code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __lowercase : str ={"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase : Dict ={ """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __lowercase : Optional[int] ={ """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } __lowercase : int ={ """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class A ( __lowercase ): _snake_case =VOCAB_FILES_NAMES _snake_case =PRETRAINED_VOCAB_FILES_MAP _snake_case =PRETRAINED_INIT_CONFIGURATION _snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case =ElectraTokenizer def __init__( self: Dict , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Optional[int]="[UNK]" , _lowerCAmelCase: int="[SEP]" , _lowerCAmelCase: Tuple="[PAD]" , _lowerCAmelCase: int="[CLS]" , _lowerCAmelCase: Union[str, Any]="[MASK]" , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: str=None , **_lowerCAmelCase: Dict , ) -> Tuple: '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase_ =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ =getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ =do_lower_case UpperCAmelCase_ =strip_accents UpperCAmelCase_ =tokenize_chinese_chars UpperCAmelCase_ =normalizer_class(**_lowerCAmelCase ) UpperCAmelCase_ =do_lower_case def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: int=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ =[self.sep_token_id] UpperCAmelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase_ =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A ( __lowercase , unittest.TestCase ): _snake_case ='''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: int=0 ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =np.random.RandomState(_lowerCAmelCase ) UpperCAmelCase_ ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =3 * [inputs["prompt"]] # forward UpperCAmelCase_ =pipe(**_lowerCAmelCase ) UpperCAmelCase_ =output.images[0, -3:, -3:, -1] UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =3 * [inputs.pop("prompt" )] UpperCAmelCase_ =pipe.tokenizer( _lowerCAmelCase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="np" , ) UpperCAmelCase_ =text_inputs["input_ids"] UpperCAmelCase_ =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] UpperCAmelCase_ =prompt_embeds # forward UpperCAmelCase_ =pipe(**_lowerCAmelCase ) UpperCAmelCase_ =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =3 * ["this is a negative prompt"] UpperCAmelCase_ =negative_prompt UpperCAmelCase_ =3 * [inputs["prompt"]] # forward UpperCAmelCase_ =pipe(**_lowerCAmelCase ) UpperCAmelCase_ =output.images[0, -3:, -3:, -1] UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =3 * [inputs.pop("prompt" )] UpperCAmelCase_ =[] for p in [prompt, negative_prompt]: UpperCAmelCase_ =pipe.tokenizer( _lowerCAmelCase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="np" , ) UpperCAmelCase_ =text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) UpperCAmelCase_ , UpperCAmelCase_ =embeds # forward UpperCAmelCase_ =pipe(**_lowerCAmelCase ) UpperCAmelCase_ =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class A ( unittest.TestCase ): @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =ort.SessionOptions() UpperCAmelCase_ =False return options def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A painting of a squirrel eating a burger" np.random.seed(0 ) UpperCAmelCase_ =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ =np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="open neural network exchange" UpperCAmelCase_ =np.random.RandomState(0 ) UpperCAmelCase_ =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="np" ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ =np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="open neural network exchange" UpperCAmelCase_ =np.random.RandomState(0 ) UpperCAmelCase_ =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="np" ) UpperCAmelCase_ =output.images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ =np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =0 def test_callback_fn(_lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: np.ndarray ) -> None: UpperCAmelCase_ =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ =latents[0, -3:, -3:, -1] UpperCAmelCase_ =np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ =latents[0, -3:, -3:, -1] UpperCAmelCase_ =np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 UpperCAmelCase_ =False UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="Andromeda galaxy in a bottle" UpperCAmelCase_ =np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCAmelCase__ ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None UpperCAmelCase_ =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Tuple ={ """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =[ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase : List[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Tuple ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) UpperCAmelCase_ =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ ="cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase_ =DDPMScheduler() UpperCAmelCase_ =AudioDiffusionPipeline(vqvae=_lowerCAmelCase , unet=self.dummy_unet , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase , steps=4 ) UpperCAmelCase_ =output.audios[0] UpperCAmelCase_ =output.images[0] UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase , steps=4 , return_dict=_lowerCAmelCase ) UpperCAmelCase_ =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase_ =DDIMScheduler() UpperCAmelCase_ =self.dummy_vqvae_and_unet UpperCAmelCase_ =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) UpperCAmelCase_ =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(raw_audio=_lowerCAmelCase , generator=_lowerCAmelCase , start_step=5 , steps=10 ) UpperCAmelCase_ =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ =self.dummy_unet_condition UpperCAmelCase_ =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_lowerCAmelCase , mel=_lowerCAmelCase , scheduler=_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) np.random.seed(0 ) UpperCAmelCase_ =torch.rand((1, 1, 10) ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase , encoding=_lowerCAmelCase ) UpperCAmelCase_ =output.images[0] UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =torch_device UpperCAmelCase_ =DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(42 ) UpperCAmelCase_ =pipe(generator=_lowerCAmelCase ) UpperCAmelCase_ =output.audios[0] UpperCAmelCase_ =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_ =np.frombuffer(image.tobytes() , dtype="uint8" )[:10] UpperCAmelCase_ =np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =torch.nn.Linear(10 , 10 ) UpperCAmelCase_ =torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ =Accelerator() UpperCAmelCase_ =accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =(1 - _cos) / 2 UpperCAmelCase_ =1 - _cos UpperCAmelCase_ =1 + alpha UpperCAmelCase_ =-2 * _cos UpperCAmelCase_ =1 - alpha UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =(1 + _cos) / 2 UpperCAmelCase_ =-1 - _cos UpperCAmelCase_ =1 + alpha UpperCAmelCase_ =-2 * _cos UpperCAmelCase_ =1 - alpha UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =_sin / 2 UpperCAmelCase_ =0 UpperCAmelCase_ =-ba UpperCAmelCase_ =1 + alpha UpperCAmelCase_ =-2 * _cos UpperCAmelCase_ =1 - alpha UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =1 - alpha UpperCAmelCase_ =-2 * _cos UpperCAmelCase_ =1 + alpha UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =1_0 ** (gain_db / 4_0) UpperCAmelCase_ =1 + alpha * big_a UpperCAmelCase_ =-2 * _cos UpperCAmelCase_ =1 - alpha * big_a UpperCAmelCase_ =1 + alpha / big_a UpperCAmelCase_ =-2 * _cos UpperCAmelCase_ =1 - alpha / big_a UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =1_0 ** (gain_db / 4_0) UpperCAmelCase_ =(big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ =(big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ =(big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ =(big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ =2 * sqrt(lowercase__ ) * alpha UpperCAmelCase_ =big_a * (pmc + aaa) UpperCAmelCase_ =2 * big_a * mpc UpperCAmelCase_ =big_a * (pmc - aaa) UpperCAmelCase_ =ppmc + aaa UpperCAmelCase_ =-2 * pmpc UpperCAmelCase_ =ppmc - aaa UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1 / sqrt(2 ) , ): '''simple docstring''' UpperCAmelCase_ =tau * frequency / samplerate UpperCAmelCase_ =sin(lowercase__ ) UpperCAmelCase_ =cos(lowercase__ ) UpperCAmelCase_ =_sin / (2 * q_factor) UpperCAmelCase_ =1_0 ** (gain_db / 4_0) UpperCAmelCase_ =(big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ =(big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ =(big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ =(big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ =2 * sqrt(lowercase__ ) * alpha UpperCAmelCase_ =big_a * (ppmc + aaa) UpperCAmelCase_ =-2 * big_a * pmpc UpperCAmelCase_ =big_a * (ppmc - aaa) UpperCAmelCase_ =pmc + aaa UpperCAmelCase_ =2 * mpc UpperCAmelCase_ =pmc - aaa UpperCAmelCase_ =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) UpperCAmelCase_ =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above UpperCAmelCase_ =tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above UpperCAmelCase_ =tf_top_k_top_p_filtering(_lowerCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) UpperCAmelCase_ =output[output != -float("inf" )] UpperCAmelCase_ =tf.cast( tf.where(tf.not_equal(_lowerCAmelCase , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-12 ) tf.debugging.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) @require_tf class A ( unittest.TestCase , __lowercase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): _snake_case ={ '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCAmelCase_ =2 UpperCAmelCase_ =2 class A ( tf.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Any ) -> Optional[int]: '''simple docstring''' super(_lowerCAmelCase , self ).__init__() UpperCAmelCase_ =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.model.generate( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , max_new_tokens=_lowerCAmelCase , return_dict_in_generate=_lowerCAmelCase , ) return {"sequences": outputs["sequences"]} UpperCAmelCase_ =[[2, 0], [102, 103]] UpperCAmelCase_ =[[1, 0], [1, 1]] UpperCAmelCase_ =DummyModel(model=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowerCAmelCase , _lowerCAmelCase , signatures={"serving_default": dummy_model.serving} ) UpperCAmelCase_ =tf.saved_model.load(_lowerCAmelCase ).signatures["serving_default"] for batch_size in range(1 , len(_lowerCAmelCase ) + 1 ): UpperCAmelCase_ ={ "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } UpperCAmelCase_ =serving_func(**_lowerCAmelCase )["sequences"] UpperCAmelCase_ =test_model.generate(**_lowerCAmelCase , max_new_tokens=_lowerCAmelCase ) tf.debugging.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCAmelCase_ =1 UpperCAmelCase_ =2 class A ( tf.Module ): def __init__( self: Optional[int] , _lowerCAmelCase: Any ) -> Optional[Any]: '''simple docstring''' super(_lowerCAmelCase , self ).__init__() UpperCAmelCase_ =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.model.generate( input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , max_new_tokens=_lowerCAmelCase , return_dict_in_generate=_lowerCAmelCase , ) return {"sequences": outputs["sequences"]} UpperCAmelCase_ =[[2], [102, 103]] UpperCAmelCase_ =[[1], [1, 1]] UpperCAmelCase_ =DummyModel(model=_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowerCAmelCase , _lowerCAmelCase , signatures={"serving_default": dummy_model.serving} ) UpperCAmelCase_ =tf.saved_model.load(_lowerCAmelCase ).signatures["serving_default"] for input_row in range(len(_lowerCAmelCase ) ): UpperCAmelCase_ ={ "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } UpperCAmelCase_ =serving_func(**_lowerCAmelCase )["sequences"] UpperCAmelCase_ =test_model.generate(**_lowerCAmelCase , max_new_tokens=_lowerCAmelCase ) tf.debugging.assert_equal(_lowerCAmelCase , _lowerCAmelCase ) @slow @require_tensorflow_text def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=_lowerCAmelCase ) class A ( tf.keras.layers.Layer ): def __init__( self: List[str] ) -> List[str]: '''simple docstring''' super().__init__() UpperCAmelCase_ =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_lowerCAmelCase , "spiece.model" ) , "rb" ).read() ) UpperCAmelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] , *_lowerCAmelCase: List[str] , **_lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =text.pad_model_inputs( _lowerCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) UpperCAmelCase_ =self.model.generate(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) return self.tokenizer.detokenize(_lowerCAmelCase ) UpperCAmelCase_ =CompleteSentenceTransformer() UpperCAmelCase_ =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) UpperCAmelCase_ =complete_model(_lowerCAmelCase ) UpperCAmelCase_ =tf.keras.Model(_lowerCAmelCase , _lowerCAmelCase ) keras_model.save(_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ ={ "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } UpperCAmelCase_ =14 UpperCAmelCase_ =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCAmelCase_ ="Hello, my dog is cute and" UpperCAmelCase_ =tokenizer(_lowerCAmelCase , return_tensors="tf" ) UpperCAmelCase_ =TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) UpperCAmelCase_ =638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) UpperCAmelCase_ =model.generate(**_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) UpperCAmelCase_ =[638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) UpperCAmelCase_ =model.generate(**_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) UpperCAmelCase_ ="Hugging Face is a technology company based in New York and Paris." UpperCAmelCase_ =bart_tokenizer(_lowerCAmelCase , return_tensors="tf" ).input_ids UpperCAmelCase_ =TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) UpperCAmelCase_ =bart_model.generate(_lowerCAmelCase ).numpy() class A ( __lowercase ): def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any]=None , **_lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' return super().call(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) UpperCAmelCase_ =bart_model.generate(_lowerCAmelCase , foo="bar" ).numpy() self.assertTrue(np.array_equal(_lowerCAmelCase , _lowerCAmelCase ) ) class A ( bart_model.model.encoder.__class__ ): def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , **_lowerCAmelCase: Tuple ) -> int: '''simple docstring''' return super().call(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =FakeEncoder(bart_model.config , bart_model.model.shared ) UpperCAmelCase_ =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) UpperCAmelCase_ =bart_model.generate(_lowerCAmelCase ).numpy() with self.assertRaises(_lowerCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_lowerCAmelCase , foo="bar" )
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
from __future__ import annotations def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) // 2 # choose the middle 3 elements UpperCAmelCase_ =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowercase : Union[str, Any] ="""\ Text data. Second line of data.""" __lowercase : Dict ="""file""" @pytest.fixture(scope="session" ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCAmelCase_ =bytes(lowercase__ , "utf-8" ) with zstd.open(lowercase__ , "wb" ) as f: f.write(lowercase__ ) return path @pytest.fixture def a__ ( lowercase__ ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , lowercase__ ) , "w" ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCAmelCase_ =input_paths[compression_format] UpperCAmelCase_ =tmp_path / "cache" UpperCAmelCase_ =DownloadConfig(cache_dir=lowercase__ , extract_compressed_file=lowercase__ ) UpperCAmelCase_ =cached_path(lowercase__ , download_config=lowercase__ ) with open(lowercase__ ) as f: UpperCAmelCase_ =f.read() with open(lowercase__ ) as f: UpperCAmelCase_ =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ="custom_cache" UpperCAmelCase_ ="custom_extracted_dir" UpperCAmelCase_ =tmp_path / "custom_extracted_path" if default_extracted: UpperCAmelCase_ =("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , lowercase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowercase__ ) ) UpperCAmelCase_ =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase_ =xz_file UpperCAmelCase_ =( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase__ ) ) UpperCAmelCase_ =cached_path(lowercase__ , download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path UpperCAmelCase_ =str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path UpperCAmelCase_ ="./__missing_file__.txt" with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =get_from_cache(F'tmp://{tmpfs_file}' ) with open(lowercase__ ) as f: UpperCAmelCase_ =f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase__ ) def a__ ( ): '''simple docstring''' with pytest.raises(lowercase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowercase__ ): http_get("https://huggingface.co" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowercase__ ): ftp_get("ftp://huggingface.co" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowercase__ ): fsspec_get("s3://huggingface.co" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head("s3://huggingface.co" )
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __lowercase : List[Any] ={ """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =XLNetConfig.from_json_file(lowercase__ ) UpperCAmelCase_ =finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCAmelCase_ =finetuning_task UpperCAmelCase_ =GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ =XLNetForSequenceClassification(lowercase__ ) elif "squad" in finetuning_task: UpperCAmelCase_ =finetuning_task UpperCAmelCase_ =XLNetForQuestionAnswering(lowercase__ ) else: UpperCAmelCase_ =XLNetLMHeadModel(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) print(F'Save PyTorch model to {os.path.abspath(lowercase__ )}' ) torch.save(model.state_dict() , lowercase__ ) print(F'Save configuration file to {os.path.abspath(lowercase__ )}' ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) __lowercase : Optional[int] =parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class A ( __lowercase ): def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ ={"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self._create_example_records() UpperCAmelCase_ =Dataset.from_list(_lowerCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(_lowerCAmelCase ): self.assertDictEqual(_lowerCAmelCase , example_records[i] ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self._create_example_records() UpperCAmelCase_ =Dataset.from_list(_lowerCAmelCase ) UpperCAmelCase_ =Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowerCAmelCase__ ( self: Tuple ) -> Dict: # checks what happens with missing columns '''simple docstring''' UpperCAmelCase_ =[{"col_1": 1}, {"col_2": "x"}] UpperCAmelCase_ =Dataset.from_list(_lowerCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: # checks if the type can be inferred from the second record '''simple docstring''' UpperCAmelCase_ =[{"col_1": []}, {"col_1": [1, 2]}] UpperCAmelCase_ =Dataset.from_list(_lowerCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Dataset.from_list([] ) self.assertEqual(len(_lowerCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' return abs(lowercase__ ) if a == 0 else greatest_common_divisor(b % a , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ =y, x % y return abs(lowercase__ ) def a__ ( ): '''simple docstring''' try: UpperCAmelCase_ =input("Enter two integers separated by comma (,): " ).split("," ) UpperCAmelCase_ =int(nums[0] ) UpperCAmelCase_ =int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(lowercase__ , lowercase__ )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowercase__ , lowercase__ )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowercase : Optional[int] =logging.get_logger(__name__) __lowercase : List[Any] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase : List[str] ={ """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } __lowercase : Union[str, Any] ={"""allegro/herbert-base-cased""": 514} __lowercase : Union[str, Any] ={} class A ( __lowercase ): _snake_case =VOCAB_FILES_NAMES _snake_case =PRETRAINED_VOCAB_FILES_MAP _snake_case =PRETRAINED_INIT_CONFIGURATION _snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case =HerbertTokenizer def __init__( self: str , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Dict="<s>" , _lowerCAmelCase: Dict="<unk>" , _lowerCAmelCase: Union[str, Any]="<pad>" , _lowerCAmelCase: List[str]="<mask>" , _lowerCAmelCase: Optional[Any]="</s>" , **_lowerCAmelCase: str , ) -> Any: '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , **_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ =[self.cls_token_id] UpperCAmelCase_ =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self: int , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None , _lowerCAmelCase: bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ =[self.sep_token_id] UpperCAmelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase_ =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
class A : def __init__( self: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ ={} def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: List[str] ) -> List[Any]: '''simple docstring''' if vertex not in self.adjacency: UpperCAmelCase_ ={} self.num_vertices += 1 def lowerCAmelCase__ ( self: int , _lowerCAmelCase: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict ) -> int: '''simple docstring''' self.add_vertex(_lowerCAmelCase ) self.add_vertex(_lowerCAmelCase ) if head == tail: return UpperCAmelCase_ =weight UpperCAmelCase_ =weight def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.get_edges() for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =edge edges.remove((tail, head, weight) ) for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase_ =list(edges[i] ) edges.sort(key=lambda _lowerCAmelCase : e[2] ) for i in range(len(_lowerCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: UpperCAmelCase_ =edges[i][2] + 1 for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =edge UpperCAmelCase_ =weight UpperCAmelCase_ =weight def __str__( self: int ) -> Dict: '''simple docstring''' UpperCAmelCase_ ="" for tail in self.adjacency: for head in self.adjacency[tail]: UpperCAmelCase_ =self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip("\n" ) def lowerCAmelCase__ ( self: List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' return self.adjacency.keys() @staticmethod def lowerCAmelCase__ ( _lowerCAmelCase: int=None , _lowerCAmelCase: Optional[Any]=None ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Graph() if vertices is None: UpperCAmelCase_ =[] if edges is None: UpperCAmelCase_ =[] for vertex in vertices: g.add_vertex(_lowerCAmelCase ) for edge in edges: g.add_edge(*_lowerCAmelCase ) return g class A : def __init__( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ ={} def __len__( self: int ) -> Optional[Any]: '''simple docstring''' return len(self.parent ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Optional[int] ) -> Any: '''simple docstring''' if item in self.parent: return self.find(_lowerCAmelCase ) UpperCAmelCase_ =item UpperCAmelCase_ =0 return item def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any ) -> Optional[int]: '''simple docstring''' if item not in self.parent: return self.make_set(_lowerCAmelCase ) if item != self.parent[item]: UpperCAmelCase_ =self.find(self.parent[item] ) return self.parent[item] def lowerCAmelCase__ ( self: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Dict ) -> str: '''simple docstring''' UpperCAmelCase_ =self.find(_lowerCAmelCase ) UpperCAmelCase_ =self.find(_lowerCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCAmelCase_ =roota return roota if self.rank[roota] < self.rank[roota]: UpperCAmelCase_ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCAmelCase_ =roota return roota return None @staticmethod def lowerCAmelCase__ ( _lowerCAmelCase: Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =graph.num_vertices UpperCAmelCase_ =Graph.UnionFind() UpperCAmelCase_ =[] while num_components > 1: UpperCAmelCase_ ={} for vertex in graph.get_vertices(): UpperCAmelCase_ =-1 UpperCAmelCase_ =graph.get_edges() for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =edge edges.remove((tail, head, weight) ) for edge in edges: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =edge UpperCAmelCase_ =union_find.find(_lowerCAmelCase ) UpperCAmelCase_ =union_find.find(_lowerCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCAmelCase_ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCAmelCase_ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =cheap_edge[vertex] if union_find.find(_lowerCAmelCase ) != union_find.find(_lowerCAmelCase ): union_find.union(_lowerCAmelCase , _lowerCAmelCase ) mst_edges.append(cheap_edge[vertex] ) UpperCAmelCase_ =num_components - 1 UpperCAmelCase_ =Graph.build(edges=_lowerCAmelCase ) return mst
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =tempfile.mkdtemp() # fmt: off UpperCAmelCase_ =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on UpperCAmelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ ={ "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } UpperCAmelCase_ =os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: str , **_lowerCAmelCase: List[Any] ) -> Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: Tuple ) -> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_ =[Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ =self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase_ =VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase_ =self.prepare_image_inputs() UpperCAmelCase_ =image_processor(_lowerCAmelCase , return_tensors="np" ) UpperCAmelCase_ =processor(images=_lowerCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase_ ="lower newer" UpperCAmelCase_ =processor(text=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase_ ="lower newer" UpperCAmelCase_ =self.prepare_image_inputs() UpperCAmelCase_ =processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(_lowerCAmelCase ): processor() def lowerCAmelCase__ ( self: List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase_ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ =processor.batch_decode(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase_ ="lower newer" UpperCAmelCase_ =self.prepare_image_inputs() UpperCAmelCase_ =processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowercase : str =logging.get_logger(__name__) # pylint: disable=invalid-name class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: WhisperForConditionalGeneration , _lowerCAmelCase: WhisperProcessor , _lowerCAmelCase: AutoencoderKL , _lowerCAmelCase: CLIPTextModel , _lowerCAmelCase: CLIPTokenizer , _lowerCAmelCase: UNetaDConditionModel , _lowerCAmelCase: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowerCAmelCase: StableDiffusionSafetyChecker , _lowerCAmelCase: CLIPImageProcessor , ) -> Union[str, Any]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=_lowerCAmelCase , speech_processor=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Optional[Union[str, int]] = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": UpperCAmelCase_ =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self: str , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[int]=1_6000 , _lowerCAmelCase: int = 512 , _lowerCAmelCase: int = 512 , _lowerCAmelCase: int = 50 , _lowerCAmelCase: float = 7.5 , _lowerCAmelCase: Optional[Union[str, List[str]]] = None , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: Optional[torch.Generator] = None , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowerCAmelCase: int = 1 , **_lowerCAmelCase: int , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.speech_processor.feature_extractor( _lowerCAmelCase , return_tensors="pt" , sampling_rate=_lowerCAmelCase ).input_features.to(self.device ) UpperCAmelCase_ =self.speech_model.generate(_lowerCAmelCase , max_length=48_0000 ) UpperCAmelCase_ =self.speech_processor.tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , normalize=_lowerCAmelCase )[ 0 ] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =len(_lowerCAmelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(_lowerCAmelCase )}.' ) # get prompt text embeddings UpperCAmelCase_ =self.tokenizer( _lowerCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase_ =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) UpperCAmelCase_ =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =text_embeddings.shape UpperCAmelCase_ =text_embeddings.repeat(1 , _lowerCAmelCase , 1 ) UpperCAmelCase_ =text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ =42 if negative_prompt is None: UpperCAmelCase_ =[""] * batch_size elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=' F' {type(_lowerCAmelCase )}.' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: UpperCAmelCase_ =negative_prompt UpperCAmelCase_ =text_input_ids.shape[-1] UpperCAmelCase_ =self.tokenizer( _lowerCAmelCase , padding="max_length" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" , ) UpperCAmelCase_ =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ =uncond_embeddings.shape[1] UpperCAmelCase_ =uncond_embeddings.repeat(1 , _lowerCAmelCase , 1 ) UpperCAmelCase_ =uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase_ =torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device="cpu" , dtype=_lowerCAmelCase ).to( self.device ) else: UpperCAmelCase_ =torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) UpperCAmelCase_ =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase_ =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ ="eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ ={} if accepts_eta: UpperCAmelCase_ =eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ =self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual UpperCAmelCase_ =self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ =noise_pred.chunk(2 ) UpperCAmelCase_ =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ =self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =1 / 0.1_82_15 * latents UpperCAmelCase_ =self.vae.decode(_lowerCAmelCase ).sample UpperCAmelCase_ =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ =self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self: Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ =1 UpperCAmelCase_ =3 UpperCAmelCase_ =(32, 32) UpperCAmelCase_ =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase__ ( self: Optional[int] ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def extract(*_lowerCAmelCase: List[Any] , **_lowerCAmelCase: int ): class A : def __init__( self: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =torch.ones([0] ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str ) -> Any: '''simple docstring''' self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def lowerCAmelCase__ ( self: Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ =self.dummy_cond_unet UpperCAmelCase_ =PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) UpperCAmelCase_ =self.dummy_vae UpperCAmelCase_ =self.dummy_text_encoder UpperCAmelCase_ =XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase_ =77 UpperCAmelCase_ =self.dummy_image.to(_lowerCAmelCase ) UpperCAmelCase_ =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk UpperCAmelCase_ =AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) UpperCAmelCase_ =alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A painting of a squirrel eating a burger" UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase_ =alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_lowerCAmelCase , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase_ =alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ =np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_cond_unet UpperCAmelCase_ =PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) UpperCAmelCase_ =self.dummy_vae UpperCAmelCase_ =self.dummy_text_encoder UpperCAmelCase_ =XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) UpperCAmelCase_ =77 UpperCAmelCase_ =self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 UpperCAmelCase_ =unet.half() UpperCAmelCase_ =vae.half() UpperCAmelCase_ =bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ =AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) UpperCAmelCase_ =alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A painting of a squirrel eating a burger" UpperCAmelCase_ =torch.manual_seed(0 ) UpperCAmelCase_ =alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="np" , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCAmelCase__ ( self: List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase_ =init_image.resize((760, 504) ) UpperCAmelCase_ ="BAAI/AltDiffusion" UpperCAmelCase_ =AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ ="A fantasy landscape, trending on artstation" UpperCAmelCase_ =torch.manual_seed(0 ) UpperCAmelCase_ =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="np" , ) UpperCAmelCase_ =output.images[0] UpperCAmelCase_ =image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) UpperCAmelCase_ =np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ =init_image.resize((768, 512) ) UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) UpperCAmelCase_ ="BAAI/AltDiffusion" UpperCAmelCase_ =AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ ="A fantasy landscape, trending on artstation" UpperCAmelCase_ =torch.manual_seed(0 ) UpperCAmelCase_ =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __lowercase : str =logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class A ( __lowercase ): def __init__( self: Any , *_lowerCAmelCase: Any , **_lowerCAmelCase: int ) -> List[str]: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , "vision" ) self.check_model_type(_lowerCAmelCase ) def __call__( self: List[str] , _lowerCAmelCase: Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase: Optional[Any] ) -> List[Any]: '''simple docstring''' return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] , **_lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' return {}, {}, {} def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =load_image(_lowerCAmelCase ) UpperCAmelCase_ =image.size UpperCAmelCase_ =self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model(**_lowerCAmelCase ) return model_outputs def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ =model_outputs.predicted_depth UpperCAmelCase_ =torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=_lowerCAmelCase ) UpperCAmelCase_ =prediction.squeeze().cpu().numpy() UpperCAmelCase_ =(output * 255 / np.max(_lowerCAmelCase )).astype("uint8" ) UpperCAmelCase_ =Image.fromarray(_lowerCAmelCase ) UpperCAmelCase_ ={} UpperCAmelCase_ =predicted_depth UpperCAmelCase_ =depth return output_dict
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase : Optional[Any] =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[str] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Dict[str, int]] = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 256} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =resample UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: float , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[Any] ) -> np.ndarray: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[float] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase: int , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ =crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ =[self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
class A : def __init__( self: List[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ ={} # Mapping from char to TrieNode UpperCAmelCase_ =False def lowerCAmelCase__ ( self: int , _lowerCAmelCase: list[str] ) -> None: '''simple docstring''' for word in words: self.insert(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str ) -> None: '''simple docstring''' UpperCAmelCase_ =self for char in word: if char not in curr.nodes: UpperCAmelCase_ =TrieNode() UpperCAmelCase_ =curr.nodes[char] UpperCAmelCase_ =True def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str ) -> bool: '''simple docstring''' UpperCAmelCase_ =self for char in word: if char not in curr.nodes: return False UpperCAmelCase_ =curr.nodes[char] return curr.is_leaf def lowerCAmelCase__ ( self: str , _lowerCAmelCase: str ) -> None: '''simple docstring''' def _delete(_lowerCAmelCase: TrieNode , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> bool: if index == len(_lowerCAmelCase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase_ =False return len(curr.nodes ) == 0 UpperCAmelCase_ =word[index] UpperCAmelCase_ =curr.nodes.get(_lowerCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase_ =_delete(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowerCAmelCase , 0 ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if node.is_leaf: print(lowercase__ , end=" " ) for key, value in node.nodes.items(): print_words(lowercase__ , word + key ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="banana bananas bandana band apple all beast".split() UpperCAmelCase_ =TrieNode() root.insert_many(lowercase__ ) # print_words(root, "") assert all(root.find(lowercase__ ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' print(str(lowercase__ ) , "works!" if passes else "doesn't work :(" ) def a__ ( ): '''simple docstring''' assert test_trie() def a__ ( ): '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Any ={ """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] =[ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __lowercase : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A ( __lowercase , __lowercase ): @register_to_config def __init__( self: List[Any] , _lowerCAmelCase: int = 128 , _lowerCAmelCase: int = 256 , _lowerCAmelCase: float = 20_00.0 , _lowerCAmelCase: int = 768 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 64 , _lowerCAmelCase: int = 2048 , _lowerCAmelCase: float = 0.1 , ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Sequential( nn.Linear(_lowerCAmelCase , d_model * 4 , bias=_lowerCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCAmelCase ) , nn.SiLU() , ) UpperCAmelCase_ =nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =False UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(p=_lowerCAmelCase ) UpperCAmelCase_ =nn.ModuleList() for lyr_num in range(_lowerCAmelCase ): # FiLM conditional T5 decoder UpperCAmelCase_ =DecoderLayer(d_model=_lowerCAmelCase , d_kv=_lowerCAmelCase , num_heads=_lowerCAmelCase , d_ff=_lowerCAmelCase , dropout_rate=_lowerCAmelCase ) self.decoders.append(_lowerCAmelCase ) UpperCAmelCase_ =TaLayerNorm(_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(p=_lowerCAmelCase ) UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase_ =get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase_ =self.conditioning_emb(_lowerCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase_ =decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase_ =torch.broadcast_to( torch.arange(_lowerCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase_ =self.position_encoding(_lowerCAmelCase ) UpperCAmelCase_ =self.continuous_inputs_projection(_lowerCAmelCase ) inputs += position_encodings UpperCAmelCase_ =self.dropout(_lowerCAmelCase ) # decoder: No padding present. UpperCAmelCase_ =torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase_ =[(x, self.encoder_decoder_mask(_lowerCAmelCase , _lowerCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase_ =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase_ =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase_ =lyr( _lowerCAmelCase , conditioning_emb=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , )[0] UpperCAmelCase_ =self.decoder_norm(_lowerCAmelCase ) UpperCAmelCase_ =self.post_dropout(_lowerCAmelCase ) UpperCAmelCase_ =self.spec_out(_lowerCAmelCase ) return spec_out class A ( nn.Module ): def __init__( self: Optional[int] , _lowerCAmelCase: Any , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=1e-6 ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCAmelCase , d_kv=_lowerCAmelCase , num_heads=_lowerCAmelCase , dropout_rate=_lowerCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCAmelCase , d_kv=_lowerCAmelCase , num_heads=_lowerCAmelCase , dropout_rate=_lowerCAmelCase , layer_norm_epsilon=_lowerCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCAmelCase , d_ff=_lowerCAmelCase , dropout_rate=_lowerCAmelCase , layer_norm_epsilon=_lowerCAmelCase ) ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str , _lowerCAmelCase: Dict=None , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: str=None , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.layer[0]( _lowerCAmelCase , conditioning_emb=_lowerCAmelCase , attention_mask=_lowerCAmelCase , ) if encoder_hidden_states is not None: UpperCAmelCase_ =torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase_ =self.layer[1]( _lowerCAmelCase , key_value_states=_lowerCAmelCase , attention_mask=_lowerCAmelCase , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase_ =self.layer[-1](_lowerCAmelCase , _lowerCAmelCase ) return (hidden_states,) class A ( nn.Module ): def __init__( self: List[str] , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: Any , _lowerCAmelCase: List[Any] ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =TaLayerNorm(_lowerCAmelCase ) UpperCAmelCase_ =TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCAmelCase ) UpperCAmelCase_ =Attention(query_dim=_lowerCAmelCase , heads=_lowerCAmelCase , dim_head=_lowerCAmelCase , out_bias=_lowerCAmelCase , scale_qk=_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Dict , _lowerCAmelCase: str=None , _lowerCAmelCase: Tuple=None , ) -> str: '''simple docstring''' UpperCAmelCase_ =self.layer_norm(_lowerCAmelCase ) if conditioning_emb is not None: UpperCAmelCase_ =self.FiLMLayer(_lowerCAmelCase , _lowerCAmelCase ) # Self-attention block UpperCAmelCase_ =self.attention(_lowerCAmelCase ) UpperCAmelCase_ =hidden_states + self.dropout(_lowerCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Tuple , _lowerCAmelCase: Any , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Dict ) -> Optional[int]: '''simple docstring''' super().__init__() UpperCAmelCase_ =Attention(query_dim=_lowerCAmelCase , heads=_lowerCAmelCase , dim_head=_lowerCAmelCase , out_bias=_lowerCAmelCase , scale_qk=_lowerCAmelCase ) UpperCAmelCase_ =TaLayerNorm(_lowerCAmelCase , eps=_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(_lowerCAmelCase ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[int]=None , _lowerCAmelCase: List[Any]=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.layer_norm(_lowerCAmelCase ) UpperCAmelCase_ =self.attention( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase_ =hidden_states + self.dropout(_lowerCAmelCase ) return layer_output class A ( nn.Module ): def __init__( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' super().__init__() UpperCAmelCase_ =TaDenseGatedActDense(d_model=_lowerCAmelCase , d_ff=_lowerCAmelCase , dropout_rate=_lowerCAmelCase ) UpperCAmelCase_ =TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCAmelCase ) UpperCAmelCase_ =TaLayerNorm(_lowerCAmelCase , eps=_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int]=None ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.layer_norm(_lowerCAmelCase ) if conditioning_emb is not None: UpperCAmelCase_ =self.film(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self.DenseReluDense(_lowerCAmelCase ) UpperCAmelCase_ =hidden_states + self.dropout(_lowerCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self: Dict , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(_lowerCAmelCase ) UpperCAmelCase_ =NewGELUActivation() def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.act(self.wi_a(_lowerCAmelCase ) ) UpperCAmelCase_ =self.wi_a(_lowerCAmelCase ) UpperCAmelCase_ =hidden_gelu * hidden_linear UpperCAmelCase_ =self.dropout(_lowerCAmelCase ) UpperCAmelCase_ =self.wo(_lowerCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self: Any , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=1e-6 ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Parameter(torch.ones(_lowerCAmelCase ) ) UpperCAmelCase_ =eps def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCAmelCase ) UpperCAmelCase_ =hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase_ =hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class A ( nn.Module ): def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: torch.Tensor ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(_lowerCAmelCase , 3.0 )) )) class A ( nn.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , out_features * 2 , bias=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.scale_bias(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =torch.chunk(_lowerCAmelCase , 2 , -1 ) UpperCAmelCase_ =x * (1 + scale) + shift return x
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowercase : Union[str, Any] =logging.get_logger(__name__) __lowercase : List[str] ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __lowercase : Any ={ """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __lowercase : Optional[Any] ={ """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class A ( __lowercase ): _snake_case =VOCAB_FILES_NAMES _snake_case =PRETRAINED_VOCAB_FILES_MAP _snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case =['''input_ids''', '''attention_mask'''] _snake_case =BartTokenizer def __init__( self: int , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: str=None , _lowerCAmelCase: Any=None , _lowerCAmelCase: str="replace" , _lowerCAmelCase: Any="<s>" , _lowerCAmelCase: Any="</s>" , _lowerCAmelCase: List[str]="</s>" , _lowerCAmelCase: Optional[Any]="<s>" , _lowerCAmelCase: List[Any]="<unk>" , _lowerCAmelCase: Any="<pad>" , _lowerCAmelCase: Dict="<mask>" , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Union[str, Any]=True , **_lowerCAmelCase: Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase_ =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ =getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ =add_prefix_space UpperCAmelCase_ =pre_tok_class(**_lowerCAmelCase ) UpperCAmelCase_ =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_ ="post_processor" UpperCAmelCase_ =getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: UpperCAmelCase_ =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ =tuple(state["sep"] ) if "cls" in state: UpperCAmelCase_ =tuple(state["cls"] ) UpperCAmelCase_ =False if state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ =add_prefix_space UpperCAmelCase_ =True if state.get("trim_offsets" , _lowerCAmelCase ) != trim_offsets: UpperCAmelCase_ =trim_offsets UpperCAmelCase_ =True if changes_to_apply: UpperCAmelCase_ =getattr(_lowerCAmelCase , state.pop("type" ) ) UpperCAmelCase_ =component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property def lowerCAmelCase__ ( self: Any ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value UpperCAmelCase_ =value def lowerCAmelCase__ ( self: Tuple , *_lowerCAmelCase: Dict , **_lowerCAmelCase: Optional[int] ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase_ =kwargs.get("is_split_into_words" , _lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , *_lowerCAmelCase: Union[str, Any] , **_lowerCAmelCase: Tuple ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase_ =kwargs.get("is_split_into_words" , _lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase_ =self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[Any]=None ) -> int: '''simple docstring''' UpperCAmelCase_ =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[int] , _lowerCAmelCase: Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase_ =[self.sep_token_id] UpperCAmelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
from __future__ import annotations from typing import Any def a__ ( lowercase__ ): '''simple docstring''' if not postfix_notation: return 0 UpperCAmelCase_ ={"+", "-", "*", "/"} UpperCAmelCase_ =[] for token in postfix_notation: if token in operations: UpperCAmelCase_ , UpperCAmelCase_ =stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
import heapq def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase__ , [-1 * len(lowercase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase_ =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase_ =heapq.heappop(lowercase__ )[1][0] chosen_vertices.add(lowercase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase_ =elem[1][1].index(lowercase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowercase : Dict ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a__ ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) UpperCAmelCase_ =[] for i in range(lowercase__ ): UpperCAmelCase_ =i / num_diffusion_timesteps UpperCAmelCase_ =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class A ( __lowercase , __lowercase ): _snake_case =[e.name for e in KarrasDiffusionSchedulers] _snake_case =2 @register_to_config def __init__( self: Dict , _lowerCAmelCase: int = 1000 , _lowerCAmelCase: float = 0.0_00_85 , _lowerCAmelCase: float = 0.0_12 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: Optional[bool] = False , _lowerCAmelCase: Optional[bool] = False , _lowerCAmelCase: float = 1.0 , _lowerCAmelCase: str = "linspace" , _lowerCAmelCase: int = 0 , ) -> Tuple: '''simple docstring''' if trained_betas is not None: UpperCAmelCase_ =torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ =torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ =( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ =betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="cosine" ) elif beta_schedule == "exp": UpperCAmelCase_ =betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="exp" ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) UpperCAmelCase_ =1.0 - self.betas UpperCAmelCase_ =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =use_karras_sigmas def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Any=None ) -> List[Any]: '''simple docstring''' if schedule_timesteps is None: UpperCAmelCase_ =self.timesteps UpperCAmelCase_ =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase_ =1 if len(_lowerCAmelCase ) > 1 else 0 else: UpperCAmelCase_ =timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep UpperCAmelCase_ =self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase_ =self.index_for_timestep(_lowerCAmelCase ) UpperCAmelCase_ =self.sigmas[step_index] UpperCAmelCase_ =sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None , _lowerCAmelCase: Optional[int] = None , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =num_inference_steps UpperCAmelCase_ =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase_ =np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase_ =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ =(np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase_ =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ =(np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) UpperCAmelCase_ =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase_ =np.log(_lowerCAmelCase ) UpperCAmelCase_ =np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: UpperCAmelCase_ =self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) UpperCAmelCase_ =np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) UpperCAmelCase_ =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase_ =torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) UpperCAmelCase_ =torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase_ =torch.from_numpy(_lowerCAmelCase ) UpperCAmelCase_ =torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("mps" ): # mps does not support float64 UpperCAmelCase_ =timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: UpperCAmelCase_ =timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative UpperCAmelCase_ =None UpperCAmelCase_ =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase_ =defaultdict(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =np.log(_lowerCAmelCase ) # get distribution UpperCAmelCase_ =log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCAmelCase_ =np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCAmelCase_ =low_idx + 1 UpperCAmelCase_ =log_sigmas[low_idx] UpperCAmelCase_ =log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase_ =(low - log_sigma) / (low - high) UpperCAmelCase_ =np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range UpperCAmelCase_ =(1 - w) * low_idx + w * high_idx UpperCAmelCase_ =t.reshape(sigma.shape ) return t def lowerCAmelCase__ ( self: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Tuple ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase_ =in_sigmas[-1].item() UpperCAmelCase_ =in_sigmas[0].item() UpperCAmelCase_ =7.0 # 7.0 is the value used in the paper UpperCAmelCase_ =np.linspace(0 , 1 , _lowerCAmelCase ) UpperCAmelCase_ =sigma_min ** (1 / rho) UpperCAmelCase_ =sigma_max ** (1 / rho) UpperCAmelCase_ =(max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.dt is None def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase: Union[float, torch.FloatTensor] , _lowerCAmelCase: Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ =self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 UpperCAmelCase_ =timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase_ =self.sigmas[step_index] UpperCAmelCase_ =self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCAmelCase_ =self.sigmas[step_index - 1] UpperCAmelCase_ =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase_ =0 UpperCAmelCase_ =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase_ =sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase_ =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ =sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase_ =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCAmelCase_ =model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: UpperCAmelCase_ =pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase_ =(sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase_ =sigma_next - sigma_hat # store for 2nd order step UpperCAmelCase_ =derivative UpperCAmelCase_ =dt UpperCAmelCase_ =sample else: # 2. 2nd order / Heun's method UpperCAmelCase_ =(sample - pred_original_sample) / sigma_next UpperCAmelCase_ =(self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCAmelCase_ =self.dt UpperCAmelCase_ =self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: torch.FloatTensor , ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase_ =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 UpperCAmelCase_ =self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase_ =timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase_ =self.timesteps.to(original_samples.device ) UpperCAmelCase_ =timesteps.to(original_samples.device ) UpperCAmelCase_ =[self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] UpperCAmelCase_ =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase_ =sigma.unsqueeze(-1 ) UpperCAmelCase_ =original_samples + noise * sigma return noisy_samples def __len__( self: Dict ) -> Optional[Any]: '''simple docstring''' return self.config.num_train_timesteps
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ =4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase_ =4 UpperCAmelCase_ =4_8 UpperCAmelCase_ ="pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ =[6, 6, 6, 6] UpperCAmelCase_ =6_0 UpperCAmelCase_ =[6, 6, 6, 6] UpperCAmelCase_ ="pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ =4 UpperCAmelCase_ ="nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase_ =1 UpperCAmelCase_ =1 UpperCAmelCase_ =1_2_6 UpperCAmelCase_ =7 UpperCAmelCase_ =255.0 UpperCAmelCase_ ="" return config def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase_ =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ =name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: UpperCAmelCase_ =name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: UpperCAmelCase_ =name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: UpperCAmelCase_ =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ =name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ =name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: UpperCAmelCase_ =name.replace("q_bias" , "query.bias" ) if "k_bias" in name: UpperCAmelCase_ =name.replace("k_bias" , "key.bias" ) if "v_bias" in name: UpperCAmelCase_ =name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: UpperCAmelCase_ =name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: UpperCAmelCase_ =name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": UpperCAmelCase_ ="layernorm.weight" if name == "norm.bias": UpperCAmelCase_ ="layernorm.bias" if "conv_first" in name: UpperCAmelCase_ =name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase_ =name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase_ =name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: UpperCAmelCase_ =name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: UpperCAmelCase_ =name.replace("upsample.2" , "upsample.convolution_1" ) UpperCAmelCase_ ="upsample." + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase_ =name.replace("upsample.0.weight" , "upsample.conv.weight" ) UpperCAmelCase_ =name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: UpperCAmelCase_ ="swin2sr." + name return name def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ =orig_state_dict.pop(lowercase__ ) if "qkv" in key: UpperCAmelCase_ =key.split("." ) UpperCAmelCase_ =int(key_split[1] ) UpperCAmelCase_ =int(key_split[4] ) UpperCAmelCase_ =config.embed_dim if "weight" in key: UpperCAmelCase_ =val[:dim, :] UpperCAmelCase_ =val[dim : dim * 2, :] UpperCAmelCase_ =val[-dim:, :] else: UpperCAmelCase_ =val[:dim] UpperCAmelCase_ =val[dim : dim * 2] UpperCAmelCase_ =val[-dim:] pass else: UpperCAmelCase_ =val return orig_state_dict def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =get_config(lowercase__ ) UpperCAmelCase_ =SwinaSRForImageSuperResolution(lowercase__ ) model.eval() UpperCAmelCase_ =torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" ) UpperCAmelCase_ =convert_state_dict(lowercase__ , lowercase__ ) UpperCAmelCase_ , UpperCAmelCase_ =model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0: raise ValueError("Missing keys when converting: {}".format(lowercase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values UpperCAmelCase_ ="https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("RGB" ) UpperCAmelCase_ =SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase_ =1_2_6 if "Jpeg" in checkpoint_url else 2_5_6 UpperCAmelCase_ =Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase_ =transforms(lowercase__ ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase_ =pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase_ =model(lowercase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase_ =torch.Size([1, 3, 5_1_2, 5_1_2] ) UpperCAmelCase_ =torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ =torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) UpperCAmelCase_ =torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase_ =torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) UpperCAmelCase_ =torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ =torch.Size([1, 3, 5_1_2, 5_1_2] ) UpperCAmelCase_ =torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ =torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) UpperCAmelCase_ =torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase__ , atol=1E-3 ) print("Looks ok!" ) UpperCAmelCase_ ={ "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } UpperCAmelCase_ =url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": __lowercase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") __lowercase : str =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any]=7 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: List[str]=18 , _lowerCAmelCase: Any=30 , _lowerCAmelCase: Union[str, Any]=400 , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: List[Any]=None , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =size if size is not None else {"shortest_edge": 20} UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =image_size UpperCAmelCase_ =min_resolution UpperCAmelCase_ =max_resolution UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class A ( __lowercase , unittest.TestCase ): _snake_case =MobileNetVaImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =MobileNetVaImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "crop_size" ) ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self: Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
def a__ ( lowercase__ ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) UpperCAmelCase_ =sum(lowercase__ ) / len(lowercase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class A ( __lowercase ): _snake_case =42 _snake_case =42 _snake_case =None class A ( __lowercase , __lowercase ): _snake_case =2 @register_to_config def __init__( self: List[str] , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 100 , _lowerCAmelCase: float = 1.0_07 , _lowerCAmelCase: float = 80 , _lowerCAmelCase: float = 0.05 , _lowerCAmelCase: float = 50 , ) -> Any: '''simple docstring''' UpperCAmelCase_ =sigma_max # setable values UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =None # sigma(t_i) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =num_inference_steps UpperCAmelCase_ =np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCAmelCase_ =torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) UpperCAmelCase_ =[ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCAmelCase_ =torch.tensor(_lowerCAmelCase , dtype=torch.floataa , device=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float , _lowerCAmelCase: Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ =min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ =0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ =self.config.s_noise * randn_tensor(sample.shape , generator=_lowerCAmelCase ).to(sample.device ) UpperCAmelCase_ =sigma + gamma * sigma UpperCAmelCase_ =sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float , _lowerCAmelCase: float , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ =sample_hat + sigma_hat * model_output UpperCAmelCase_ =(sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ =sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float , _lowerCAmelCase: float , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ =sample_prev + sigma_prev * model_output UpperCAmelCase_ =(sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ =sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __lowercase : Optional[Any] =datasets.logging.get_logger(__name__) __lowercase : Optional[Any] ="""\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ __lowercase : List[str] ="""\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ __lowercase : Optional[Any] =""" BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ __lowercase : str ={ """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) UpperCAmelCase_ ="bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: UpperCAmelCase_ =self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: UpperCAmelCase_ =self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer UpperCAmelCase_ =dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) UpperCAmelCase_ =score.BleurtScorer(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.scorer.score(references=_lowerCAmelCase , candidates=_lowerCAmelCase ) return {"scores": scores}
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( lowercase__ ): '''simple docstring''' def is_in_circle(lowercase__ , lowercase__ ) -> bool: UpperCAmelCase_ =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase_ =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase__ ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase_ =proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def a__ ( lowercase__ , lowercase__ , lowercase__ = 0.0 , lowercase__ = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(lowercase__ , lowercase__ ) ) for _ in range(lowercase__ ) ) * (max_value - min_value) def a__ ( lowercase__ , lowercase__ = 0.0 , lowercase__ = 1.0 ): '''simple docstring''' def identity_function(lowercase__ ) -> float: return x UpperCAmelCase_ =area_under_curve_estimator( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) UpperCAmelCase_ =(max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def a__ ( lowercase__ ): '''simple docstring''' def function_to_integrate(lowercase__ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase_ =area_under_curve_estimator( lowercase__ , lowercase__ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
from __future__ import annotations from typing import Any class A : def __init__( self: Optional[int] , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: float = 0 ) -> None: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =row, column UpperCAmelCase_ =[[default_value for c in range(_lowerCAmelCase )] for r in range(_lowerCAmelCase )] def __str__( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier UpperCAmelCase_ =0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase_ =max(_lowerCAmelCase , len(str(_lowerCAmelCase ) ) ) UpperCAmelCase_ =F'%{max_element_length}s' # Make string and return def single_line(_lowerCAmelCase: list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase_ ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self: Optional[Any] ) -> str: '''simple docstring''' return str(self ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: tuple[int, int] ) -> bool: '''simple docstring''' if not (isinstance(_lowerCAmelCase , (list, tuple) ) and len(_lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self: int , _lowerCAmelCase: tuple[int, int] ) -> Any: '''simple docstring''' assert self.validate_indicies(_lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self: List[str] , _lowerCAmelCase: tuple[int, int] , _lowerCAmelCase: float ) -> None: '''simple docstring''' assert self.validate_indicies(_lowerCAmelCase ) UpperCAmelCase_ =value def __add__( self: Union[str, Any] , _lowerCAmelCase: Matrix ) -> Matrix: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase_ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =self[r, c] + another[r, c] return result def __neg__( self: Dict ) -> Matrix: '''simple docstring''' UpperCAmelCase_ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =-self[r, c] return result def __sub__( self: Union[str, Any] , _lowerCAmelCase: Matrix ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self: Union[str, Any] , _lowerCAmelCase: int | float | Matrix ) -> Matrix: '''simple docstring''' if isinstance(_lowerCAmelCase , (int, float) ): # Scalar multiplication UpperCAmelCase_ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =self[r, c] * another return result elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase_ =Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase_ =F'Unsupported type given for another ({type(_lowerCAmelCase )})' raise TypeError(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Matrix: '''simple docstring''' UpperCAmelCase_ =Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase_ =self[r, c] return result def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Matrix , _lowerCAmelCase: Matrix ) -> Any: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase_ =v.transpose() UpperCAmelCase_ =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase_ =1 print(F'a^(-1) is {ainv}' ) # u, v UpperCAmelCase_ =Matrix(3 , 1 , 0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =1, 2, -3 UpperCAmelCase_ =Matrix(3 , 1 , 0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =4, -2, 5 print(F'u is {u}' ) print(F'v is {v}' ) print(F'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(F'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase__ , lowercase__ )}' ) def a__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''input_values''', '''padding_mask'''] def __init__( self: Union[str, Any] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 2_4000 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: float = None , _lowerCAmelCase: float = None , **_lowerCAmelCase: Tuple , ) -> str: '''simple docstring''' super().__init__(feature_size=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , padding_value=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =chunk_length_s UpperCAmelCase_ =overlap @property def lowerCAmelCase__ ( self: str ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase__ ( self: Dict ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self: Union[str, Any] , _lowerCAmelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCAmelCase: Optional[Union[bool, str, PaddingStrategy]] = None , _lowerCAmelCase: Optional[bool] = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[int] = None , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs UpperCAmelCase_ =True UpperCAmelCase_ =bool( isinstance(_lowerCAmelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowerCAmelCase , np.ndarray ): UpperCAmelCase_ =np.asarray(_lowerCAmelCase , dtype=np.floataa ) elif isinstance(_lowerCAmelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase_ =raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ).T] # verify inputs are valid for idx, example in enumerate(_lowerCAmelCase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) UpperCAmelCase_ =None UpperCAmelCase_ =BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase_ =min(array.shape[0] for array in raw_audio ) UpperCAmelCase_ =int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase_ =(nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase_ =max(array.shape[0] for array in raw_audio ) UpperCAmelCase_ =int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase_ =(nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase_ ="max_length" else: UpperCAmelCase_ =input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase_ =self.pad( _lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , padding=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) if padding: UpperCAmelCase_ =padded_inputs.pop("attention_mask" ) UpperCAmelCase_ =[] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: UpperCAmelCase_ =example[..., None] input_values.append(example.T ) UpperCAmelCase_ =input_values if return_tensors is not None: UpperCAmelCase_ =padded_inputs.convert_to_tensors(_lowerCAmelCase ) return padded_inputs
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : str =logging.get_logger(__name__) __lowercase : List[str] ={ """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class A ( __lowercase ): _snake_case ='''xmod''' def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int]=3_0522 , _lowerCAmelCase: Union[str, Any]=768 , _lowerCAmelCase: Dict=12 , _lowerCAmelCase: Any=12 , _lowerCAmelCase: Dict=3072 , _lowerCAmelCase: List[Any]="gelu" , _lowerCAmelCase: int=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: Optional[int]=512 , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=1e-12 , _lowerCAmelCase: List[Any]=1 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Any="absolute" , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Any=False , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: str=False , _lowerCAmelCase: Any=True , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: List[Any]=("en_XX",) , _lowerCAmelCase: Tuple=None , **_lowerCAmelCase: Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_act UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =position_embedding_type UpperCAmelCase_ =use_cache UpperCAmelCase_ =classifier_dropout UpperCAmelCase_ =pre_norm UpperCAmelCase_ =adapter_reduction_factor UpperCAmelCase_ =adapter_layer_norm UpperCAmelCase_ =adapter_reuse_layer_norm UpperCAmelCase_ =ln_before_adapter UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =default_language class A ( __lowercase ): @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ ={0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( __lowercase ): _snake_case =42 class A ( nn.Module ): def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: str=3 , _lowerCAmelCase: Tuple=("DownEncoderBlock2D",) , _lowerCAmelCase: Optional[int]=(64,) , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: List[Any]="silu" , _lowerCAmelCase: str=True , ) -> Tuple: '''simple docstring''' super().__init__() UpperCAmelCase_ =layers_per_block UpperCAmelCase_ =torch.nn.Convad( _lowerCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ =None UpperCAmelCase_ =nn.ModuleList([] ) # down UpperCAmelCase_ =block_out_channels[0] for i, down_block_type in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =output_channel UpperCAmelCase_ =block_out_channels[i] UpperCAmelCase_ =i == len(_lowerCAmelCase ) - 1 UpperCAmelCase_ =get_down_block( _lowerCAmelCase , num_layers=self.layers_per_block , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) self.down_blocks.append(_lowerCAmelCase ) # mid UpperCAmelCase_ =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # out UpperCAmelCase_ =nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_lowerCAmelCase , eps=1e-6 ) UpperCAmelCase_ =nn.SiLU() UpperCAmelCase_ =2 * out_channels if double_z else out_channels UpperCAmelCase_ =nn.Convad(block_out_channels[-1] , _lowerCAmelCase , 3 , padding=1 ) UpperCAmelCase_ =False def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: int ) -> int: '''simple docstring''' UpperCAmelCase_ =x UpperCAmelCase_ =self.conv_in(_lowerCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase: Optional[Any] ): def custom_forward(*_lowerCAmelCase: Union[str, Any] ): return module(*_lowerCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase ) # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _lowerCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase_ =down_block(_lowerCAmelCase ) # middle UpperCAmelCase_ =self.mid_block(_lowerCAmelCase ) # post-process UpperCAmelCase_ =self.conv_norm_out(_lowerCAmelCase ) UpperCAmelCase_ =self.conv_act(_lowerCAmelCase ) UpperCAmelCase_ =self.conv_out(_lowerCAmelCase ) return sample class A ( nn.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dict=3 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: int=("UpDecoderBlock2D",) , _lowerCAmelCase: Optional[int]=(64,) , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: Dict=32 , _lowerCAmelCase: Tuple="silu" , _lowerCAmelCase: str="group" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =layers_per_block UpperCAmelCase_ =nn.Convad( _lowerCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase_ =None UpperCAmelCase_ =nn.ModuleList([] ) UpperCAmelCase_ =in_channels if norm_type == "spatial" else None # mid UpperCAmelCase_ =UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_lowerCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_lowerCAmelCase , temb_channels=_lowerCAmelCase , ) # up UpperCAmelCase_ =list(reversed(_lowerCAmelCase ) ) UpperCAmelCase_ =reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =output_channel UpperCAmelCase_ =reversed_block_out_channels[i] UpperCAmelCase_ =i == len(_lowerCAmelCase ) - 1 UpperCAmelCase_ =get_up_block( _lowerCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_lowerCAmelCase , resnet_groups=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , temb_channels=_lowerCAmelCase , resnet_time_scale_shift=_lowerCAmelCase , ) self.up_blocks.append(_lowerCAmelCase ) UpperCAmelCase_ =output_channel # out if norm_type == "spatial": UpperCAmelCase_ =SpatialNorm(block_out_channels[0] , _lowerCAmelCase ) else: UpperCAmelCase_ =nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_lowerCAmelCase , eps=1e-6 ) UpperCAmelCase_ =nn.SiLU() UpperCAmelCase_ =nn.Convad(block_out_channels[0] , _lowerCAmelCase , 3 , padding=1 ) UpperCAmelCase_ =False def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int]=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =z UpperCAmelCase_ =self.conv_in(_lowerCAmelCase ) UpperCAmelCase_ =next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCAmelCase: Dict ): def custom_forward(*_lowerCAmelCase: Union[str, Any] ): return module(*_lowerCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) UpperCAmelCase_ =sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , use_reentrant=_lowerCAmelCase ) else: # middle UpperCAmelCase_ =torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase_ =torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) else: # middle UpperCAmelCase_ =self.mid_block(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =sample.to(_lowerCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase_ =up_block(_lowerCAmelCase , _lowerCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase_ =self.conv_norm_out(_lowerCAmelCase ) else: UpperCAmelCase_ =self.conv_norm_out(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self.conv_act(_lowerCAmelCase ) UpperCAmelCase_ =self.conv_out(_lowerCAmelCase ) return sample class A ( nn.Module ): def __init__( self: Tuple , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: int=None , _lowerCAmelCase: Union[str, Any]="random" , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Union[str, Any]=True ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =n_e UpperCAmelCase_ =vq_embed_dim UpperCAmelCase_ =beta UpperCAmelCase_ =legacy UpperCAmelCase_ =nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase_ =remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase_ =self.used.shape[0] UpperCAmelCase_ =unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase_ =self.re_embed UpperCAmelCase_ =self.re_embed + 1 print( F'Remapping {self.n_e} indices to {self.re_embed} indices. ' F'Using {self.unknown_index} for unknown indices.' ) else: UpperCAmelCase_ =n_e UpperCAmelCase_ =sane_index_shape def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =inds.shape assert len(_lowerCAmelCase ) > 1 UpperCAmelCase_ =inds.reshape(ishape[0] , -1 ) UpperCAmelCase_ =self.used.to(_lowerCAmelCase ) UpperCAmelCase_ =(inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase_ =match.argmax(-1 ) UpperCAmelCase_ =match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase_ =torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase_ =self.unknown_index return new.reshape(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =inds.shape assert len(_lowerCAmelCase ) > 1 UpperCAmelCase_ =inds.reshape(ishape[0] , -1 ) UpperCAmelCase_ =self.used.to(_lowerCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase_ =0 # simply set to zero UpperCAmelCase_ =torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _lowerCAmelCase ) return back.reshape(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase_ =z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase_ =torch.argmin(torch.cdist(_lowerCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase_ =self.embedding(_lowerCAmelCase ).view(z.shape ) UpperCAmelCase_ =None UpperCAmelCase_ =None # compute loss for embedding if not self.legacy: UpperCAmelCase_ =self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase_ =torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase_ =z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase_ =z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase_ =min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase_ =self.remap_to_used(_lowerCAmelCase ) UpperCAmelCase_ =min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase_ =min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: Dict ) -> Union[str, Any]: '''simple docstring''' if self.remap is not None: UpperCAmelCase_ =indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase_ =self.unmap_to_all(_lowerCAmelCase ) UpperCAmelCase_ =indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase_ =self.embedding(_lowerCAmelCase ) if shape is not None: UpperCAmelCase_ =z_q.view(_lowerCAmelCase ) # reshape back to match original input shape UpperCAmelCase_ =z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any]=False ) -> Dict: '''simple docstring''' UpperCAmelCase_ =parameters UpperCAmelCase_ , UpperCAmelCase_ =torch.chunk(_lowerCAmelCase , 2 , dim=1 ) UpperCAmelCase_ =torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase_ =deterministic UpperCAmelCase_ =torch.exp(0.5 * self.logvar ) UpperCAmelCase_ =torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase_ =UpperCAmelCase_ =torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Optional[torch.Generator] = None ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase_ =randn_tensor( self.mean.shape , generator=_lowerCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase_ =self.mean + self.std * sample return x def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str=None ) -> Tuple: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any]=[1, 2, 3] ) -> Union[str, Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase_ =np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' return self.mean
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: int ) -> Tuple: '''simple docstring''' pass def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class A ( unittest.TestCase ): _snake_case =MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int ) -> int: '''simple docstring''' UpperCAmelCase_ =DepthEstimationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _lowerCAmelCase ) import datasets UpperCAmelCase_ =datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) UpperCAmelCase_ =depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _lowerCAmelCase , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCAmelCase__ ( self: Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass @slow @require_torch def lowerCAmelCase__ ( self: Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ ="Intel/dpt-large" UpperCAmelCase_ =pipeline("depth-estimation" , model=_lowerCAmelCase ) UpperCAmelCase_ =depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) UpperCAmelCase_ =hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_62 ) @require_torch def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
import requests def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={"Content-Type": "application/json"} UpperCAmelCase_ =requests.post(lowercase__ , json={"text": message_body} , headers=lowercase__ ) if response.status_code != 2_0_0: UpperCAmelCase_ =( "Request to slack returned an error " F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(lowercase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaControlnetPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''hint'''] _snake_case =['''image_embeds''', '''negative_image_embeds''', '''hint'''] _snake_case =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> str: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ =DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=_lowerCAmelCase , ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[Any]=0 ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create hint UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) UpperCAmelCase_ =torch.from_numpy(np.array(_lowerCAmelCase ) ).float() / 2_55.0 UpperCAmelCase_ =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A robot, 4k photo" UpperCAmelCase_ =torch.Generator(device="cuda" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =torch.Generator(device="cuda" ).manual_seed(0 ) UpperCAmelCase_ =pipeline( image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , hint=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
def a__ ( lowercase__ ): '''simple docstring''' return str(lowercase__ ) == str(lowercase__ )[::-1] def a__ ( lowercase__ ): '''simple docstring''' return int(lowercase__ ) + int(str(lowercase__ )[::-1] ) def a__ ( lowercase__ = 1_0_0_0_0 ): '''simple docstring''' UpperCAmelCase_ =[] for num in range(1 , lowercase__ ): UpperCAmelCase_ =0 UpperCAmelCase_ =num while iterations < 5_0: UpperCAmelCase_ =sum_reverse(lowercase__ ) iterations += 1 if is_palindrome(lowercase__ ): break else: lychrel_nums.append(lowercase__ ) return len(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =checkpoint UpperCAmelCase_ ={} UpperCAmelCase_ =vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ =vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ =vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ =vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ =vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ =vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ =vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ =vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ =vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ =vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ =vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ =vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ =vae_state_dict["quant_conv.weight"] UpperCAmelCase_ =vae_state_dict["quant_conv.bias"] UpperCAmelCase_ =vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ =vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ =len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ ={ layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(lowercase__ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ =len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ ={ layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(lowercase__ ) } for i in range(lowercase__ ): UpperCAmelCase_ =[key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: UpperCAmelCase_ =vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) UpperCAmelCase_ =vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) UpperCAmelCase_ =renew_vae_resnet_paths(lowercase__ ) UpperCAmelCase_ ={"old": F'down.{i}.block', "new": F'down_blocks.{i}.resnets'} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) UpperCAmelCase_ =[key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ =2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ =[key for key in mid_resnets if F'encoder.mid.block_{i}' in key] UpperCAmelCase_ =renew_vae_resnet_paths(lowercase__ ) UpperCAmelCase_ ={"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) UpperCAmelCase_ =[key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ =renew_vae_attention_paths(lowercase__ ) UpperCAmelCase_ ={"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) conv_attn_to_linear(lowercase__ ) for i in range(lowercase__ ): UpperCAmelCase_ =num_up_blocks - 1 - i UpperCAmelCase_ =[ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: UpperCAmelCase_ =vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] UpperCAmelCase_ =vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] UpperCAmelCase_ =renew_vae_resnet_paths(lowercase__ ) UpperCAmelCase_ ={"old": F'up.{block_id}.block', "new": F'up_blocks.{i}.resnets'} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) UpperCAmelCase_ =[key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ =2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ =[key for key in mid_resnets if F'decoder.mid.block_{i}' in key] UpperCAmelCase_ =renew_vae_resnet_paths(lowercase__ ) UpperCAmelCase_ ={"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) UpperCAmelCase_ =[key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ =renew_vae_attention_paths(lowercase__ ) UpperCAmelCase_ ={"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) conv_attn_to_linear(lowercase__ ) return new_checkpoint def a__ ( lowercase__ , lowercase__ , ): '''simple docstring''' UpperCAmelCase_ =requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ =io.BytesIO(r.content ) UpperCAmelCase_ =OmegaConf.load(lowercase__ ) UpperCAmelCase_ =5_1_2 UpperCAmelCase_ ="cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ ={} with safe_open(lowercase__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ =f.get_tensor(lowercase__ ) else: UpperCAmelCase_ =torch.load(lowercase__ , map_location=lowercase__ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ =create_vae_diffusers_config(lowercase__ , image_size=lowercase__ ) UpperCAmelCase_ =custom_convert_ldm_vae_checkpoint(lowercase__ , lowercase__ ) UpperCAmelCase_ =AutoencoderKL(**lowercase__ ) vae.load_state_dict(lowercase__ ) vae.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") __lowercase : Optional[int] =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __lowercase , unittest.TestCase ): _snake_case =MgpstrTokenizer _snake_case =False _snake_case ={} _snake_case =False def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase_ =["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on UpperCAmelCase_ =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: Tuple ) -> str: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ ="tester" UpperCAmelCase_ ="tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode([special_token] , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_input_output_texts(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertNotEqual(len(_lowerCAmelCase ) , 0 ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(text_a.replace(" " , "" ) , _lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' pass
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : int =logging.get_logger(__name__) __lowercase : List[str] ={ """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A ( __lowercase ): _snake_case ='''mctct''' def __init__( self: Optional[Any] , _lowerCAmelCase: Union[str, Any]=8065 , _lowerCAmelCase: int=1536 , _lowerCAmelCase: int=36 , _lowerCAmelCase: Union[str, Any]=6144 , _lowerCAmelCase: Optional[Any]=4 , _lowerCAmelCase: int=384 , _lowerCAmelCase: List[str]=920 , _lowerCAmelCase: Tuple=1e-5 , _lowerCAmelCase: Optional[int]=0.3 , _lowerCAmelCase: Optional[int]="relu" , _lowerCAmelCase: List[str]=0.02 , _lowerCAmelCase: Tuple=0.3 , _lowerCAmelCase: str=0.3 , _lowerCAmelCase: Optional[Any]=1 , _lowerCAmelCase: Optional[int]=0 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: Optional[Any]=1 , _lowerCAmelCase: Optional[Any]=0.3 , _lowerCAmelCase: Tuple=1 , _lowerCAmelCase: List[str]=(7,) , _lowerCAmelCase: int=(3,) , _lowerCAmelCase: Optional[Any]=80 , _lowerCAmelCase: str=1 , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Optional[Any]="sum" , _lowerCAmelCase: Any=False , **_lowerCAmelCase: Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =attention_head_dim UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =layerdrop UpperCAmelCase_ =hidden_act UpperCAmelCase_ =initializer_range UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =pad_token_id UpperCAmelCase_ =bos_token_id UpperCAmelCase_ =eos_token_id UpperCAmelCase_ =conv_glu_dim UpperCAmelCase_ =conv_dropout UpperCAmelCase_ =num_conv_layers UpperCAmelCase_ =input_feat_per_channel UpperCAmelCase_ =input_channels UpperCAmelCase_ =conv_channels UpperCAmelCase_ =ctc_loss_reduction UpperCAmelCase_ =ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =PriorTransformer _snake_case ='''hidden_states''' @property def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =8 UpperCAmelCase_ =7 UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Tuple=0 ) -> Tuple: '''simple docstring''' torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =4 UpperCAmelCase_ =8 UpperCAmelCase_ =7 UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' return (4, 8) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]: '''simple docstring''' return (4, 8) def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ ={ "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } UpperCAmelCase_ =self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) UpperCAmelCase_ =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ =self.model_class(**_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) if hasattr(_lowerCAmelCase , "set_default_attn_processor" ): model.set_default_attn_processor() UpperCAmelCase_ =self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase )[0] UpperCAmelCase_ =output[0, :5].flatten().cpu() print(_lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ =torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-2 ) ) @slow class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: str=1 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Any=77 , _lowerCAmelCase: Optional[int]=0 ) -> str: '''simple docstring''' torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =batch_size UpperCAmelCase_ =embedding_dim UpperCAmelCase_ =num_embeddings UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_seed_input(seed=_lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase )[0] assert list(sample.shape ) == [1, 768] UpperCAmelCase_ =sample[0, :8].flatten().cpu() print(_lowerCAmelCase ) UpperCAmelCase_ =torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 )
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __lowercase : int ={"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __lowercase : List[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : Union[str, Any] =logging.get_logger(__name__) if is_vision_available(): import PIL class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: Union[str, Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = True , **_lowerCAmelCase: str , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =resample UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ =do_convert_rgb def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[Any] , ) -> Optional[int]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: int = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase: Tuple , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ =crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ =[convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ =[self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowercase : Tuple =logging.get_logger(__name__) # General docstring __lowercase : Dict ="""MobileNetV1Config""" # Base docstring __lowercase : Union[str, Any] ="""google/mobilenet_v1_1.0_224""" __lowercase : str =[1, 1024, 7, 7] # Image classification docstring __lowercase : str ="""google/mobilenet_v1_1.0_224""" __lowercase : List[Any] ="""tabby, tabby cat""" __lowercase : Dict =[ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ ={} if isinstance(lowercase__ , lowercase__ ): UpperCAmelCase_ =model.mobilenet_va else: UpperCAmelCase_ =model UpperCAmelCase_ ="MobilenetV1/Conv2d_0/" UpperCAmelCase_ =backbone.conv_stem.convolution.weight UpperCAmelCase_ =backbone.conv_stem.normalization.bias UpperCAmelCase_ =backbone.conv_stem.normalization.weight UpperCAmelCase_ =backbone.conv_stem.normalization.running_mean UpperCAmelCase_ =backbone.conv_stem.normalization.running_var for i in range(1_3 ): UpperCAmelCase_ =i + 1 UpperCAmelCase_ =i * 2 UpperCAmelCase_ =backbone.layer[pt_index] UpperCAmelCase_ =F'MobilenetV1/Conv2d_{tf_index}_depthwise/' UpperCAmelCase_ =pointer.convolution.weight UpperCAmelCase_ =pointer.normalization.bias UpperCAmelCase_ =pointer.normalization.weight UpperCAmelCase_ =pointer.normalization.running_mean UpperCAmelCase_ =pointer.normalization.running_var UpperCAmelCase_ =backbone.layer[pt_index + 1] UpperCAmelCase_ =F'MobilenetV1/Conv2d_{tf_index}_pointwise/' UpperCAmelCase_ =pointer.convolution.weight UpperCAmelCase_ =pointer.normalization.bias UpperCAmelCase_ =pointer.normalization.weight UpperCAmelCase_ =pointer.normalization.running_mean UpperCAmelCase_ =pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): UpperCAmelCase_ ="MobilenetV1/Logits/Conv2d_1c_1x1/" UpperCAmelCase_ =model.classifier.weight UpperCAmelCase_ =model.classifier.bias return tf_to_pt_map def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model UpperCAmelCase_ =tf.train.list_variables(lowercase__ ) UpperCAmelCase_ ={} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) UpperCAmelCase_ =tf.train.load_variable(lowercase__ , lowercase__ ) UpperCAmelCase_ =array # Build TF to PyTorch weights loading map UpperCAmelCase_ =_build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue UpperCAmelCase_ =tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) UpperCAmelCase_ =np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer UpperCAmelCase_ =array.squeeze().transpose() else: UpperCAmelCase_ =np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) UpperCAmelCase_ =torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + "/RMSProp" , lowercase__ ) tf_weights.pop(name + "/RMSProp_1" , lowercase__ ) tf_weights.pop(name + "/ExponentialMovingAverage" , lowercase__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =features.shape[-2:] UpperCAmelCase_ , UpperCAmelCase_ =conv_layer.stride UpperCAmelCase_ , UpperCAmelCase_ =conv_layer.kernel_size if in_height % stride_height == 0: UpperCAmelCase_ =max(kernel_height - stride_height , 0 ) else: UpperCAmelCase_ =max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCAmelCase_ =max(kernel_width - stride_width , 0 ) else: UpperCAmelCase_ =max(kernel_width - (in_width % stride_width) , 0 ) UpperCAmelCase_ =pad_along_width // 2 UpperCAmelCase_ =pad_along_width - pad_left UpperCAmelCase_ =pad_along_height // 2 UpperCAmelCase_ =pad_along_height - pad_top UpperCAmelCase_ =(pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , "constant" , 0.0 ) class A ( nn.Module ): def __init__( self: Optional[Any] , _lowerCAmelCase: MobileNetVaConfig , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[bool or str] = True , ) -> None: '''simple docstring''' super().__init__() UpperCAmelCase_ =config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) UpperCAmelCase_ =0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCAmelCase_ =nn.Convad( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase , groups=_lowerCAmelCase , bias=_lowerCAmelCase , padding_mode="zeros" , ) if use_normalization: UpperCAmelCase_ =nn.BatchNormad( num_features=_lowerCAmelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=_lowerCAmelCase , track_running_stats=_lowerCAmelCase , ) else: UpperCAmelCase_ =None if use_activation: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCAmelCase ): UpperCAmelCase_ =ACTaFN[config.hidden_act] else: UpperCAmelCase_ =config.hidden_act else: UpperCAmelCase_ =None def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: torch.Tensor ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCAmelCase_ =apply_tf_padding(_lowerCAmelCase , self.convolution ) UpperCAmelCase_ =self.convolution(_lowerCAmelCase ) if self.normalization is not None: UpperCAmelCase_ =self.normalization(_lowerCAmelCase ) if self.activation is not None: UpperCAmelCase_ =self.activation(_lowerCAmelCase ) return features class A ( __lowercase ): _snake_case =MobileNetVaConfig _snake_case =load_tf_weights_in_mobilenet_va _snake_case ='''mobilenet_v1''' _snake_case ='''pixel_values''' _snake_case =False def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Union[nn.Linear, nn.Convad] ) -> None: '''simple docstring''' if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __lowercase : Union[str, Any] =R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __lowercase : List[Any] =R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class A ( __lowercase ): def __init__( self: str , _lowerCAmelCase: MobileNetVaConfig , _lowerCAmelCase: bool = True ) -> Any: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config UpperCAmelCase_ =32 UpperCAmelCase_ =max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCAmelCase_ =MobileNetVaConvLayer( _lowerCAmelCase , in_channels=config.num_channels , out_channels=_lowerCAmelCase , kernel_size=3 , stride=2 , ) UpperCAmelCase_ =[1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCAmelCase_ =nn.ModuleList() for i in range(13 ): UpperCAmelCase_ =out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCAmelCase_ =max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCAmelCase , in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , kernel_size=1 , ) ) UpperCAmelCase_ =nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: str ) -> List[str]: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[torch.Tensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCAmelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) UpperCAmelCase_ =self.conv_stem(_lowerCAmelCase ) UpperCAmelCase_ =() if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCAmelCase_ =layer_module(_lowerCAmelCase ) if output_hidden_states: UpperCAmelCase_ =all_hidden_states + (hidden_states,) UpperCAmelCase_ =hidden_states if self.pooler is not None: UpperCAmelCase_ =torch.flatten(self.pooler(_lowerCAmelCase ) , start_dim=1 ) else: UpperCAmelCase_ =None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=_lowerCAmelCase , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Dict , _lowerCAmelCase: MobileNetVaConfig ) -> None: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config.num_labels UpperCAmelCase_ =MobileNetVaModel(_lowerCAmelCase ) UpperCAmelCase_ =self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCAmelCase_ =nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCAmelCase ) UpperCAmelCase_ =nn.Linear(_lowerCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Optional[torch.Tensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[torch.Tensor] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ =self.mobilenet_va(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase ) UpperCAmelCase_ =outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ =self.classifier(self.dropout(_lowerCAmelCase ) ) UpperCAmelCase_ =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ ="single_label_classification" else: UpperCAmelCase_ ="multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase_ =MSELoss() if self.num_labels == 1: UpperCAmelCase_ =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ =CrossEntropyLoss() UpperCAmelCase_ =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ =BCEWithLogitsLoss() UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: UpperCAmelCase_ =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states , )
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
__lowercase : List[Any] ="""Alexander Joslin""" import operator as op from .stack import Stack def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} UpperCAmelCase_ =Stack() UpperCAmelCase_ =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase__ ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase__ ) elif i == ")": # RULE 4 UpperCAmelCase_ =operator_stack.peek() operator_stack.pop() UpperCAmelCase_ =operand_stack.peek() operand_stack.pop() UpperCAmelCase_ =operand_stack.peek() operand_stack.pop() UpperCAmelCase_ =operators[opr](lowercase__ , lowercase__ ) operand_stack.push(lowercase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowercase : str ="""(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =job["started_at"] UpperCAmelCase_ =job["completed_at"] UpperCAmelCase_ =date_parser.parse(lowercase__ ) UpperCAmelCase_ =date_parser.parse(lowercase__ ) UpperCAmelCase_ =round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase_ =start UpperCAmelCase_ =end UpperCAmelCase_ =duration_in_min return job_info def a__ ( lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =None if token is not None: UpperCAmelCase_ ={"Accept": "application/vnd.github+json", "Authorization": F'Bearer {token}'} UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ , headers=lowercase__ ).json() UpperCAmelCase_ ={} try: job_time.update({job["name"]: extract_time_from_single_job(lowercase__ ) for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' , headers=lowercase__ ).json() job_time.update({job["name"]: extract_time_from_single_job(lowercase__ ) for job in result["jobs"]} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": __lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") __lowercase : Optional[int] =parser.parse_args() __lowercase : Optional[int] =get_job_time(args.workflow_run_id) __lowercase : Optional[Any] =dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A ( __lowercase ): _snake_case =DistilBertTokenizer _snake_case =DistilBertTokenizerFast _snake_case =True @slow def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ =tokenizer.encode("sequence builders" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
import os import re import shutil import sys import tempfile import unittest import black __lowercase : Optional[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowercase : Union[str, Any] =""" def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) UpperCAmelCase_ =self.transformer_dir shutil.copy( os.path.join(_lowerCAmelCase , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ ="src/transformers" shutil.rmtree(self.transformer_dir ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Any=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCAmelCase_ =comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCAmelCase_ =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase_ =black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) UpperCAmelCase_ =os.path.join(self.transformer_dir , "new_code.py" ) with open(_lowerCAmelCase , "w" , newline="\n" ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , "r" ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ =check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , _lowerCAmelCase ) , ) # Copy consistency with a really long name UpperCAmelCase_ ="TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("Bert" , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , _lowerCAmelCase , overwrite_result=re.sub("Bert" , "TestModel" , _lowerCAmelCase ) , ) def lowerCAmelCase__ ( self: Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =check_copies.LOCALIZED_READMES["README_zh-hans.md"] UpperCAmelCase_ =( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) UpperCAmelCase_ =( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) UpperCAmelCase_ =( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) UpperCAmelCase_ , UpperCAmelCase_ =check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["format_model_list"] ) self.assertFalse(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCAmelCase ) UpperCAmelCase_ =( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) UpperCAmelCase_ =( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) UpperCAmelCase_ =( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) UpperCAmelCase_ , UpperCAmelCase_ =check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A ( unittest.TestCase ): _snake_case =MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _snake_case =TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Dict , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TextaTextGenerationPipeline(model=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) return generator, ["Something to write", "Something else"] def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =generator("Something there" ) self.assertEqual(_lowerCAmelCase , [{"generated_text": ANY(_lowerCAmelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) UpperCAmelCase_ =generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ [{"generated_text": ANY(_lowerCAmelCase )}, {"generated_text": ANY(_lowerCAmelCase )}], [{"generated_text": ANY(_lowerCAmelCase )}, {"generated_text": ANY(_lowerCAmelCase )}], ] , ) UpperCAmelCase_ =generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ [{"generated_text": ANY(_lowerCAmelCase )}, {"generated_text": ANY(_lowerCAmelCase )}], [{"generated_text": ANY(_lowerCAmelCase )}, {"generated_text": ANY(_lowerCAmelCase )}], ] , ) with self.assertRaises(_lowerCAmelCase ): generator(4 ) @require_torch def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility UpperCAmelCase_ =generator("Something there" , do_sample=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [{"generated_text": ""}] ) UpperCAmelCase_ =3 UpperCAmelCase_ =generator( "Something there" , num_return_sequences=_lowerCAmelCase , num_beams=_lowerCAmelCase , ) UpperCAmelCase_ =[ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =generator("This is a test" , do_sample=_lowerCAmelCase , num_return_sequences=2 , return_tensors=_lowerCAmelCase ) self.assertEqual( _lowerCAmelCase , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) UpperCAmelCase_ =generator.model.config.eos_token_id UpperCAmelCase_ ="<pad>" UpperCAmelCase_ =generator( ["This is a test", "This is a second test"] , do_sample=_lowerCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCAmelCase , ) self.assertEqual( _lowerCAmelCase , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self: Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility UpperCAmelCase_ =generator("Something there" , do_sample=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , [{"generated_text": ""}] )
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
import numpy as np def a__ ( lowercase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def a__ ( lowercase__ ): '''simple docstring''' return vector * sigmoid(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[Any] =logging.get_logger(__name__) __lowercase : Optional[int] ={"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class A ( __lowercase ): _snake_case ='''openai-gpt''' _snake_case ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self: List[str] , _lowerCAmelCase: List[str]=4_0478 , _lowerCAmelCase: Any=512 , _lowerCAmelCase: Optional[Any]=768 , _lowerCAmelCase: str=12 , _lowerCAmelCase: str=12 , _lowerCAmelCase: Any="gelu" , _lowerCAmelCase: str=0.1 , _lowerCAmelCase: Optional[int]=0.1 , _lowerCAmelCase: str=0.1 , _lowerCAmelCase: Optional[Any]=1e-5 , _lowerCAmelCase: Optional[int]=0.02 , _lowerCAmelCase: Dict="cls_index" , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: List[str]=0.1 , **_lowerCAmelCase: int , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =vocab_size UpperCAmelCase_ =n_positions UpperCAmelCase_ =n_embd UpperCAmelCase_ =n_layer UpperCAmelCase_ =n_head UpperCAmelCase_ =afn UpperCAmelCase_ =resid_pdrop UpperCAmelCase_ =embd_pdrop UpperCAmelCase_ =attn_pdrop UpperCAmelCase_ =layer_norm_epsilon UpperCAmelCase_ =initializer_range UpperCAmelCase_ =summary_type UpperCAmelCase_ =summary_use_proj UpperCAmelCase_ =summary_activation UpperCAmelCase_ =summary_first_dropout UpperCAmelCase_ =summary_proj_to_labels super().__init__(**_lowerCAmelCase )
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
class A : # Public class to implement a graph def __init__( self: int , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: list[list[bool]] ) -> None: '''simple docstring''' UpperCAmelCase_ =row UpperCAmelCase_ =col UpperCAmelCase_ =graph def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: int , _lowerCAmelCase: int , _lowerCAmelCase: list[list[bool]] ) -> None: '''simple docstring''' UpperCAmelCase_ =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase_ =[-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase_ =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> int: # And finally, count all islands. '''simple docstring''' UpperCAmelCase_ =[[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase_ =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) count += 1 return count
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowercase : List[Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase_ =1_2_8 elif "12-12" in model_name: UpperCAmelCase_ =1_2 UpperCAmelCase_ =1_2 elif "14-14" in model_name: UpperCAmelCase_ =1_4 UpperCAmelCase_ =1_4 elif "16-16" in model_name: UpperCAmelCase_ =1_6 UpperCAmelCase_ =1_6 else: raise ValueError("Model not supported" ) UpperCAmelCase_ ="huggingface/label-files" if "speech-commands" in model_name: UpperCAmelCase_ =3_5 UpperCAmelCase_ ="speech-commands-v2-id2label.json" else: UpperCAmelCase_ =5_2_7 UpperCAmelCase_ ="audioset-id2label.json" UpperCAmelCase_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ ={int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ =idalabel UpperCAmelCase_ ={v: k for k, v in idalabel.items()} return config def a__ ( lowercase__ ): '''simple docstring''' if "module.v" in name: UpperCAmelCase_ =name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: UpperCAmelCase_ =name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: UpperCAmelCase_ =name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: UpperCAmelCase_ =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCAmelCase_ =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: UpperCAmelCase_ =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: UpperCAmelCase_ =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: UpperCAmelCase_ =name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ =name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase_ =name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase_ =name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: UpperCAmelCase_ =name.replace("module.mlp_head.1" , "classifier.dense" ) return name def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ =orig_state_dict.pop(lowercase__ ) if "qkv" in key: UpperCAmelCase_ =key.split("." ) UpperCAmelCase_ =int(key_split[3] ) UpperCAmelCase_ =config.hidden_size if "weight" in key: UpperCAmelCase_ =val[:dim, :] UpperCAmelCase_ =val[dim : dim * 2, :] UpperCAmelCase_ =val[-dim:, :] else: UpperCAmelCase_ =val[:dim] UpperCAmelCase_ =val[dim : dim * 2] UpperCAmelCase_ =val[-dim:] else: UpperCAmelCase_ =val return orig_state_dict def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =get_audio_spectrogram_transformer_config(lowercase__ ) UpperCAmelCase_ ={ "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict UpperCAmelCase_ =model_name_to_url[model_name] UpperCAmelCase_ =torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" ) # remove some keys remove_keys(lowercase__ ) # rename some keys UpperCAmelCase_ =convert_state_dict(lowercase__ , lowercase__ ) # load 🤗 model UpperCAmelCase_ =ASTForAudioClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase_ =-4.267_7393 if "speech-commands" not in model_name else -6.84_5978 UpperCAmelCase_ =4.568_9974 if "speech-commands" not in model_name else 5.565_4526 UpperCAmelCase_ =1_0_2_4 if "speech-commands" not in model_name else 1_2_8 UpperCAmelCase_ =ASTFeatureExtractor(mean=lowercase__ , std=lowercase__ , max_length=lowercase__ ) if "speech-commands" in model_name: UpperCAmelCase_ =load_dataset("speech_commands" , "v0.02" , split="validation" ) UpperCAmelCase_ =dataset[0]["audio"]["array"] else: UpperCAmelCase_ =hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) UpperCAmelCase_ , UpperCAmelCase_ =torchaudio.load(lowercase__ ) UpperCAmelCase_ =waveform.squeeze().numpy() UpperCAmelCase_ =feature_extractor(lowercase__ , sampling_rate=1_6_0_0_0 , return_tensors="pt" ) # forward pass UpperCAmelCase_ =model(**lowercase__ ) UpperCAmelCase_ =outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase_ =torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase_ =torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase_ =torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase_ =torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase_ =torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase_ =torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase_ =torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase_ =torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(lowercase__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __lowercase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase : Optional[int] =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
import fire from utils import calculate_rouge, save_json def a__ ( lowercase__ , lowercase__ , lowercase__=None , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[x.strip() for x in open(lowercase__ ).readlines()] UpperCAmelCase_ =[x.strip() for x in open(lowercase__ ).readlines()][: len(lowercase__ )] UpperCAmelCase_ =calculate_rouge(lowercase__ , lowercase__ , **lowercase__ ) if save_path is not None: save_json(lowercase__ , lowercase__ , indent=lowercase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
from __future__ import annotations def a__ ( lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return array UpperCAmelCase_ , UpperCAmelCase_ =min(lowercase__ ), max(lowercase__ ) # Compute the variables UpperCAmelCase_ =_max - _min + 1 UpperCAmelCase_ , UpperCAmelCase_ =[0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase_ =i - _min UpperCAmelCase_ =i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase_ =0 for i in range(lowercase__ ): while holes_repeat[i] > 0: UpperCAmelCase_ =holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __lowercase : List[Any] =input("""Enter numbers separated by comma:\n""") __lowercase : Union[str, Any] =[int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a__ ( lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(add_help=lowercase__ , allow_abbrev=lowercase__ ) # The main config parser UpperCAmelCase_ =config_command_parser(lowercase__ ) # The subparser to add commands to UpperCAmelCase_ =config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(lowercase__ , parents=[parent_parser] ) update_command_parser(lowercase__ , parents=[parent_parser] ) return config_parser def a__ ( ): '''simple docstring''' UpperCAmelCase_ =get_config_parser() UpperCAmelCase_ =config_parser.parse_args() if not hasattr(lowercase__ , "func" ): config_parser.print_help() exit(1 ) # Run args.func(lowercase__ ) if __name__ == "__main__": main()
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __lowercase , unittest.TestCase ): _snake_case =FunnelTokenizer _snake_case =FunnelTokenizerFast _snake_case =True _snake_case =True def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' super().setUp() UpperCAmelCase_ =[ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self: Dict , **_lowerCAmelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , **_lowerCAmelCase: int ) -> str: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Any ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ ="UNwant\u00E9d,running" UpperCAmelCase_ ="unwanted, running" return input_text, output_text def lowerCAmelCase__ ( self: Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ =tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_lowerCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: UpperCAmelCase_ =tokenizer("UNwant\u00E9d,running" ) UpperCAmelCase_ =len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCAmelCase_ =tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =position UpperCAmelCase_ =[ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ =[] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ =position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowercase__ ) return permissible_positions def a__ ( lowercase__ ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if is_complete(lowercase__ ): return True for position in get_valid_pos(lowercase__ , len(lowercase__ ) ): UpperCAmelCase_ , UpperCAmelCase_ =position if board[y][x] == 0: UpperCAmelCase_ =curr + 1 if open_knight_tour_helper(lowercase__ , lowercase__ , curr + 1 ): return True UpperCAmelCase_ =0 return False def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[[0 for i in range(lowercase__ )] for j in range(lowercase__ )] for i in range(lowercase__ ): for j in range(lowercase__ ): UpperCAmelCase_ =1 if open_knight_tour_helper(lowercase__ , (i, j) , 1 ): return board UpperCAmelCase_ =0 UpperCAmelCase_ =F'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class A ( unittest.TestCase ): @require_torch def lowerCAmelCase__ ( self: Dict ) -> int: '''simple docstring''' UpperCAmelCase_ =pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) UpperCAmelCase_ =load_dataset("ashraq/esc50" ) UpperCAmelCase_ =dataset["train"]["audio"][-1]["array"] UpperCAmelCase_ =audio_classifier(_lowerCAmelCase , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"score": 0.5_01, "label": "Sound of a dog"}, {"score": 0.4_99, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' pass @slow @require_torch def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog UpperCAmelCase_ =load_dataset("ashraq/esc50" ) UpperCAmelCase_ =dataset["train"]["audio"][-1]["array"] UpperCAmelCase_ =audio_classifier(_lowerCAmelCase , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ] , ) UpperCAmelCase_ =audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) UpperCAmelCase_ =audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def lowerCAmelCase__ ( self: Tuple ) -> List[str]: '''simple docstring''' pass
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
def a__ ( lowercase__ = 1_0 , lowercase__ = 2_2 ): '''simple docstring''' UpperCAmelCase_ =range(1 , lowercase__ ) UpperCAmelCase_ =range(1 , lowercase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class A ( __lowercase ): _snake_case ='''microsoft/speecht5_tts''' _snake_case =( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _snake_case ='''text_reader''' _snake_case =SpeechTaProcessor _snake_case =SpeechTaForTextToSpeech _snake_case =SpeechTaHifiGan _snake_case =['''text'''] _snake_case =['''audio'''] def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' if self.post_processor is None: UpperCAmelCase_ ="microsoft/speecht5_hifigan" super().setup() def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.pre_processor(text=_lowerCAmelCase , return_tensors="pt" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ =load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ =torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Dict ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __lowercase : Optional[int] =logging.get_logger(__name__) # General docstring __lowercase : Tuple ="""PoolFormerConfig""" # Base docstring __lowercase : Union[str, Any] ="""sail/poolformer_s12""" __lowercase : int =[1, 512, 7, 7] # Image classification docstring __lowercase : Tuple ="""sail/poolformer_s12""" __lowercase : Optional[Any] ="""tabby, tabby cat""" __lowercase : List[str] =[ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a__ ( lowercase__ , lowercase__ = 0.0 , lowercase__ = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input UpperCAmelCase_ =1 - drop_prob UpperCAmelCase_ =(input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCAmelCase_ =keep_prob + torch.rand(lowercase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCAmelCase_ =input.div(lowercase__ ) * random_tensor return output class A ( nn.Module ): def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[float] = None ) -> None: '''simple docstring''' super().__init__() UpperCAmelCase_ =drop_prob def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(_lowerCAmelCase , self.drop_prob , self.training ) def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: Dict , _lowerCAmelCase: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=None ) -> List[str]: '''simple docstring''' super().__init__() UpperCAmelCase_ =patch_size if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) UpperCAmelCase_ =stride if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (stride, stride) UpperCAmelCase_ =padding if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (padding, padding) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase ) UpperCAmelCase_ =norm_layer(_lowerCAmelCase ) if norm_layer else nn.Identity() def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.projection(_lowerCAmelCase ) UpperCAmelCase_ =self.norm(_lowerCAmelCase ) return embeddings class A ( nn.GroupNorm ): def __init__( self: int , _lowerCAmelCase: int , **_lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' super().__init__(1 , _lowerCAmelCase , **_lowerCAmelCase ) class A ( nn.Module ): def __init__( self: Tuple , _lowerCAmelCase: int ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.AvgPoolad(_lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' return self.pool(_lowerCAmelCase ) - hidden_states class A ( nn.Module ): def __init__( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =PoolFormerDropPath(_lowerCAmelCase ) if isinstance(config.hidden_act , _lowerCAmelCase ): UpperCAmelCase_ =ACTaFN[config.hidden_act] else: UpperCAmelCase_ =config.hidden_act def lowerCAmelCase__ ( self: str , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.conva(_lowerCAmelCase ) UpperCAmelCase_ =self.act_fn(_lowerCAmelCase ) UpperCAmelCase_ =self.drop(_lowerCAmelCase ) UpperCAmelCase_ =self.conva(_lowerCAmelCase ) UpperCAmelCase_ =self.drop(_lowerCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: str , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =PoolFormerPooling(_lowerCAmelCase ) UpperCAmelCase_ =PoolFormerOutput(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =PoolFormerGroupNorm(_lowerCAmelCase ) UpperCAmelCase_ =PoolFormerGroupNorm(_lowerCAmelCase ) # Useful for training neural nets UpperCAmelCase_ =PoolFormerDropPath(_lowerCAmelCase ) if drop_path > 0.0 else nn.Identity() UpperCAmelCase_ =config.use_layer_scale if config.use_layer_scale: UpperCAmelCase_ =nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) UpperCAmelCase_ =nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] ) -> List[Any]: '''simple docstring''' if self.use_layer_scale: UpperCAmelCase_ =self.pooling(self.before_norm(_lowerCAmelCase ) ) UpperCAmelCase_ =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCAmelCase_ =hidden_states + self.drop_path(_lowerCAmelCase ) UpperCAmelCase_ =() UpperCAmelCase_ =self.output(self.after_norm(_lowerCAmelCase ) ) UpperCAmelCase_ =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCAmelCase_ =hidden_states + self.drop_path(_lowerCAmelCase ) UpperCAmelCase_ =(output,) + outputs return outputs else: UpperCAmelCase_ =self.drop_path(self.pooling(self.before_norm(_lowerCAmelCase ) ) ) # First residual connection UpperCAmelCase_ =pooling_output + hidden_states UpperCAmelCase_ =() # Second residual connection inside the PoolFormerOutput block UpperCAmelCase_ =self.drop_path(self.output(self.after_norm(_lowerCAmelCase ) ) ) UpperCAmelCase_ =hidden_states + layer_output UpperCAmelCase_ =(output,) + outputs return outputs class A ( nn.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dict ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =config # stochastic depth decay rule UpperCAmelCase_ =[x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCAmelCase_ =[] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCAmelCase_ =nn.ModuleList(_lowerCAmelCase ) # Transformer blocks UpperCAmelCase_ =[] UpperCAmelCase_ =0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCAmelCase_ =[] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_lowerCAmelCase ) ) UpperCAmelCase_ =nn.ModuleList(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Dict=True ) -> str: '''simple docstring''' UpperCAmelCase_ =() if output_hidden_states else None UpperCAmelCase_ =pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCAmelCase_ , UpperCAmelCase_ =layers # Get patch embeddings from hidden_states UpperCAmelCase_ =embedding_layer(_lowerCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =blk(_lowerCAmelCase ) UpperCAmelCase_ =layer_outputs[0] if output_hidden_states: UpperCAmelCase_ =all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) class A ( __lowercase ): _snake_case =PoolFormerConfig _snake_case ='''poolformer''' _snake_case ='''pixel_values''' _snake_case =True def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Tuple=False ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =value __lowercase : Union[str, Any] =R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __lowercase : Union[str, Any] =R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config UpperCAmelCase_ =PoolFormerEncoder(_lowerCAmelCase ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self: str ) -> int: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) UpperCAmelCase_ =self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) UpperCAmelCase_ =encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: Dict ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.dense(_lowerCAmelCase ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int] ) -> Dict: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config.num_labels UpperCAmelCase_ =PoolFormerModel(_lowerCAmelCase ) # Final norm UpperCAmelCase_ =PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCAmelCase_ =( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[torch.LongTensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ =self.poolformer( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) UpperCAmelCase_ =outputs[0] UpperCAmelCase_ =self.classifier(self.norm(_lowerCAmelCase ).mean([-2, -1] ) ) UpperCAmelCase_ =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ ="single_label_classification" else: UpperCAmelCase_ ="multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase_ =MSELoss() if self.num_labels == 1: UpperCAmelCase_ =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ =CrossEntropyLoss() UpperCAmelCase_ =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ =BCEWithLogitsLoss() UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: UpperCAmelCase_ =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
import collections import os import re from pathlib import Path __lowercase : Tuple ="""src/transformers""" # Matches is_xxx_available() __lowercase : Union[str, Any] =re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} __lowercase : List[str] =re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowercase : Optional[int] =re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available __lowercase : Any =re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") __lowercase : Optional[Any] =re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowercase : Optional[int] =re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", __lowercase : List[Any] =re.compile(R"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], __lowercase : Optional[int] =re.compile(R"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo __lowercase : Union[str, Any] =re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: __lowercase : Optional[int] =re.compile(R"""^\s*try:""") # Catches a line with else: __lowercase : Union[str, Any] =re.compile(R"""^\s*else:""") def a__ ( lowercase__ ): '''simple docstring''' if _re_test_backend.search(lowercase__ ) is None: return None UpperCAmelCase_ =[b[0] for b in _re_backend.findall(lowercase__ )] backends.sort() return "_and_".join(lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ =f.readlines() UpperCAmelCase_ =0 while line_index < len(lowercase__ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase__ ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ =[] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase__ ): UpperCAmelCase_ =_re_one_line_import_struct.search(lowercase__ ).groups()[0] UpperCAmelCase_ =re.findall(R"\[([^\]]+)\]" , lowercase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue UpperCAmelCase_ =_re_import_struct_key_value.search(lowercase__ ) if single_line_import_search is not None: UpperCAmelCase_ =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ ={"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): UpperCAmelCase_ =lines[line_index] if _re_import_struct_add_one.search(lowercase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase__ ) is not None: UpperCAmelCase_ =_re_import_struct_add_many.search(lowercase__ ).groups()[0].split(", " ) UpperCAmelCase_ =[obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_between_brackets.search(lowercase__ ) is not None: UpperCAmelCase_ =_re_between_brackets.search(lowercase__ ).groups()[0].split(", " ) UpperCAmelCase_ =[obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_quote_object.search(lowercase__ ) is not None: objects.append(_re_quote_object.search(lowercase__ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 UpperCAmelCase_ =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ =[] while ( line_index < len(lowercase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): UpperCAmelCase_ =lines[line_index] UpperCAmelCase_ =_re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ ={"none": objects} # Let's continue with backend-specific objects while line_index < len(lowercase__ ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): UpperCAmelCase_ =lines[line_index] UpperCAmelCase_ =_re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 UpperCAmelCase_ =objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' def find_duplicates(lowercase__ ): return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ =[] for key in import_dict_objects.keys(): UpperCAmelCase_ =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) UpperCAmelCase_ =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ ="base imports" if key == "none" else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: UpperCAmelCase_ =os.path.join(lowercase__ , "__init__.py" ) UpperCAmelCase_ =parse_init(lowercase__ ) if objects is not None: UpperCAmelCase_ =analyze_results(*lowercase__ ) if len(lowercase__ ) > 0: UpperCAmelCase_ =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(lowercase__ ) ) if len(lowercase__ ) > 0: raise ValueError("\n\n".join(lowercase__ ) ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[] for path, directories, files in os.walk(lowercase__ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(lowercase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase__ ) / folder).glob("*.py" ) ) ) == 0: continue UpperCAmelCase_ =str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) ) UpperCAmelCase_ =short_path.replace(os.path.sep , "." ) submodules.append(lowercase__ ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ =str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) ) UpperCAmelCase_ =short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(lowercase__ ) return submodules __lowercase : Optional[Any] =[ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def a__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import UpperCAmelCase_ =direct_transformers_import(lowercase__ ) UpperCAmelCase_ =set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase__ , "__init__.py" ) , "r" ) as f: UpperCAmelCase_ =f.read() import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]" , lowercase__ ) ) ) UpperCAmelCase_ =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase__ ) > 0: UpperCAmelCase_ ="\n".join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : List[Any] =Lock() def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ =min(lowercase__ , lowercase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ =max(lowercase__ , lowercase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ =Pipe() UpperCAmelCase_ =Pipe() process_array_.append( Process( target=lowercase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ =temp_rs UpperCAmelCase_ =temp_rr for i in range(1 , len(lowercase__ ) - 1 ): UpperCAmelCase_ =Pipe() UpperCAmelCase_ =Pipe() process_array_.append( Process( target=lowercase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ =temp_rs UpperCAmelCase_ =temp_rr process_array_.append( Process( target=lowercase__ , args=( len(lowercase__ ) - 1, arr[len(lowercase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase__ ) ): UpperCAmelCase_ =result_pipe[p][0].recv() process_array_[p].join() return arr def a__ ( ): '''simple docstring''' UpperCAmelCase_ =list(range(1_0 , 0 , -1 ) ) print("Initial List" ) print(*lowercase__ ) UpperCAmelCase_ =odd_even_transposition(lowercase__ ) print("Sorted List\n" ) print(*lowercase__ ) if __name__ == "__main__": main()
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( __lowercase ): def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , "embed_dim" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , "num_heads" ) ) class A : def __init__( self: str , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str=13 , _lowerCAmelCase: List[Any]=64 , _lowerCAmelCase: str=3 , _lowerCAmelCase: str=[16, 48, 96] , _lowerCAmelCase: Union[str, Any]=[1, 3, 6] , _lowerCAmelCase: Union[str, Any]=[1, 2, 10] , _lowerCAmelCase: List[Any]=[7, 3, 3] , _lowerCAmelCase: Dict=[4, 2, 2] , _lowerCAmelCase: Optional[int]=[2, 1, 1] , _lowerCAmelCase: List[str]=[2, 2, 2] , _lowerCAmelCase: Optional[int]=[False, False, True] , _lowerCAmelCase: Any=[0.0, 0.0, 0.0] , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Any=1e-12 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: List[Any]=2 , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_sizes UpperCAmelCase_ =patch_stride UpperCAmelCase_ =patch_padding UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =num_labels UpperCAmelCase_ =num_channels UpperCAmelCase_ =embed_dim UpperCAmelCase_ =num_heads UpperCAmelCase_ =stride_kv UpperCAmelCase_ =depth UpperCAmelCase_ =cls_token UpperCAmelCase_ =attention_drop_rate UpperCAmelCase_ =initializer_range UpperCAmelCase_ =layer_norm_eps def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase_ =ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =TFCvtModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ =image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ =floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ =floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.num_labels UpperCAmelCase_ =TFCvtForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =TFCvtModelTester(self ) UpperCAmelCase_ =TFCvtConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: str ) -> Optional[int]: '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(_lowerCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: int ): UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase_ =outputs.hidden_states UpperCAmelCase_ =len(self.model_tester.depth ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ =TFCvtModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1e-4 ) )
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : int =logging.get_logger(__name__) set_seed(770) __lowercase : List[Any] ={ """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __lowercase : Any ={ """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __lowercase : List[Any] =os.path.dirname(os.path.abspath(__file__)) __lowercase : Optional[int] =os.path.join(os.path.expanduser("""~"""), """.cache""") __lowercase : Union[str, Any] =os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def a__ ( lowercase__ , lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =model_type if use_small: key += "_small" return os.path.join(lowercase__ , REMOTE_MODEL_PATHS[key]["file_name"] ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) hf_hub_download(repo_id=lowercase__ , filename=lowercase__ , local_dir=lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__=False , lowercase__="text" ): '''simple docstring''' if model_type == "text": UpperCAmelCase_ =BarkSemanticModel UpperCAmelCase_ =BarkSemanticConfig UpperCAmelCase_ =BarkSemanticGenerationConfig elif model_type == "coarse": UpperCAmelCase_ =BarkCoarseModel UpperCAmelCase_ =BarkCoarseConfig UpperCAmelCase_ =BarkCoarseGenerationConfig elif model_type == "fine": UpperCAmelCase_ =BarkFineModel UpperCAmelCase_ =BarkFineConfig UpperCAmelCase_ =BarkFineGenerationConfig else: raise NotImplementedError() UpperCAmelCase_ =F'{model_type}_small' if use_small else model_type UpperCAmelCase_ =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase__ ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["repo_id"] , model_info["file_name"] ) UpperCAmelCase_ =torch.load(lowercase__ , map_location=lowercase__ ) # this is a hack UpperCAmelCase_ =checkpoint["model_args"] if "input_vocab_size" not in model_args: UpperCAmelCase_ =model_args["vocab_size"] UpperCAmelCase_ =model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments UpperCAmelCase_ =model_args.pop("n_head" ) UpperCAmelCase_ =model_args.pop("n_embd" ) UpperCAmelCase_ =model_args.pop("n_layer" ) UpperCAmelCase_ =ConfigClass(**checkpoint["model_args"] ) UpperCAmelCase_ =ModelClass(config=lowercase__ ) UpperCAmelCase_ =GenerationConfigClass() UpperCAmelCase_ =model_generation_config UpperCAmelCase_ =checkpoint["model"] # fixup checkpoint UpperCAmelCase_ ="_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(lowercase__ ): # replace part of the key with corresponding layer name in HF implementation UpperCAmelCase_ =k[len(lowercase__ ) :] for old_layer_name in new_layer_name_dict: UpperCAmelCase_ =new_k.replace(lowercase__ , new_layer_name_dict[old_layer_name] ) UpperCAmelCase_ =state_dict.pop(lowercase__ ) UpperCAmelCase_ =set(state_dict.keys() ) - set(model.state_dict().keys() ) UpperCAmelCase_ ={k for k in extra_keys if not k.endswith(".attn.bias" )} UpperCAmelCase_ =set(model.state_dict().keys() ) - set(state_dict.keys() ) UpperCAmelCase_ ={k for k in missing_keys if not k.endswith(".attn.bias" )} if len(lowercase__ ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(lowercase__ ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(lowercase__ , strict=lowercase__ ) UpperCAmelCase_ =model.num_parameters(exclude_embeddings=lowercase__ ) UpperCAmelCase_ =checkpoint["best_val_loss"].item() logger.info(F'model loaded: {round(n_params/1E6 , 1 )}M params, {round(lowercase__ , 3 )} loss' ) model.eval() model.to(lowercase__ ) del checkpoint, state_dict return model def a__ ( lowercase__ , lowercase__=False , lowercase__="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() UpperCAmelCase_ ="cpu" # do conversion on cpu UpperCAmelCase_ =_get_ckpt_path(lowercase__ , use_small=lowercase__ ) UpperCAmelCase_ =_load_model(lowercase__ , lowercase__ , model_type=lowercase__ , use_small=lowercase__ ) # load bark initial model UpperCAmelCase_ =_bark_load_model(lowercase__ , "cpu" , model_type=lowercase__ , use_small=lowercase__ ) if model_type == "text": UpperCAmelCase_ =bark_model["model"] if model.num_parameters(exclude_embeddings=lowercase__ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model UpperCAmelCase_ =5 UpperCAmelCase_ =1_0 if model_type in ["text", "coarse"]: UpperCAmelCase_ =torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) UpperCAmelCase_ =bark_model(lowercase__ )[0] UpperCAmelCase_ =model(lowercase__ ) # take last logits UpperCAmelCase_ =output_new_model_total.logits[:, [-1], :] else: UpperCAmelCase_ =3 UpperCAmelCase_ =8 UpperCAmelCase_ =torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) UpperCAmelCase_ =model(lowercase__ , lowercase__ ) UpperCAmelCase_ =bark_model(lowercase__ , lowercase__ ) UpperCAmelCase_ =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) UpperCAmelCase_ =BarkSemanticConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) UpperCAmelCase_ =BarkCoarseConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) UpperCAmelCase_ =BarkFineConfig.from_pretrained(os.path.join(lowercase__ , "config.json" ) ) UpperCAmelCase_ =EncodecConfig.from_pretrained("facebook/encodec_24khz" ) UpperCAmelCase_ =BarkSemanticModel.from_pretrained(lowercase__ ) UpperCAmelCase_ =BarkCoarseModel.from_pretrained(lowercase__ ) UpperCAmelCase_ =BarkFineModel.from_pretrained(lowercase__ ) UpperCAmelCase_ =EncodecModel.from_pretrained("facebook/encodec_24khz" ) UpperCAmelCase_ =BarkConfig.from_sub_model_configs( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) UpperCAmelCase_ =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) UpperCAmelCase_ =BarkModel(lowercase__ ) UpperCAmelCase_ =semantic UpperCAmelCase_ =coarseAcoustic UpperCAmelCase_ =fineAcoustic UpperCAmelCase_ =codec UpperCAmelCase_ =bark_generation_config Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) bark.save_pretrained(lowercase__ , repo_id=lowercase__ , push_to_hub=lowercase__ ) if __name__ == "__main__": __lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __lowercase : str =parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE__ : int = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : a__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class lowerCamelCase_ : a__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) a__ = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) a__ = field( default=10_24 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a__ = field( default=1_42 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) a__ = field( default=1_42 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a__ = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) a__ = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) a__ = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''Source language id for translation.'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''Target language id for translation.'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(snake_case, os.path.join(snake_case, f'''{split}_results.json''' ) ) def __lowercase ( ): """simple docstring""" __magic_name__ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __magic_name__ , __magic_name__ , __magic_name__ :Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __magic_name__ , __magic_name__ , __magic_name__ :Tuple = parser.parse_args_into_dataclasses() check_output_dir(snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''', snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ :Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __magic_name__ :int = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case, snake_case, snake_case ): assert hasattr(snake_case, snake_case ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(snake_case, snake_case, getattr(snake_case, snake_case ) ) __magic_name__ :Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __magic_name__ :List[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path, from_tf='''.ckpt''' in model_args.model_name_or_path, config=snake_case, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(snake_case, data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __magic_name__ :Tuple = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case, (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case, snake_case ): __magic_name__ :str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __magic_name__ :Tuple = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __magic_name__ :Any = SeqaSeqDataset # Get datasets __magic_name__ :List[str] = ( dataset_class( snake_case, type_path='''train''', data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_train else None ) __magic_name__ :Optional[Any] = ( dataset_class( snake_case, type_path='''val''', data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __magic_name__ :Union[str, Any] = ( dataset_class( snake_case, type_path='''test''', data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or '''''', ) if training_args.do_predict else None ) # Initialize our Trainer __magic_name__ :Any = ( build_compute_metrics_fn(data_args.task, snake_case ) if training_args.predict_with_generate else None ) __magic_name__ :Optional[int] = SeqaSeqTrainer( model=snake_case, args=snake_case, data_args=snake_case, train_dataset=snake_case, eval_dataset=snake_case, data_collator=SeqaSeqDataCollator( snake_case, snake_case, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=snake_case, tokenizer=snake_case, ) __magic_name__ :Union[str, Any] = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __magic_name__ :Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __magic_name__ :int = train_result.metrics __magic_name__ :Optional[Any] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''', snake_case, training_args.output_dir ) all_metrics.update(snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __magic_name__ :int = trainer.evaluate(metric_key_prefix='''val''' ) __magic_name__ :int = data_args.n_val __magic_name__ :int = round(metrics['''val_loss'''], 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''', snake_case, training_args.output_dir ) all_metrics.update(snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __magic_name__ :Optional[int] = trainer.predict(test_dataset=snake_case, metric_key_prefix='''test''' ) __magic_name__ :Tuple = test_output.metrics __magic_name__ :str = data_args.n_test if trainer.is_world_process_zero(): __magic_name__ :Union[str, Any] = round(metrics['''test_loss'''], 4 ) handle_metrics('''test''', snake_case, training_args.output_dir ) all_metrics.update(snake_case ) if training_args.predict_with_generate: __magic_name__ :List[Any] = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=snake_case, clean_up_tokenization_spaces=snake_case ) __magic_name__ :List[str] = lmap(str.strip, snake_case ) write_txt_file(snake_case, os.path.join(training_args.output_dir, '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case, os.path.join(training_args.output_dir, '''all_results.json''' ) ) return all_metrics def __lowercase ( snake_case ): """simple docstring""" main() if __name__ == "__main__": main()
0
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __lowerCamelCase (_a ): _lowercase = """lxmert""" _lowercase = {} def __init__( self: Dict,A_: Optional[int]=3_0522,A_: List[Any]=768,A_: int=12,A_: Optional[int]=9500,A_: Optional[int]=1600,A_: List[str]=400,A_: Dict=3072,A_: Tuple="gelu",A_: Optional[int]=0.1,A_: str=0.1,A_: Optional[Any]=512,A_: List[Any]=2,A_: List[str]=0.0_2,A_: List[str]=1E-12,A_: Union[str, Any]=9,A_: Optional[int]=5,A_: Any=5,A_: Optional[Any]=2048,A_: Union[str, Any]=4,A_: Any=6.6_7,A_: Tuple=True,A_: List[str]=True,A_: Dict=True,A_: List[Any]=True,A_: List[str]=True,A_: Optional[Any]=True,A_: Optional[Any]=True,**A_: Dict,): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = num_qa_labels __UpperCamelCase = num_object_labels __UpperCamelCase = num_attr_labels __UpperCamelCase = l_layers __UpperCamelCase = x_layers __UpperCamelCase = r_layers __UpperCamelCase = visual_feat_dim __UpperCamelCase = visual_pos_dim __UpperCamelCase = visual_loss_normalizer __UpperCamelCase = task_matched __UpperCamelCase = task_mask_lm __UpperCamelCase = task_obj_predict __UpperCamelCase = task_qa __UpperCamelCase = visual_obj_loss __UpperCamelCase = visual_attr_loss __UpperCamelCase = visual_feat_loss __UpperCamelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**A_ )
1
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) UpperCAmelCase_ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} UpperCAmelCase_ = """zero2""" UpperCAmelCase_ = """zero3""" UpperCAmelCase_ = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE_ ( _snake_case :Tuple , _snake_case :Dict , _snake_case :Union[str, Any] ) -> Tuple: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _A = parameterized.to_safe_name('''_'''.join(str(_snake_case ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase__ ( _A): """simple docstring""" @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Dict: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any ) -> Dict: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> str: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(__lowerCAmelCase , name_func=__lowerCAmelCase ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: self.run_and_check( stage=__lowerCAmelCase , model=__lowerCAmelCase , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Optional[int] ) -> int: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int = 10 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , ) -> Any: _A = models[model] _A = self.run_trainer( stage=__lowerCAmelCase , model_name=__lowerCAmelCase , eval_steps=__lowerCAmelCase , num_train_epochs=1 , distributed=__lowerCAmelCase , fpaa=__lowerCAmelCase , ) self.do_checks(__lowerCAmelCase ) return output_dir def snake_case_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int = 10 , __lowerCAmelCase : int = 1 , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , ) -> Any: _A = self.get_auto_remove_tmp_dir('''./xxx''' , after=__lowerCAmelCase ) _A = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__lowerCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _A = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() _A = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] _A = self.get_launcher(__lowerCAmelCase ) _A = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCAmelCase , env=self.get_env() ) return output_dir def snake_case_ ( self : List[str] , __lowerCAmelCase : Dict=False ) -> Tuple: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) _A = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
2
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring lowerCAmelCase : str = 'RegNetConfig' # Base docstring lowerCAmelCase : str = 'facebook/regnet-y-040' lowerCAmelCase : Dict = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase : Dict = 'facebook/regnet-y-040' lowerCAmelCase : int = 'tabby, tabby cat' lowerCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , )-> str: '''simple docstring''' super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCAmelCase_ ( self , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.convolution(self.padding(A_ ) ) UpperCamelCase = self.normalization(A_ ) UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config.num_channels UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCamelCase = tf.transpose(A_ , perm=(0, 2, 3, 1) ) UpperCamelCase = self.embedder(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ = 2 , **A_ )-> List[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def UpperCAmelCase_ ( self , A_ , A_ = False )-> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(A_ ) , training=A_ ) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) UpperCamelCase = [ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def UpperCAmelCase_ ( self , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = self.pooler(A_ ) for layer_module in self.attention: UpperCamelCase = layer_module(A_ ) UpperCamelCase = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ )-> Any: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) UpperCamelCase = [ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] UpperCamelCase = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = hidden_state for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) UpperCamelCase = self.shortcut(A_ ) hidden_state += residual UpperCamelCase = self.activation(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ )-> Dict: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' for layer_module in self.layers: UpperCamelCase = layer_module(A_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , **A_ )-> str: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=F'''stages.{i+1}''' ) ) def UpperCAmelCase_ ( self , A_ , A_ = False , A_ = True )-> TFBaseModelOutputWithNoAttention: '''simple docstring''' UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(A_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): lowerCAmelCase_ = RegNetConfig def __init__( self , A_ , **A_ )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = config UpperCamelCase = TFRegNetEmbeddings(A_ , name='embedder' ) UpperCamelCase = TFRegNetEncoder(A_ , name='encoder' ) UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_ = False , )-> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(A_ , training=A_ ) UpperCamelCase = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) UpperCamelCase = tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCamelCase = tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = RegNetConfig lowerCAmelCase_ = """regnet""" lowerCAmelCase_ = """pixel_values""" @property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} lowerCAmelCase : str = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase : List[str] = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , *A_ , **A_ )-> List[Any]: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = None , A_=False , )-> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case_ , ) class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_): def __init__( self , A_ , *A_ , **A_ )-> str: '''simple docstring''' super().__init__(A_ , *A_ , **A_ ) UpperCamelCase = config.num_labels UpperCamelCase = TFRegNetMainLayer(A_ , name='regnet' ) # classification head UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , )-> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier[0](A_ ) UpperCamelCase = self.classifier[1](A_ ) UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
3
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A (__lowerCamelCase :List[Any] ): _lowerCAmelCase = 384 if "tiny" in model_name: _lowerCAmelCase = [3, 3, 9, 3] _lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [128, 256, 512, 1024] _lowerCAmelCase = 512 if "large" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [192, 384, 768, 1536] _lowerCAmelCase = 768 if "xlarge" in model_name: _lowerCAmelCase = [3, 3, 27, 3] _lowerCAmelCase = [256, 512, 1024, 2048] _lowerCAmelCase = 1024 # set label information _lowerCAmelCase = 150 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """ade20k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ConvNextConfig( depths=__lowerCamelCase , hidden_sizes=__lowerCamelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) _lowerCAmelCase = UperNetConfig( backbone_config=__lowerCamelCase , auxiliary_in_channels=__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , ) return config def A (__lowerCamelCase :Optional[Any] ): _lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def A (__lowerCamelCase :Optional[Any] , __lowerCamelCase :Dict , __lowerCamelCase :Tuple ): _lowerCAmelCase = dct.pop(__lowerCamelCase ) _lowerCAmelCase = val def A (__lowerCamelCase :Union[str, Any] , __lowerCamelCase :Optional[Any] , __lowerCamelCase :Any ): _lowerCAmelCase = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } _lowerCAmelCase = model_name_to_url[model_name] _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""state_dict"""] _lowerCAmelCase = get_upernet_config(__lowerCamelCase ) _lowerCAmelCase = UperNetForSemanticSegmentation(__lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase = state_dict.pop(__lowerCamelCase ) if "bn" in key: _lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) _lowerCAmelCase = val # rename keys _lowerCAmelCase = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) # verify on image _lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _lowerCAmelCase = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) _lowerCAmelCase = SegformerImageProcessor() _lowerCAmelCase = processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): _lowerCAmelCase = model(__lowerCamelCase ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
5
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int ): return [sentence[i : i + ngram_size] for i in range(len(UpperCamelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
6
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : int=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Dict=None , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase_ ( self : Any ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): _A = OpenLlamaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , ): _A = True _A = OpenLlamaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , ): _A = OpenLlamaForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , ): _A = True _A = True _A = OpenLlamaForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , ) _A = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A = torch.cat([input_ids, next_tokens] , dim=-1 ) _A = torch.cat([input_mask, next_mask] , dim=-1 ) _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice _A = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A = output_from_no_past[:, -3:, random_slice_idx].detach() _A = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowerCAmelCase_ ( self : List[str] ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCAmelCase : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCAmelCase : str = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Any = False def lowerCAmelCase_ ( self : Union[str, Any] ): _A = OpenLlamaModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 3 _A = input_dict['input_ids'] _A = input_ids.ne(1 ).to(_UpperCAmelCase ) _A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Dict ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 3 _A = 'single_label_classification' _A = input_dict['input_ids'] _A = input_ids.ne(1 ).to(_UpperCAmelCase ) _A = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 3 _A = 'multi_label_classification' _A = input_dict['input_ids'] _A = input_ids.ne(1 ).to(_UpperCAmelCase ) _A = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _A = OpenLlamaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self : List[str] ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = ids_tensor([1, 10] , config.vocab_size ) _A = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A = OpenLlamaModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() _A = original_model(_UpperCAmelCase ).last_hidden_state _A = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A = {'type': scaling_type, 'factor': 10.0} _A = OpenLlamaModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() _A = scaled_model(_UpperCAmelCase ).last_hidden_state _A = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
7
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
from __future__ import annotations from typing import Any def _snake_case ( __snake_case ): if not postfix_notation: return 0 _UpperCamelCase = {'''+''', '''-''', '''*''', '''/'''} _UpperCamelCase = [] for token in postfix_notation: if token in operations: _UpperCamelCase , _UpperCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class __A ( A ): '''simple docstring''' def __init__(self , A , A , A , A , A , ) -> Any: """simple docstring""" super().__init__() self.register_modules( prior=A , image_encoder=A , image_processor=A , scheduler=A , renderer=A , ) def a__ (self , A , A , A , A , A , A ) -> Any: """simple docstring""" if latents is None: _a = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _a = latents.to(A ) _a = latents * scheduler.init_noise_sigma return latents def a__ (self , A=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _a = torch.device(f'''cuda:{gpu_id}''' ) _a = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) @property def a__ (self ) -> str: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ (self , A , A , A , A , ) -> Tuple: """simple docstring""" if isinstance(A , A ) and isinstance(image[0] , torch.Tensor ): _a = torch.cat(A , axis=0 ) if image[0].ndim == 4 else torch.stack(A , axis=0 ) if not isinstance(A , torch.Tensor ): _a = self.image_processor(A , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) _a = image.to(dtype=self.image_encoder.dtype , device=A ) _a = self.image_encoder(A )['''last_hidden_state'''] _a = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _a = image_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: _a = torch.zeros_like(A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A ) def __call__(self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> List[Any]: """simple docstring""" if isinstance(A , PIL.Image.Image ): _a = 1 elif isinstance(A , torch.Tensor ): _a = image.shape[0] elif isinstance(A , A ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _a = len(A ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A )}''' ) _a = self._execution_device _a = batch_size * num_images_per_prompt _a = guidance_scale > 1.0 _a = self._encode_image(A , A , A , A ) # prior self.scheduler.set_timesteps(A , device=A ) _a = self.scheduler.timesteps _a = self.prior.config.num_embeddings _a = self.prior.config.embedding_dim _a = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A , A , A , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _a = latents.reshape(latents.shape[0] , A , A ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(A , A ) _a = self.prior( A , timestep=A , proj_embedding=A , ).predicted_image_embedding # remove the variance _a , _a = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _a = self.scheduler.step( A , timestep=A , sample=A , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A ) _a = [] for i, latent in enumerate(A ): print() _a = self.renderer.decode( latent[None, :] , A , size=A , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(A ) _a = torch.stack(A ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _a = images.cpu().numpy() if output_type == "pil": _a = [self.numpy_to_pil(A ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A )
11
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' return abs(lowercase_ ) if a == 0 else greatest_common_divisor(b % a , lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> int: '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. lowercase__ , lowercase__ : Tuple = y, x % y return abs(lowercase_ ) def UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' try: lowercase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowercase__ : str = int(nums[0] ) lowercase__ : Dict = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(lowercase_ , lowercase_ )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowercase_ , lowercase_ )}' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
12
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> str: __lowerCamelCase : List[Any] = BeautifulSoup(requests.get(UpperCAmelCase_ , params=UpperCAmelCase_ ).content , 'html.parser' ) __lowerCamelCase : Any = soup.find('div' , attrs={'class': 'gs_ri'} ) __lowerCamelCase : Any = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": A__ : int = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
13
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
a__ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def __UpperCAmelCase ( __a : str ) -> int: """simple docstring""" _a : Optional[int] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} _a : Union[str, Any] = 0 _a : List[Any] = 0 while place < len(__a ): if (place + 1 < len(__a )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __UpperCAmelCase ( __a : int ) -> str: """simple docstring""" _a : List[str] = [] for arabic, roman in ROMAN: ((_a) , (_a)) : Optional[Any] = divmod(__a ,__a ) result.append(roman * factor ) if number == 0: break return "".join(__a ) if __name__ == "__main__": import doctest doctest.testmod()
14
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : str = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''decision_transformer''' A__ = ['''past_key_values'''] A__ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self : Any , _UpperCAmelCase : Optional[int]=17 , _UpperCAmelCase : int=4 , _UpperCAmelCase : str=128 , _UpperCAmelCase : Union[str, Any]=4096 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Union[str, Any]=1024 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str="relu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=1E-5 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int=5_0256 , _UpperCAmelCase : str=5_0256 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Optional[int] , ) -> Any: """simple docstring""" lowercase__ = state_dim lowercase__ = act_dim lowercase__ = hidden_size lowercase__ = max_ep_len lowercase__ = action_tanh lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = scale_attn_weights lowercase__ = use_cache lowercase__ = scale_attn_by_inverse_layer_idx lowercase__ = reorder_and_upcast_attn lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
15
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __A : str = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
16
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCamelCase_ : def __init__( self : Tuple , __A : str = "cpu" , __A : str = "openai/clip-vit-large-patch14" ): __A : List[str] = device __A : List[Any] = CLIPTokenizerFast.from_pretrained(__A ) __A : Union[str, Any] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __A : Dict = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __A : Optional[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __A : Dict = torchvision.transforms.Resize(224 ) __A : Optional[int] = torchvision.transforms.CenterCrop(224 ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): __A : str = self.resize(__A ) __A : Any = self.center_crop(__A ) __A : Any = self.normalize(__A ) return images def __call__( self : Union[str, Any] , __A : Any=None , __A : Optional[Any]=None , **__A : Tuple ): __A : int = self.tokenizer(text=__A , **__A ) __A : List[str] = self.preprocess_img(__A ) __A : Any = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCamelCase_ ( nn.Module ): def __init__( self : Any , __A : List[str]=10 , __A : Dict=0.0_1 , __A : List[Any]=None , __A : Dict=None , __A : Any=None , __A : List[str]=None , __A : Optional[Any]=None , __A : Optional[Any]=None , __A : Optional[int]=False , __A : Optional[Any]=True , __A : List[Any]="image" , __A : str=True , __A : Optional[Any]=False , __A : Optional[int]=False , __A : Any=False , ): super().__init__() __A : List[str] = None __A : Tuple = device if device else get_device() if vqgan: __A : Optional[Any] = vqgan else: __A : Optional[Any] = load_vqgan(self.device , conf_path=__A , ckpt_path=__A ) self.vqgan.eval() if clip: __A : List[Any] = clip else: __A : List[str] = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) __A : Optional[int] = ProcessorGradientFlow(device=self.device ) __A : Any = iterations __A : str = lr __A : List[Any] = log __A : Union[str, Any] = make_grid __A : Union[str, Any] = return_val __A : Optional[Any] = quantize __A : str = self.vqgan.decoder.z_shape def lowerCAmelCase_ ( self : Any , __A : Union[str, Any]=None , __A : Any=None , __A : Tuple=5 , __A : Optional[Any]=True ): __A : Tuple = [] if output_path is None: __A : Any = """./animation.gif""" if input_path is None: __A : int = self.save_path __A : Optional[int] = sorted(glob(input_path + """/*""" ) ) if not len(__A ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(__A ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) __A : Tuple = total_duration / len(__A ) __A : int = [frame_duration] * len(__A ) if extend_frames: __A : Union[str, Any] = 1.5 __A : Optional[Any] = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(__A ) ) imageio.mimsave(__A , __A , duration=__A ) print(F"""gif saved to {output_path}""" ) def lowerCAmelCase_ ( self : List[Any] , __A : List[str]=None , __A : Dict=None ): if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError __A : Optional[int] = preprocess(Image.open(__A ) , target_image_size=256 ).to(self.device ) __A : List[str] = preprocess_vqgan(__A ) __A , *__A : Union[str, Any] = self.vqgan.encode(__A ) return z def lowerCAmelCase_ ( self : Dict , __A : List[Any] ): __A : Tuple = self.latent.detach().requires_grad_() __A : Tuple = base_latent + transform_vector if self.quantize: __A , *__A : int = self.vqgan.quantize(__A ) else: __A : List[Any] = trans_latent return self.vqgan.decode(__A ) def lowerCAmelCase_ ( self : List[str] , __A : Tuple , __A : int , __A : Union[str, Any]=None ): __A : int = self.clip_preprocessor(text=__A , images=__A , return_tensors="""pt""" , padding=__A ) __A : Optional[Any] = self.clip(**__A ) __A : Optional[int] = clip_outputs.logits_per_image if weights is not None: __A : Dict = similarity_logits * weights return similarity_logits.sum() def lowerCAmelCase_ ( self : Tuple , __A : int , __A : Optional[Any] , __A : Union[str, Any] ): __A : int = self._get_clip_similarity(pos_prompts["""prompts"""] , __A , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: __A : str = self._get_clip_similarity(neg_prompts["""prompts"""] , __A , weights=neg_prompts["""weights"""] ) else: __A : Any = torch.tensor([1] , device=self.device ) __A : List[Any] = -torch.log(__A ) + torch.log(__A ) return loss def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict , __A : Tuple , __A : Dict ): __A : Union[str, Any] = torch.randn_like(self.latent , requires_grad=__A , device=self.device ) __A : Tuple = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __A : Optional[Any] = self._add_vector(__A ) __A : List[str] = loop_post_process(__A ) __A : str = self._get_CLIP_loss(__A , __A , __A ) print("""CLIP loss""" , __A ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=__A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCAmelCase_ ( self : List[str] , __A : Dict , __A : Any , __A : Tuple ): wandb.init(reinit=__A , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: __A : str = Image.open(__A ) __A : Dict = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(__A ) ) def lowerCAmelCase_ ( self : Tuple , __A : Optional[Any] ): if not prompts: return [] __A : List[str] = [] __A : str = [] if isinstance(__A , __A ): __A : List[str] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(__A , (tuple, list) ): __A : Dict = prompt[0] __A : List[Any] = float(prompt[1] ) elif ":" in prompt: __A , __A : Union[str, Any] = prompt.split(""":""" ) __A : Union[str, Any] = float(__A ) else: __A : Dict = prompt __A : Optional[Any] = 1.0 processed_prompts.append(__A ) weights.append(__A ) return { "prompts": processed_prompts, "weights": torch.tensor(__A , device=self.device ), } def lowerCAmelCase_ ( self : List[Any] , __A : Union[str, Any] , __A : Optional[Any]=None , __A : Tuple=None , __A : Tuple=True , __A : Union[str, Any]=False , __A : Dict=True , __A : List[Any]=True , __A : Any=None , ): if image_path: __A : Optional[int] = self._get_latent(__A ) else: __A : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__A , __A , __A ) assert pos_prompts, "You must provide at least one positive prompt." __A : str = self.process_prompts(__A ) __A : Any = self.process_prompts(__A ) if save_final and save_path is None: __A : List[str] = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(__A ): os.makedirs(__A ) else: __A : Tuple = save_path + """_""" + get_timestamp() os.makedirs(__A ) __A : Any = save_path __A : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(__A ) ) __A : List[str] = loop_post_process(__A ) for iter, transformed_img in enumerate(self._optimize_CLIP(__A , __A , __A ) ): if show_intermediate: show_pil(__A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"""Image""": wandb.Image(__A )} ) if show_final: show_pil(__A ) if save_final: transformed_img.save(os.path.join(self.save_path , F"""iter_{iter:03d}_final.png""" ) )
17
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , *_lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Any: super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = eval_examples _lowerCAmelCase = post_process_function _lowerCAmelCase = quant_trainer_args _lowerCAmelCase = 128 # default number of calibration samples def _snake_case ( self , _lowerCAmelCase=None ) -> Optional[int]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) _lowerCAmelCase = calib_dataset if calib_dataset is not None else self.calib_dataset _lowerCAmelCase = self._remove_unused_columns(_lowerCAmelCase , description="Calibration" ) return DataLoader( _lowerCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_lowerCAmelCase , ) def _snake_case ( self , _lowerCAmelCase=None ) -> Union[str, Any]: _lowerCAmelCase = self.train_dataset if calib_dataset is None else calib_dataset _lowerCAmelCase = self.get_calib_dataloader(_lowerCAmelCase ) _lowerCAmelCase = self.model quant_trainer.configure_model(_lowerCAmelCase , self.quant_trainer_args , calib=_lowerCAmelCase ) model.eval() quant_trainer.enable_calibration(_lowerCAmelCase ) logger.info("***** Running calibration *****" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_lowerCAmelCase ): # Prediction step _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prediction_step(_lowerCAmelCase , _lowerCAmelCase , prediction_loss_only=_lowerCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_lowerCAmelCase , self.quant_trainer_args ) _lowerCAmelCase = model def _snake_case ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = "eval" ) -> List[Any]: _lowerCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset _lowerCAmelCase = self.get_eval_dataloader(_lowerCAmelCase ) _lowerCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowerCAmelCase = self.compute_metrics _lowerCAmelCase = None _lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCAmelCase = eval_loop( _lowerCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , ) finally: _lowerCAmelCase = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _lowerCAmelCase = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , output.predictions ) _lowerCAmelCase = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): _lowerCAmelCase = metrics.pop(_lowerCAmelCase ) self.log(_lowerCAmelCase ) else: _lowerCAmelCase = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _lowerCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase = "test" ) -> Any: _lowerCAmelCase = self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _lowerCAmelCase = self.compute_metrics _lowerCAmelCase = None _lowerCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowerCAmelCase = eval_loop( _lowerCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , ) finally: _lowerCAmelCase = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _lowerCAmelCase = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , output.predictions , "predict" ) _lowerCAmelCase = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): _lowerCAmelCase = metrics.pop(_lowerCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase="./" ) -> int: _lowerCAmelCase = self.eval_dataset _lowerCAmelCase = self.get_eval_dataloader(_lowerCAmelCase ) _lowerCAmelCase = next(iter(_lowerCAmelCase ) ) # saving device - to make it consistent _lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple _lowerCAmelCase = tuple(v.to(_lowerCAmelCase ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer _lowerCAmelCase = True _lowerCAmelCase = self.model.to(_lowerCAmelCase ) model.eval() model.float() _lowerCAmelCase = model.module if hasattr(_lowerCAmelCase , "module" ) else model quant_trainer.configure_model(_lowerCAmelCase , self.quant_trainer_args ) _lowerCAmelCase = os.path.join(_lowerCAmelCase , "model.onnx" ) logger.info(f'''exporting model to {output_model_file}''' ) _lowerCAmelCase = {0: "batch_size", 1: "seq_len"} torch.onnx.export( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , export_params=_lowerCAmelCase , opset_version=13 , do_constant_folding=_lowerCAmelCase , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=_lowerCAmelCase , ) logger.info("onnx export finished" )
18
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case = 0 ) -> list: """simple docstring""" _UpperCamelCase = length or len(__snake_case ) _UpperCamelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _UpperCamelCase , _UpperCamelCase = list_data[i + 1], list_data[i] _UpperCamelCase = True return list_data if not swapped else bubble_sort(__snake_case, length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
19
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0