase = None , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 1.0 , __lowerCAmelCase = "linspace" , __lowerCAmelCase = 0 , ): """simple docstring""" if trained_betas is not None: lowercase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": lowercase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""exp""" ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) lowercase = 1.0 - self.betas lowercase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase = use_karras_sigmas def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" if schedule_timesteps is None: lowercase = self.timesteps lowercase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase = 1 if len(_lowerCAmelCase ) > 1 else 0 else: lowercase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep lowercase = self._index_counter[timestep_int] return indices[pos].item() @property def A__ ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowercase = self.index_for_timestep(_lowerCAmelCase ) lowercase = self.sigmas[step_index] lowercase = sample / ((sigma**2 + 1) ** 0.5) return sample def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , ): """simple docstring""" lowercase = num_inference_steps lowercase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) lowercase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase = np.log(_lowerCAmelCase ) lowercase = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: lowercase = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) lowercase = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) lowercase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) lowercase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase = torch.from_numpy(_lowerCAmelCase ) lowercase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("""mps""" ): # mps does not support float64 lowercase = timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: lowercase = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative lowercase = None lowercase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase = defaultdict(_lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = np.log(_lowerCAmelCase ) # get distribution lowercase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase = low_idx + 1 lowercase = log_sigmas[low_idx] lowercase = log_sigmas[high_idx] # interpolate sigmas lowercase = (low - log_sigma) / (low - high) lowercase = np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range lowercase = (1 - w) * low_idx + w * high_idx lowercase = t.reshape(sigma.shape ) return t def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = in_sigmas[-1].item() lowercase = in_sigmas[0].item() lowercase = 7.0 # 7.0 is the value used in the paper lowercase = np.linspace(0 , 1 , _lowerCAmelCase ) lowercase = sigma_min ** (1 / rho) lowercase = sigma_max ** (1 / rho) lowercase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def A__ ( self ): """simple docstring""" return self.dt is None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): """simple docstring""" lowercase = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 lowercase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase = self.sigmas[step_index] lowercase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase = self.sigmas[step_index - 1] lowercase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase = 0 lowercase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase = sigma_hat if self.state_in_first_order else sigma_next lowercase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase = sigma_hat if self.state_in_first_order else sigma_next lowercase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: lowercase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase = sigma_next - sigma_hat # store for 2nd order step lowercase = derivative lowercase = dt lowercase = sample else: # 2. 2nd order / Heun's method lowercase = (sample - pred_original_sample) / sigma_next lowercase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase = self.dt lowercase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase = None lowercase = None lowercase = None lowercase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowercase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 lowercase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase = self.timesteps.to(original_samples.device ) lowercase = timesteps.to(original_samples.device ) lowercase = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] lowercase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase = sigma.unsqueeze(-1 ) lowercase = original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
359
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig A_ : Tuple = logging.get_logger(__name__) # General docstring A_ : Dict = """MobileNetV1Config""" # Base docstring A_ : Union[str, Any] = """google/mobilenet_v1_1.0_224""" A_ : str = [1, 1_024, 7, 7] # Image classification docstring A_ : str = """google/mobilenet_v1_1.0_224""" A_ : List[Any] = """tabby, tabby cat""" A_ : Dict = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A ( snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ = model.mobilenet_va else: SCREAMING_SNAKE_CASE__ = model SCREAMING_SNAKE_CASE__ = """MobilenetV1/Conv2d_0/""" SCREAMING_SNAKE_CASE__ = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE__ = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE__ = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE__ = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE__ = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE__ = i + 1 SCREAMING_SNAKE_CASE__ = i * 2 SCREAMING_SNAKE_CASE__ = backbone.layer[pt_index] SCREAMING_SNAKE_CASE__ = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE__ = pointer.convolution.weight SCREAMING_SNAKE_CASE__ = pointer.normalization.bias SCREAMING_SNAKE_CASE__ = pointer.normalization.weight SCREAMING_SNAKE_CASE__ = pointer.normalization.running_mean SCREAMING_SNAKE_CASE__ = pointer.normalization.running_var SCREAMING_SNAKE_CASE__ = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE__ = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE__ = pointer.convolution.weight SCREAMING_SNAKE_CASE__ = pointer.normalization.bias SCREAMING_SNAKE_CASE__ = pointer.normalization.weight SCREAMING_SNAKE_CASE__ = pointer.normalization.running_mean SCREAMING_SNAKE_CASE__ = pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ = """MobilenetV1/Logits/Conv2d_1c_1x1/""" SCREAMING_SNAKE_CASE__ = model.classifier.weight SCREAMING_SNAKE_CASE__ = model.classifier.bias return tf_to_pt_map def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model SCREAMING_SNAKE_CASE__ = tf.train.list_variables(lowercase__ ) SCREAMING_SNAKE_CASE__ = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE__ = tf.train.load_variable(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE__ = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE__ = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) SCREAMING_SNAKE_CASE__ = np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE__ = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE__ = np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + """/RMSProp""" , lowercase__ ) tf_weights.pop(name + """/RMSProp_1""" , lowercase__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" , lowercase__ ) logger.info(f"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = features.shape[-2:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = conv_layer.stride SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE__ = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE__ = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE__ = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE__ = pad_along_width // 2 SCREAMING_SNAKE_CASE__ = pad_along_width - pad_left SCREAMING_SNAKE_CASE__ = pad_along_height // 2 SCREAMING_SNAKE_CASE__ = pad_along_height - pad_top SCREAMING_SNAKE_CASE__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , """constant""" , 0.0 ) class lowerCamelCase (nn.Module ): def __init__( self : Optional[Any] , __UpperCAmelCase : MobileNetVaConfig , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[bool] = True , __UpperCAmelCase : Optional[bool or str] = True , ) -> None: super().__init__() SCREAMING_SNAKE_CASE__ = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE__ = nn.Convad( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase , groups=_lowerCAmelCase , bias=_lowerCAmelCase , padding_mode="""zeros""" , ) if use_normalization: SCREAMING_SNAKE_CASE__ = nn.BatchNormad( num_features=_lowerCAmelCase , eps=config.layer_norm_eps , momentum=0.9_997 , affine=_lowerCAmelCase , track_running_stats=_lowerCAmelCase , ) else: SCREAMING_SNAKE_CASE__ = None if use_activation: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE__ = config.hidden_act else: SCREAMING_SNAKE_CASE__ = None def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE__ = apply_tf_padding(_lowerCAmelCase , self.convolution ) SCREAMING_SNAKE_CASE__ = self.convolution(_lowerCAmelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE__ = self.normalization(_lowerCAmelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE__ = self.activation(_lowerCAmelCase ) return features class lowerCamelCase (__lowercase ): lowerCamelCase__ : str = MobileNetVaConfig lowerCamelCase__ : List[str] = load_tf_weights_in_mobilenet_va lowerCamelCase__ : Any = 'mobilenet_v1' lowerCamelCase__ : Optional[int] = 'pixel_values' lowerCamelCase__ : Tuple = False def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) A_ : Union[str, Any] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A_ : List[Any] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' ,__lowercase ,) class lowerCamelCase (__lowercase ): def __init__( self : str , __UpperCAmelCase : MobileNetVaConfig , __UpperCAmelCase : bool = True ) -> Any: super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = 3_2 SCREAMING_SNAKE_CASE__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE__ = MobileNetVaConvLayer( _lowerCAmelCase , in_channels=config.num_channels , out_channels=_lowerCAmelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE__ = nn.ModuleList() for i in range(1_3 ): SCREAMING_SNAKE_CASE__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str ) -> List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) SCREAMING_SNAKE_CASE__ = self.conv_stem(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE__ = layer_module(_lowerCAmelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__ = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE__ = torch.flatten(self.pooler(_lowerCAmelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=_lowerCAmelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' ,__lowercase ,) class lowerCamelCase (__lowercase ): def __init__( self : Dict , __UpperCAmelCase : MobileNetVaConfig ) -> None: super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = MobileNetVaModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE__ = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(_lowerCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[torch.Tensor] = None , __UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = self.mobilenet_va(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE__ = self.classifier(self.dropout(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE__ = """single_label_classification""" else: SCREAMING_SNAKE_CASE__ = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE__ = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE__ = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE__ = loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states , )
196
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = os.path.abspath(lowercase__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model _lowerCAmelCase : Optional[Any] = tf.train.list_variables(lowercase__ ) _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Tuple = [] _lowerCAmelCase : int = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _lowerCAmelCase : Optional[Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' _lowerCAmelCase : Union[str, Any] = name[1:] # figure out how many levels deep the name is _lowerCAmelCase : str = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(lowercase__ ) # read data _lowerCAmelCase : Union[str, Any] = tf.train.load_variable(lowercase__ , lowercase__ ) names.append('/'.join(lowercase__ ) ) arrays.append(lowercase__ ) logger.info(f"""Read a total of {len(lowercase__ ):,} layers""" ) # Sanity check if len(set(lowercase__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(lowercase__ ) )})""" ) _lowerCAmelCase : Dict = list(set(lowercase__ ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(lowercase__ , lowercase__ ): _lowerCAmelCase : Dict = full_name.split('/' ) _lowerCAmelCase : Optional[Any] = model _lowerCAmelCase : List[Any] = [] for i, m_name in enumerate(lowercase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): _lowerCAmelCase : Optional[int] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) _lowerCAmelCase : Optional[Any] = getattr(lowercase__ , 'embeddings' ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) _lowerCAmelCase : int = getattr(lowercase__ , 'encoder' ) _lowerCAmelCase : Optional[int] = getattr(lowercase__ , 'layer' ) _lowerCAmelCase : int = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'pooler' ) _lowerCAmelCase : List[str] = getattr(lowercase__ , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) _lowerCAmelCase : Tuple = getattr(lowercase__ , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) _lowerCAmelCase : int = getattr(lowercase__ , 'token_type_embeddings' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('weight' ) _lowerCAmelCase : Optional[Any] = getattr(lowercase__ , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) _lowerCAmelCase : Optional[Any] = getattr(lowercase__ , 'attention' ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) _lowerCAmelCase : str = getattr(lowercase__ , 'attention' ) _lowerCAmelCase : Union[str, Any] = getattr(lowercase__ , 'output' ) _lowerCAmelCase : List[str] = getattr(lowercase__ , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) _lowerCAmelCase : Optional[Any] = getattr(lowercase__ , 'attention' ) _lowerCAmelCase : List[str] = getattr(lowercase__ , 'output' ) _lowerCAmelCase : Tuple = getattr(lowercase__ , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) _lowerCAmelCase : str = getattr(lowercase__ , 'output' ) _lowerCAmelCase : Dict = getattr(lowercase__ , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'output' ) _lowerCAmelCase : Optional[Any] = getattr(lowercase__ , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) _lowerCAmelCase : List[str] = getattr(lowercase__ , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) _lowerCAmelCase : List[Any] = getattr(lowercase__ , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) _lowerCAmelCase : Dict = getattr(lowercase__ , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) _lowerCAmelCase : Any = getattr(lowercase__ , 'intermediate' ) _lowerCAmelCase : List[str] = getattr(lowercase__ , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) _lowerCAmelCase : Tuple = getattr(lowercase__ , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) _lowerCAmelCase : Union[str, Any] = getattr(lowercase__ , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) _lowerCAmelCase : List[str] = getattr(lowercase__ , 'weight' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary _lowerCAmelCase : Dict = '.'.join(lowercase__ ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , lowercase__ ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , lowercase__ ): _lowerCAmelCase : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: _lowerCAmelCase : Tuple = array.transpose() if pointer.shape == array.shape: _lowerCAmelCase : Optional[int] = torch.from_numpy(lowercase__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logger.info(f"""Loading model based on config from {config_path}...""" ) _lowerCAmelCase : List[str] = BertConfig.from_json_file(lowercase__ ) _lowerCAmelCase : Optional[int] = BertModel(lowercase__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) _lowerCAmelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
259
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
429
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class a__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = 'xlm-prophetnet' _SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values'] _SCREAMING_SNAKE_CASE : Optional[Any] = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _UpperCamelCase = 0.1 , _UpperCamelCase = "gelu" , _UpperCamelCase = 30522 , _UpperCamelCase = 1024 , _UpperCamelCase = 4096 , _UpperCamelCase = 12 , _UpperCamelCase = 16 , _UpperCamelCase = 4096 , _UpperCamelCase = 12 , _UpperCamelCase = 16 , _UpperCamelCase = 0.1 , _UpperCamelCase = 0.1 , _UpperCamelCase = 512 , _UpperCamelCase = 0.0_2 , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 0 , _UpperCamelCase = 2 , _UpperCamelCase = 32 , _UpperCamelCase = 128 , _UpperCamelCase = False , _UpperCamelCase = 0.0 , _UpperCamelCase = True , _UpperCamelCase = 0 , _UpperCamelCase = 1 , _UpperCamelCase = 2 , **_UpperCamelCase , ): """simple docstring""" _lowercase : Any = vocab_size _lowercase : str = hidden_size _lowercase : Any = encoder_ffn_dim _lowercase : Tuple = num_encoder_layers _lowercase : Tuple = num_encoder_attention_heads _lowercase : List[str] = decoder_ffn_dim _lowercase : int = num_decoder_layers _lowercase : List[str] = num_decoder_attention_heads _lowercase : Any = max_position_embeddings _lowercase : int = init_std # Normal(0, this parameter) _lowercase : List[Any] = activation_function # parameters for xlmprophetnet _lowercase : int = ngram _lowercase : Tuple = num_buckets _lowercase : Optional[Any] = relative_max_distance _lowercase : List[Any] = disable_ngram_loss _lowercase : Union[str, Any] = eps # 3 Types of Dropout _lowercase : List[Any] = attention_dropout _lowercase : Optional[int] = activation_dropout _lowercase : Union[str, Any] = dropout _lowercase : Tuple = use_cache super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def _lowerCamelCase ( self ): """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
245
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0