code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def a__ ( ): '''simple docstring''' UpperCAmelCase_ =HfArgumentParser(lowercase__ ) UpperCAmelCase_ =parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ =TensorFlowBenchmark(args=lowercase__ ) try: UpperCAmelCase_ =parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ ="Arg --no_{0} is no longer used, please use --no-{0} instead." UpperCAmelCase_ =" ".join(str(lowercase__ ).split(" " )[:-1] ) UpperCAmelCase_ ="" UpperCAmelCase_ =eval(str(lowercase__ ).split(" " )[-1] ) UpperCAmelCase_ =[] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase__ ) if len(lowercase__ ) > 0: UpperCAmelCase_ =full_error_msg + begin_error_msg + str(lowercase__ ) raise ValueError(lowercase__ ) benchmark.run() if __name__ == "__main__": main()
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __lowercase , ) class A ( __lowercase ): _snake_case =RobertaConfig _snake_case ='''roberta''' def __init__( self: Any , _lowerCAmelCase: Tuple ) -> Any: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =RobertaEmbeddings(_lowerCAmelCase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __lowercase , ) class A ( __lowercase ): _snake_case =RobertaConfig _snake_case ='''roberta''' def __init__( self: int , _lowerCAmelCase: List[str] ) -> Any: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config.num_labels UpperCAmelCase_ =config.num_hidden_layers UpperCAmelCase_ =DeeRobertaModel(_lowerCAmelCase ) UpperCAmelCase_ =nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_ =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Any=None , _lowerCAmelCase: int=None , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: str=None , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Optional[int]=None , _lowerCAmelCase: List[str]=-1 , _lowerCAmelCase: Dict=False , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.num_layers try: UpperCAmelCase_ =self.roberta( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , ) UpperCAmelCase_ =outputs[1] UpperCAmelCase_ =self.dropout(_lowerCAmelCase ) UpperCAmelCase_ =self.classifier(_lowerCAmelCase ) UpperCAmelCase_ =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase_ =e.message UpperCAmelCase_ =e.exit_layer UpperCAmelCase_ =outputs[0] if not self.training: UpperCAmelCase_ =entropy(_lowerCAmelCase ) UpperCAmelCase_ =[] UpperCAmelCase_ =[] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase_ =MSELoss() UpperCAmelCase_ =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ =CrossEntropyLoss() UpperCAmelCase_ =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase_ =[] for highway_exit in outputs[-1]: UpperCAmelCase_ =highway_exit[0] if not self.training: highway_logits_all.append(_lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase_ =MSELoss() UpperCAmelCase_ =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ =CrossEntropyLoss() UpperCAmelCase_ =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowerCAmelCase ) if train_highway: UpperCAmelCase_ =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase_ =(loss,) + outputs if not self.training: UpperCAmelCase_ =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase_ =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase : List[str] =logging.get_logger(__name__) __lowercase : Optional[int] =TypeVar("""DatasetType""", Dataset, IterableDataset) def a__ ( lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ , (Dataset, IterableDataset) ): if isinstance(lowercase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowercase__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowercase__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ =( (Dataset, IterableDataset) if isinstance(lowercase__ , lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ , lowercase__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase__ , lowercase__ , lowercase__ , info=lowercase__ , split=lowercase__ , stopping_strategy=lowercase__ ) else: return _interleave_iterable_datasets( lowercase__ , lowercase__ , lowercase__ , info=lowercase__ , split=lowercase__ , stopping_strategy=lowercase__ ) def a__ ( lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = 0 , ): '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ , (Dataset, IterableDataset) ): if isinstance(lowercase__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowercase__ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowercase__ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ =( (Dataset, IterableDataset) if isinstance(lowercase__ , lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ , lowercase__ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase__ , info=lowercase__ , split=lowercase__ , axis=lowercase__ ) else: return _concatenate_iterable_datasets(lowercase__ , info=lowercase__ , split=lowercase__ , axis=lowercase__ )
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
from dataclasses import dataclass, field from typing import Optional @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) _snake_case =field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _snake_case =field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) _snake_case =field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) _snake_case =field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) _snake_case =field( default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) _snake_case =field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) _snake_case =field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) _snake_case =field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) _snake_case =field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) _snake_case =field( default=__lowercase , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) _snake_case =field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} ) _snake_case =field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _snake_case =field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) _snake_case =field(default=1 , metadata={'''help''': '''Training seed.'''} ) _snake_case =field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) _snake_case =field( default=__lowercase , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _snake_case =field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) _snake_case =field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _snake_case =field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) _snake_case =field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) _snake_case =field( default=__lowercase , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) _snake_case =field( default=__lowercase , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) _snake_case =field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) _snake_case =field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) _snake_case =field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) _snake_case =field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) _snake_case =field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) _snake_case =field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) _snake_case =field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) _snake_case =field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) _snake_case =field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) _snake_case =field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class A : _snake_case =field( default=__lowercase , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) _snake_case =field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) _snake_case =field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) _snake_case =field( default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) _snake_case =field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _snake_case =field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) _snake_case =field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) _snake_case =field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) _snake_case =field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) _snake_case =field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) _snake_case =field( default=__lowercase , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) _snake_case =field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class A : _snake_case =field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) _snake_case =field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) _snake_case =field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _snake_case =field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) _snake_case =field( default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) _snake_case =field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class A : _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) _snake_case =field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) _snake_case =field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class A : _snake_case =field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) _snake_case =field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) _snake_case =field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) _snake_case =field(default=__lowercase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowercase : Optional[Any] =logging.get_logger(__name__) __lowercase : str ={ """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class A ( __lowercase ): def __init__( self: Dict , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: str=None , *_lowerCAmelCase: Any , **_lowerCAmelCase: Optional[int] ) -> Tuple: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) if config is None: assert isinstance(self.model , _lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) UpperCAmelCase_ =self.model.config else: UpperCAmelCase_ =config UpperCAmelCase_ =data_args UpperCAmelCase_ =self.config.tgt_vocab_size if isinstance(self.config , _lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' " padding.." ) if self.args.label_smoothing == 0: UpperCAmelCase_ =torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase_ =label_smoothed_nll_loss def lowerCAmelCase__ ( self: str , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' if self.optimizer is None: UpperCAmelCase_ =["bias", "LayerNorm.weight"] UpperCAmelCase_ =[ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] UpperCAmelCase_ =Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase_ =Adafactor UpperCAmelCase_ ={"scale_parameter": False, "relative_step": False} else: UpperCAmelCase_ =AdamW UpperCAmelCase_ ={ "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } UpperCAmelCase_ =self.args.learning_rate if self.sharded_ddp: UpperCAmelCase_ =OSS( params=_lowerCAmelCase , optim=_lowerCAmelCase , **_lowerCAmelCase , ) else: UpperCAmelCase_ =optimizer_cls(_lowerCAmelCase , **_lowerCAmelCase ) if self.lr_scheduler is None: UpperCAmelCase_ =self._get_lr_scheduler(_lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: int ) -> Any: '''simple docstring''' UpperCAmelCase_ =arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase_ =schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase_ =schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase_ =schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_lowerCAmelCase ) return scheduler def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[torch.utils.data.Sampler]: '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Optional[int] ) -> str: '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase_ =model(**_lowerCAmelCase , use_cache=_lowerCAmelCase )[0] UpperCAmelCase_ =self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase_ , UpperCAmelCase_ =model(**_lowerCAmelCase , labels=_lowerCAmelCase , use_cache=_lowerCAmelCase )[:2] else: # compute label smoothed loss UpperCAmelCase_ =model(**_lowerCAmelCase , use_cache=_lowerCAmelCase )[0] UpperCAmelCase_ =torch.nn.functional.log_softmax(_lowerCAmelCase , dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ =self.loss_fn(_lowerCAmelCase , _lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =inputs.pop("labels" ) UpperCAmelCase_ , UpperCAmelCase_ =self._compute_loss(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return loss def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: nn.Module , _lowerCAmelCase: Dict[str, Union[torch.Tensor, Any]] , _lowerCAmelCase: bool , _lowerCAmelCase: Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: '''simple docstring''' UpperCAmelCase_ =self._prepare_inputs(_lowerCAmelCase ) UpperCAmelCase_ ={ "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase_ =self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **_lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ =self._pad_tensors_to_max_len(_lowerCAmelCase , gen_kwargs["max_length"] ) UpperCAmelCase_ =inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase_ , UpperCAmelCase_ =self._compute_loss(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase_ =generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ =self._pad_tensors_to_max_len(_lowerCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F' padded to `max_length`={max_length}' ) UpperCAmelCase_ =pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase_ =tensor return padded_tensor
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : List[Any] =logging.get_logger(__name__) __lowercase : List[str] ={ """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class A ( __lowercase ): _snake_case ='''roberta''' def __init__( self: int , _lowerCAmelCase: Optional[Any]=5_0265 , _lowerCAmelCase: Dict=768 , _lowerCAmelCase: str=12 , _lowerCAmelCase: Union[str, Any]=12 , _lowerCAmelCase: Dict=3072 , _lowerCAmelCase: Optional[int]="gelu" , _lowerCAmelCase: Optional[int]=0.1 , _lowerCAmelCase: str=0.1 , _lowerCAmelCase: str=512 , _lowerCAmelCase: Any=2 , _lowerCAmelCase: Dict=0.02 , _lowerCAmelCase: Optional[Any]=1e-12 , _lowerCAmelCase: Dict=1 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str="absolute" , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: int=None , **_lowerCAmelCase: Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_act UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =position_embedding_type UpperCAmelCase_ =use_cache UpperCAmelCase_ =classifier_dropout class A ( __lowercase ): @property def lowerCAmelCase__ ( self: Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ ={0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
class A : def __init__( self: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: int , _lowerCAmelCase: str ) -> str: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =graph self._normalize_graph(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =len(_lowerCAmelCase ) UpperCAmelCase_ =None def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Any , _lowerCAmelCase: Dict ) -> str: '''simple docstring''' if sources is int: UpperCAmelCase_ =[sources] if sinks is int: UpperCAmelCase_ =[sinks] if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: return UpperCAmelCase_ =sources[0] UpperCAmelCase_ =sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowerCAmelCase ) > 1 or len(_lowerCAmelCase ) > 1: UpperCAmelCase_ =0 for i in sources: max_input_flow += sum(self.graph[i] ) UpperCAmelCase_ =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: UpperCAmelCase_ =max_input_flow UpperCAmelCase_ =0 UpperCAmelCase_ =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: UpperCAmelCase_ =max_input_flow UpperCAmelCase_ =size - 1 def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =algorithm(self ) class A : def __init__( self: Optional[Any] , _lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =flow_network UpperCAmelCase_ =flow_network.verticesCount UpperCAmelCase_ =flow_network.sourceIndex UpperCAmelCase_ =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that UpperCAmelCase_ =flow_network.graph UpperCAmelCase_ =False def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' if not self.executed: self._algorithm() UpperCAmelCase_ =True def lowerCAmelCase__ ( self: Optional[Any] ) -> int: '''simple docstring''' pass class A ( __lowercase ): def __init__( self: Optional[int] , _lowerCAmelCase: Optional[int] ) -> List[str]: '''simple docstring''' super().__init__(_lowerCAmelCase ) # use this to save your result UpperCAmelCase_ =-1 def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class A ( __lowercase ): def __init__( self: str , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =[[0] * self.verticies_count for i in range(self.verticies_count )] UpperCAmelCase_ =[0] * self.verticies_count UpperCAmelCase_ =[0] * self.verticies_count def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule UpperCAmelCase_ =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list UpperCAmelCase_ =0 while i < len(_lowerCAmelCase ): UpperCAmelCase_ =vertices_list[i] UpperCAmelCase_ =self.heights[vertex_index] self.process_vertex(_lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowerCAmelCase ) ) UpperCAmelCase_ =0 else: i += 1 UpperCAmelCase_ =sum(self.preflow[self.source_index] ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] ) -> List[str]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowerCAmelCase , _lowerCAmelCase ) self.relabel(_lowerCAmelCase ) def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): UpperCAmelCase_ =self.heights[to_index] if min_height is not None: UpperCAmelCase_ =min_height + 1 if __name__ == "__main__": __lowercase : int =[0] __lowercase : Optional[int] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowercase : str =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowercase : List[str] =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowercase : Optional[int] =flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A ( unittest.TestCase ): def __init__( self: Any , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=7 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: int=18 , _lowerCAmelCase: int=30 , _lowerCAmelCase: Union[str, Any]=400 , _lowerCAmelCase: str=True , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: Union[str, Any]=True , _lowerCAmelCase: Any=[0.5, 0.5, 0.5] , _lowerCAmelCase: Union[str, Any]=[0.5, 0.5, 0.5] , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =size if size is not None else {"height": 18, "width": 18} UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =image_size UpperCAmelCase_ =min_resolution UpperCAmelCase_ =max_resolution UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean UpperCAmelCase_ =image_std def lowerCAmelCase__ ( self: int ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A ( __lowercase , unittest.TestCase ): _snake_case =DPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ =DPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) def lowerCAmelCase__ ( self: Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : List[Any] =logging.get_logger(__name__) if is_vision_available(): import PIL class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: int , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = True , **_lowerCAmelCase: Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =resample UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ =do_convert_rgb def lowerCAmelCase__ ( self: int , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> int: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Union[str, Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: int = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase: Dict , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ =crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ =[convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ =[self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowercase : Optional[Any] =numpy.array([0, 0]) __lowercase : str =numpy.array([0.5, 0.866_0254]) __lowercase : Optional[Any] =numpy.array([1, 0]) __lowercase : List[Any] =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =initial_vectors for _ in range(lowercase__ ): UpperCAmelCase_ =iteration_step(lowercase__ ) return vectors def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase_ =vectors[i + 1] new_vectors.append(lowercase__ ) UpperCAmelCase_ =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =numpy.radians(lowercase__ ) UpperCAmelCase_ , UpperCAmelCase_ =numpy.cos(lowercase__ ), numpy.sin(lowercase__ ) UpperCAmelCase_ =numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowercase__ , lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase_ , UpperCAmelCase_ =zip(*lowercase__ ) plt.plot(lowercase__ , lowercase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowercase : List[str] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =3_8_4 UpperCAmelCase_ =7 if "tiny" in model_name: UpperCAmelCase_ =9_6 UpperCAmelCase_ =(2, 2, 6, 2) UpperCAmelCase_ =(3, 6, 1_2, 2_4) elif "small" in model_name: UpperCAmelCase_ =9_6 UpperCAmelCase_ =(2, 2, 1_8, 2) UpperCAmelCase_ =(3, 6, 1_2, 2_4) elif "base" in model_name: UpperCAmelCase_ =1_2_8 UpperCAmelCase_ =(2, 2, 1_8, 2) UpperCAmelCase_ =(4, 8, 1_6, 3_2) UpperCAmelCase_ =1_2 UpperCAmelCase_ =5_1_2 elif "large" in model_name: UpperCAmelCase_ =1_9_2 UpperCAmelCase_ =(2, 2, 1_8, 2) UpperCAmelCase_ =(6, 1_2, 2_4, 4_8) UpperCAmelCase_ =1_2 UpperCAmelCase_ =7_6_8 # set label information UpperCAmelCase_ =1_5_0 UpperCAmelCase_ ="huggingface/label-files" UpperCAmelCase_ ="ade20k-id2label.json" UpperCAmelCase_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ ={int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ ={v: k for k, v in idalabel.items()} UpperCAmelCase_ =SwinConfig( embed_dim=lowercase__ , depths=lowercase__ , num_heads=lowercase__ , window_size=lowercase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) UpperCAmelCase_ =UperNetConfig( backbone_config=lowercase__ , auxiliary_in_channels=lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm1.weight', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm1.bias', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', F'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', F'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', F'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', F'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm2.weight', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.norm2.bias', F'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', F'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', F'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', F'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', F'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.stages.{i}.downsample.reduction.weight', F'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.stages.{i}.downsample.norm.weight', F'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.stages.{i}.downsample.norm.bias', F'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =dct.pop(lowercase__ ) UpperCAmelCase_ =val def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ =state_dict.pop(F'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) UpperCAmelCase_ =state_dict.pop(F'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ =in_proj_weight[:dim, :] UpperCAmelCase_ =in_proj_bias[: dim] UpperCAmelCase_ =in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ =in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ =in_proj_weight[ -dim :, : ] UpperCAmelCase_ =in_proj_bias[-dim :] # fmt: on def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =x.shape UpperCAmelCase_ =x.reshape(lowercase__ , 4 , in_channel // 4 ) UpperCAmelCase_ =x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowercase__ , lowercase__ ) return x def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =x.shape UpperCAmelCase_ =x.reshape(lowercase__ , in_channel // 4 , 4 ) UpperCAmelCase_ =x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowercase__ , lowercase__ ) return x def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =x.shape[0] UpperCAmelCase_ =x.reshape(4 , in_channel // 4 ) UpperCAmelCase_ =x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowercase__ ) return x def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =x.shape[0] UpperCAmelCase_ =x.reshape(in_channel // 4 , 4 ) UpperCAmelCase_ =x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowercase__ ) return x def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={ "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } UpperCAmelCase_ =model_name_to_url[model_name] UpperCAmelCase_ =torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" , file_name=lowercase__ )[ "state_dict" ] for name, param in state_dict.items(): print(lowercase__ , param.shape ) UpperCAmelCase_ =get_upernet_config(lowercase__ ) UpperCAmelCase_ =UperNetForSemanticSegmentation(lowercase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ =state_dict.pop(lowercase__ ) if "bn" in key: UpperCAmelCase_ =key.replace("bn" , "batch_norm" ) UpperCAmelCase_ =val # rename keys UpperCAmelCase_ =create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: UpperCAmelCase_ =reverse_correct_unfold_reduction_order(lowercase__ ) if "norm" in key: UpperCAmelCase_ =reverse_correct_unfold_norm_order(lowercase__ ) model.load_state_dict(lowercase__ ) # verify on image UpperCAmelCase_ ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("RGB" ) UpperCAmelCase_ =SegformerImageProcessor() UpperCAmelCase_ =processor(lowercase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): UpperCAmelCase_ =model(lowercase__ ) UpperCAmelCase_ =outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": UpperCAmelCase_ =torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": UpperCAmelCase_ =torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": UpperCAmelCase_ =torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": UpperCAmelCase_ =torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": __lowercase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase : Dict =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __lowercase ): _snake_case =42 _snake_case =42 def __init__( self: Tuple , _lowerCAmelCase: UNetaDModel , _lowerCAmelCase: ScoreSdeVeScheduler ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self: int , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 2000 , _lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , **_lowerCAmelCase: Tuple , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCAmelCase_ =self.unet.config.sample_size UpperCAmelCase_ =(batch_size, 3, img_size, img_size) UpperCAmelCase_ =self.unet UpperCAmelCase_ =randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase_ =sample.to(self.device ) self.scheduler.set_timesteps(_lowerCAmelCase ) self.scheduler.set_sigmas(_lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase_ =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase_ =self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample UpperCAmelCase_ =self.scheduler.step_correct(_lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample # prediction step UpperCAmelCase_ =model(_lowerCAmelCase , _lowerCAmelCase ).sample UpperCAmelCase_ =self.scheduler.step_pred(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =output.prev_sample, output.prev_sample_mean UpperCAmelCase_ =sample_mean.clamp(0 , 1 ) UpperCAmelCase_ =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ =self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_lowerCAmelCase )
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowercase : Optional[Any] ="""src/diffusers""" # Matches is_xxx_available() __lowercase : int =re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla __lowercase : Any =re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") __lowercase : Dict =""" {0} = None """ __lowercase : Dict =""" class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ __lowercase : str =""" def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =_re_backend.findall(lowercase__ ) if len(lowercase__ ) == 0: return None return "_and_".join(lowercase__ ) def a__ ( ): '''simple docstring''' with open(os.path.join(lowercase__ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ =f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ =0 UpperCAmelCase_ ={} # Go through the end of the file while line_index < len(lowercase__ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ =find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ =[] # Until we unindent, add backend objects to the list while line_index < len(lowercase__ ) and len(lines[line_index] ) > 1: UpperCAmelCase_ =lines[line_index] UpperCAmelCase_ =_re_single_line_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase__ ) > 0: UpperCAmelCase_ =objects else: line_index += 1 return backend_specific_objects def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(lowercase__ ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase__ , lowercase__ ) else: return DUMMY_CLASS.format(lowercase__ , lowercase__ ) def a__ ( lowercase__=None ): '''simple docstring''' if backend_specific_objects is None: UpperCAmelCase_ =read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ ={} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ ="[" + ", ".join(F'"{b}"' for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ ="# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase__ , lowercase__ ) for o in objects] ) UpperCAmelCase_ =dummy_file return dummy_files def a__ ( lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ ={"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ =os.path.join(lowercase__ , "utils" ) UpperCAmelCase_ ={ backend: os.path.join(lowercase__ , F'dummy_{short_names.get(lowercase__ , lowercase__ )}_objects.py' ) for backend in dummy_files.keys() } UpperCAmelCase_ ={} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase__ ): with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ =f.read() else: UpperCAmelCase_ ="" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(lowercase__ , lowercase__ )}_objects.py as the main ' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'diffusers.utils.dummy_{short_names.get(lowercase__ , lowercase__ )}_objects.py. Run `make fix-copies` ' "to fix this." ) if __name__ == "__main__": __lowercase : Any =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowercase : Optional[Any] =parser.parse_args() check_dummies(args.fix_and_overwrite)
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
from __future__ import annotations class A : def __init__( self: Dict , _lowerCAmelCase: int ) -> None: '''simple docstring''' UpperCAmelCase_ =order # a_{0} ... a_{k} UpperCAmelCase_ =[1.0] + [0.0] * order # b_{0} ... b_{k} UpperCAmelCase_ =[1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCAmelCase_ =[0.0] * self.order # y[n-1] ... y[n-k] UpperCAmelCase_ =[0.0] * self.order def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: list[float] , _lowerCAmelCase: list[float] ) -> None: '''simple docstring''' if len(_lowerCAmelCase ) < self.order: UpperCAmelCase_ =[1.0, *a_coeffs] if len(_lowerCAmelCase ) != self.order + 1: UpperCAmelCase_ =( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowerCAmelCase )}' ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != self.order + 1: UpperCAmelCase_ =( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowerCAmelCase )}' ) raise ValueError(_lowerCAmelCase ) UpperCAmelCase_ =a_coeffs UpperCAmelCase_ =b_coeffs def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: float ) -> float: '''simple docstring''' UpperCAmelCase_ =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCAmelCase_ =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCAmelCase_ =self.input_history[:-1] UpperCAmelCase_ =self.output_history[:-1] UpperCAmelCase_ =sample UpperCAmelCase_ =result return result
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ =FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ =0.01 with locka.acquire(): with pytest.raises(lowercase__ ): UpperCAmelCase_ =time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ="a" * 1_0_0_0 + ".lock" UpperCAmelCase_ =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 UpperCAmelCase_ =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: int , _lowerCAmelCase: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =20 UpperCAmelCase_ =self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore UpperCAmelCase_ =scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCAmelCase_ =scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCAmelCase_ =jax.nn.softmax(_lowerCAmelCase , axis=-1 ) UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCAmelCase_ =jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) UpperCAmelCase_ =jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase__ ( self: Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =10 UpperCAmelCase_ =2 # create ramp distribution UpperCAmelCase_ =np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() UpperCAmelCase_ =ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCAmelCase_ =FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCAmelCase_ =5 UpperCAmelCase_ =FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCAmelCase_ =np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() UpperCAmelCase_ =top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase__ ( self: Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =10 UpperCAmelCase_ =2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCAmelCase_ =np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCAmelCase_ =FlaxTopPLogitsWarper(0.8 ) UpperCAmelCase_ =np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCAmelCase_ =np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCAmelCase_ =np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCAmelCase_ =ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept UpperCAmelCase_ =FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCAmelCase_ =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =20 UpperCAmelCase_ =4 UpperCAmelCase_ =0 UpperCAmelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 UpperCAmelCase_ =ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCAmelCase_ =5 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =15 UpperCAmelCase_ =min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =20 UpperCAmelCase_ =4 UpperCAmelCase_ =0 UpperCAmelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score UpperCAmelCase_ =ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCAmelCase_ =1 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCAmelCase_ =3 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =20 UpperCAmelCase_ =4 UpperCAmelCase_ =0 UpperCAmelCase_ =5 UpperCAmelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCAmelCase_ =ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCAmelCase_ =4 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCAmelCase_ =3 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =10 UpperCAmelCase_ =15 UpperCAmelCase_ =2 UpperCAmelCase_ =1 UpperCAmelCase_ =15 # dummy input_ids and scores UpperCAmelCase_ =ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) UpperCAmelCase_ =input_ids.copy() UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =scores.copy() # instantiate all dist processors UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ =FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =10 # no processor list UpperCAmelCase_ =temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list UpperCAmelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase_ =processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =10 UpperCAmelCase_ =15 UpperCAmelCase_ =2 UpperCAmelCase_ =1 UpperCAmelCase_ =15 # dummy input_ids and scores UpperCAmelCase_ =ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) UpperCAmelCase_ =input_ids.copy() UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =scores.copy() # instantiate all dist processors UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ =FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =10 # no processor list def run_no_processor_list(_lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Dict ): UpperCAmelCase_ =temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase: Optional[int] , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[int] ): UpperCAmelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase_ =processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores UpperCAmelCase_ =jax.jit(_lowerCAmelCase ) UpperCAmelCase_ =jax.jit(_lowerCAmelCase ) UpperCAmelCase_ =jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : int =logging.get_logger(__name__) __lowercase : Optional[Any] ={ """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class A ( __lowercase ): _snake_case ='''align_text_model''' def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[Any]=3_0522 , _lowerCAmelCase: int=768 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: Dict=12 , _lowerCAmelCase: Optional[Any]=3072 , _lowerCAmelCase: Tuple="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Dict=512 , _lowerCAmelCase: Optional[int]=2 , _lowerCAmelCase: Any=0.02 , _lowerCAmelCase: Union[str, Any]=1e-12 , _lowerCAmelCase: Tuple=0 , _lowerCAmelCase: Tuple="absolute" , _lowerCAmelCase: int=True , **_lowerCAmelCase: Tuple , ) -> Dict: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_act UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =position_embedding_type UpperCAmelCase_ =use_cache UpperCAmelCase_ =pad_token_id @classmethod def lowerCAmelCase__ ( cls: str , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: Any ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": UpperCAmelCase_ =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class A ( __lowercase ): _snake_case ='''align_vision_model''' def __init__( self: int , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 600 , _lowerCAmelCase: float = 2.0 , _lowerCAmelCase: float = 3.1 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: List[int] = [3, 3, 5, 3, 5, 5, 3] , _lowerCAmelCase: List[int] = [32, 16, 24, 40, 80, 112, 192] , _lowerCAmelCase: List[int] = [16, 24, 40, 80, 112, 192, 320] , _lowerCAmelCase: List[int] = [] , _lowerCAmelCase: List[int] = [1, 2, 2, 2, 1, 2, 1] , _lowerCAmelCase: List[int] = [1, 2, 2, 3, 3, 4, 1] , _lowerCAmelCase: List[int] = [1, 6, 6, 6, 6, 6, 6] , _lowerCAmelCase: float = 0.25 , _lowerCAmelCase: str = "swish" , _lowerCAmelCase: int = 2560 , _lowerCAmelCase: str = "mean" , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 0.0_01 , _lowerCAmelCase: float = 0.99 , _lowerCAmelCase: float = 0.2 , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =num_channels UpperCAmelCase_ =image_size UpperCAmelCase_ =width_coefficient UpperCAmelCase_ =depth_coefficient UpperCAmelCase_ =depth_divisor UpperCAmelCase_ =kernel_sizes UpperCAmelCase_ =in_channels UpperCAmelCase_ =out_channels UpperCAmelCase_ =depthwise_padding UpperCAmelCase_ =strides UpperCAmelCase_ =num_block_repeats UpperCAmelCase_ =expand_ratios UpperCAmelCase_ =squeeze_expansion_ratio UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dim UpperCAmelCase_ =pooling_type UpperCAmelCase_ =initializer_range UpperCAmelCase_ =batch_norm_eps UpperCAmelCase_ =batch_norm_momentum UpperCAmelCase_ =drop_connect_rate UpperCAmelCase_ =sum(_lowerCAmelCase ) * 4 @classmethod def lowerCAmelCase__ ( cls: Optional[Any] , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: Optional[int] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": UpperCAmelCase_ =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class A ( __lowercase ): _snake_case ='''align''' _snake_case =True def __init__( self: str , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: List[str]=None , _lowerCAmelCase: List[Any]=640 , _lowerCAmelCase: Any=1.0 , _lowerCAmelCase: Tuple=0.02 , **_lowerCAmelCase: List[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_lowerCAmelCase ) if text_config is None: UpperCAmelCase_ ={} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ ={} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) UpperCAmelCase_ =AlignTextConfig(**_lowerCAmelCase ) UpperCAmelCase_ =AlignVisionConfig(**_lowerCAmelCase ) UpperCAmelCase_ =projection_dim UpperCAmelCase_ =temperature_init_value UpperCAmelCase_ =initializer_range @classmethod def lowerCAmelCase__ ( cls: Any , _lowerCAmelCase: AlignTextConfig , _lowerCAmelCase: AlignVisionConfig , **_lowerCAmelCase: Optional[Any] ) -> List[str]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase_ =copy.deepcopy(self.__dict__ ) UpperCAmelCase_ =self.text_config.to_dict() UpperCAmelCase_ =self.vision_config.to_dict() UpperCAmelCase_ =self.__class__.model_type return output
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ="" for i in table: res += inp[i - 1] return res def a__ ( lowercase__ ): '''simple docstring''' return data[1:] + data[0] def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ="" for i in range(len(lowercase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int("0b" + data[0] + data[-1] , 2 ) UpperCAmelCase_ =int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =message[:4] UpperCAmelCase_ =message[4:] UpperCAmelCase_ =apply_table(lowercase__ , lowercase__ ) UpperCAmelCase_ =xor(lowercase__ , lowercase__ ) UpperCAmelCase_ =apply_sbox(lowercase__ , temp[:4] ) # noqa: E741 UpperCAmelCase_ =apply_sbox(lowercase__ , temp[4:] ) UpperCAmelCase_ ="0" * (2 - len(lowercase__ )) + l # noqa: E741 UpperCAmelCase_ ="0" * (2 - len(lowercase__ )) + r UpperCAmelCase_ =apply_table(l + r , lowercase__ ) UpperCAmelCase_ =xor(lowercase__ , lowercase__ ) return temp + right if __name__ == "__main__": __lowercase : Union[str, Any] =input("""Enter 10 bit key: """) __lowercase : Optional[Any] =input("""Enter 8 bit message: """) __lowercase : str =[6, 3, 7, 4, 8, 5, 10, 9] __lowercase : List[Any] =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __lowercase : Dict =[2, 4, 3, 1] __lowercase : Optional[Any] =[2, 6, 3, 1, 4, 8, 5, 7] __lowercase : int =[4, 1, 3, 5, 7, 2, 8, 6] __lowercase : Any =[4, 1, 2, 3, 2, 3, 4, 1] __lowercase : int =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __lowercase : List[str] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __lowercase : List[str] =apply_table(key, paa_table) __lowercase : Dict =temp[:5] __lowercase : List[Any] =temp[5:] __lowercase : Union[str, Any] =left_shift(left) __lowercase : Optional[Any] =left_shift(right) __lowercase : Tuple =apply_table(left + right, pa_table) __lowercase : List[str] =left_shift(left) __lowercase : List[str] =left_shift(right) __lowercase : int =left_shift(left) __lowercase : Any =left_shift(right) __lowercase : Tuple =apply_table(left + right, pa_table) # encryption __lowercase : Union[str, Any] =apply_table(message, IP) __lowercase : Dict =function(expansion, sa, sa, keya, temp) __lowercase : Dict =temp[4:] + temp[:4] __lowercase : str =function(expansion, sa, sa, keya, temp) __lowercase : Tuple =apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption __lowercase : List[str] =apply_table(CT, IP) __lowercase : str =function(expansion, sa, sa, keya, temp) __lowercase : int =temp[4:] + temp[:4] __lowercase : int =function(expansion, sa, sa, keya, temp) __lowercase : Optional[int] =apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __lowercase : str =logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase : Dict =""" Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def a__ ( lowercase__ , lowercase__ , lowercase__=8 ): '''simple docstring''' UpperCAmelCase_ =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A ( __lowercase ): def __init__( self: Optional[int] , _lowerCAmelCase: UNetaDConditionModel , _lowerCAmelCase: DDPMScheduler , _lowerCAmelCase: VQModel , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , movq=_lowerCAmelCase , ) UpperCAmelCase_ =2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> str: '''simple docstring''' if latents is None: UpperCAmelCase_ =randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) UpperCAmelCase_ =latents.to(_lowerCAmelCase ) UpperCAmelCase_ =latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Dict=0 ) -> int: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ =torch.device(F'cuda:{gpu_id}' ) UpperCAmelCase_ =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Dict=0 ) -> Tuple: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ =torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ =None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ =cpu_offload_with_hook(_lowerCAmelCase , _lowerCAmelCase , prev_module_hook=_lowerCAmelCase ) # We'll offload the last model manually. UpperCAmelCase_ =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCAmelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__( self: List[str] , _lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int = 512 , _lowerCAmelCase: int = 512 , _lowerCAmelCase: int = 100 , _lowerCAmelCase: float = 4.0 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self._execution_device UpperCAmelCase_ =guidance_scale > 1.0 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =torch.cat(_lowerCAmelCase , dim=0 ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =torch.cat(_lowerCAmelCase , dim=0 ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =torch.cat(_lowerCAmelCase , dim=0 ) UpperCAmelCase_ =image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase_ =image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) UpperCAmelCase_ =negative_image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) UpperCAmelCase_ =hint.repeat_interleave(_lowerCAmelCase , dim=0 ) UpperCAmelCase_ =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase ) UpperCAmelCase_ =torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCAmelCase ) self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) UpperCAmelCase_ =self.scheduler.timesteps UpperCAmelCase_ =self.movq.config.latent_channels UpperCAmelCase_ , UpperCAmelCase_ =downscale_height_and_width(_lowerCAmelCase , _lowerCAmelCase , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ ={"image_embeds": image_embeds, "hint": hint} UpperCAmelCase_ =self.unet( sample=_lowerCAmelCase , timestep=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , added_cond_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ =noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ =noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ =variance_pred.chunk(2 ) UpperCAmelCase_ =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ =self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase , )[0] # post-processing UpperCAmelCase_ =self.movq.decode(_lowerCAmelCase , force_not_quantize=_lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCAmelCase_ =image * 0.5 + 0.5 UpperCAmelCase_ =image.clamp(0 , 1 ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ =self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class A ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _snake_case =field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _snake_case =Features({'''text''': Value('''string''' )} ) _snake_case =Features({'''summary''': Value('''string''' )} ) _snake_case ="text" _snake_case ="summary" @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.dummy_uncond_unet UpperCAmelCase_ =KarrasVeScheduler() UpperCAmelCase_ =KarrasVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.manual_seed(0 ) UpperCAmelCase_ =pipe(num_inference_steps=2 , generator=_lowerCAmelCase , output_type="numpy" ).images UpperCAmelCase_ =torch.manual_seed(0 ) UpperCAmelCase_ =pipe(num_inference_steps=2 , generator=_lowerCAmelCase , output_type="numpy" , return_dict=_lowerCAmelCase )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="google/ncsnpp-celebahq-256" UpperCAmelCase_ =UNetaDModel.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =KarrasVeScheduler() UpperCAmelCase_ =KarrasVePipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.manual_seed(0 ) UpperCAmelCase_ =pipe(num_inference_steps=20 , generator=_lowerCAmelCase , output_type="numpy" ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ =np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
from __future__ import annotations def a__ ( lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =split_dict._to_yaml_list() assert len(lowercase__ ) == len(lowercase__ ) UpperCAmelCase_ =SplitDict._from_yaml_list(lowercase__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase_ =None # the split name of split_dict takes over the name of the split info object UpperCAmelCase_ =split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=lowercase__ ), SplitInfo(dataset_name="my_dataset" )] ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __lowercase : Optional[int] =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Path , _lowerCAmelCase: Union[str, None] = None , _lowerCAmelCase: Union[List[str], None] = None , _lowerCAmelCase: Union[str, List[str], None] = None , _lowerCAmelCase: bool = True , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =[file for file in os.listdir(_lowerCAmelCase ) if os.path.isfile(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )] if identifier is not None: UpperCAmelCase_ =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for n_ in n_identifier: UpperCAmelCase_ =[file for file in files if n_ not in file] else: UpperCAmelCase_ =[file for file in files if n_identifier not in file] UpperCAmelCase_ =ignore_files or [] ignore_files.append("__init__.py" ) UpperCAmelCase_ =[file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , _lowerCAmelCase ) if only_modules: UpperCAmelCase_ =file.split("." )[0] try: UpperCAmelCase_ =getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =doctest.DocTestSuite(_lowerCAmelCase ) UpperCAmelCase_ =unittest.TextTestRunner().run(_lowerCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: UpperCAmelCase_ =doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ ="modeling" UpperCAmelCase_ =[ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase , ignore_files=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ ="tokenization" self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ ="configuration" self.analyze_directory(_lowerCAmelCase , identifier=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =Path("src/transformers" ) UpperCAmelCase_ =["configuration", "modeling", "tokenization"] self.analyze_directory(_lowerCAmelCase , n_identifier=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =Path("docs/source" ) UpperCAmelCase_ =["favicon.ico"] self.analyze_directory(_lowerCAmelCase , ignore_files=_lowerCAmelCase , only_modules=_lowerCAmelCase )
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
import math def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if ( not isinstance(lowercase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if ( not isinstance(lowercase__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A : def __init__( self: int , _lowerCAmelCase: Dict , _lowerCAmelCase: Tuple=13 , _lowerCAmelCase: str=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Any=False , _lowerCAmelCase: Optional[int]=True , _lowerCAmelCase: Optional[Any]=99 , _lowerCAmelCase: Union[str, Any]=32 , _lowerCAmelCase: List[str]=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Optional[Any]=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: Any=512 , _lowerCAmelCase: str=16 , _lowerCAmelCase: Union[str, Any]=2 , _lowerCAmelCase: Any=0.02 , _lowerCAmelCase: str=3 , _lowerCAmelCase: Any=4 , _lowerCAmelCase: List[Any]=None , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_input_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_labels UpperCAmelCase_ =num_choices UpperCAmelCase_ =scope def lowerCAmelCase__ ( self: List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_input_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =None UpperCAmelCase_ =None UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ =ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Any , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any , _lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Any , _lowerCAmelCase: Dict , _lowerCAmelCase: Tuple , _lowerCAmelCase: int , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =True UpperCAmelCase_ =LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) UpperCAmelCase_ =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) UpperCAmelCase_ =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple , ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: Dict , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: Any , ) -> str: '''simple docstring''' UpperCAmelCase_ =True UpperCAmelCase_ =True UpperCAmelCase_ =LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass UpperCAmelCase_ =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) UpperCAmelCase_ =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ =torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ =torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["hidden_states"][0] UpperCAmelCase_ =model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["hidden_states"][0] # select random slice UpperCAmelCase_ =ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ =output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self: Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): _snake_case =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _snake_case =(LlamaForCausalLM,) if is_torch_available() else () _snake_case =( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =LlamaModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[int] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ =type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =3 UpperCAmelCase_ =input_dict["input_ids"] UpperCAmelCase_ =input_ids.ne(1 ).to(_lowerCAmelCase ) UpperCAmelCase_ =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ =LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =3 UpperCAmelCase_ ="single_label_classification" UpperCAmelCase_ =input_dict["input_ids"] UpperCAmelCase_ =input_ids.ne(1 ).to(_lowerCAmelCase ) UpperCAmelCase_ =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ =LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =3 UpperCAmelCase_ ="multi_label_classification" UpperCAmelCase_ =input_dict["input_ids"] UpperCAmelCase_ =input_ids.ne(1 ).to(_lowerCAmelCase ) UpperCAmelCase_ =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ =LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ =ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_ =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ =LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() UpperCAmelCase_ =original_model(_lowerCAmelCase ).last_hidden_state UpperCAmelCase_ =original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ ={"type": scaling_type, "factor": 10.0} UpperCAmelCase_ =LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() UpperCAmelCase_ =scaled_model(_lowerCAmelCase ).last_hidden_state UpperCAmelCase_ =scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) @require_torch class A ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =[1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase_ =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) UpperCAmelCase_ =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCAmelCase_ =torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase_ =torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =[1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase_ =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) UpperCAmelCase_ =model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 UpperCAmelCase_ =torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase_ =torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =[1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase_ =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) UpperCAmelCase_ =model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 UpperCAmelCase_ =torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase_ =torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def lowerCAmelCase__ ( self: Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ =[1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase_ =LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) UpperCAmelCase_ =model(torch.tensor(_lowerCAmelCase ) ) UpperCAmelCase_ =torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCAmelCase_ =torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Model is curently gated" ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ ="Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" UpperCAmelCase_ ="Simply put, the theory of relativity states that " UpperCAmelCase_ =LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ =LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=_lowerCAmelCase ) # greedy generation outputs UpperCAmelCase_ =model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] =logging.get_logger(__name__) __lowercase : Optional[Any] ={ """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class A ( __lowercase ): _snake_case ='''xlm-prophetnet''' _snake_case =['''past_key_values'''] _snake_case ={ '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self: int , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[Union[str, Callable]] = "gelu" , _lowerCAmelCase: Optional[int] = 3_0522 , _lowerCAmelCase: Optional[int] = 1024 , _lowerCAmelCase: Optional[int] = 4096 , _lowerCAmelCase: Optional[int] = 12 , _lowerCAmelCase: Optional[int] = 16 , _lowerCAmelCase: Optional[int] = 4096 , _lowerCAmelCase: Optional[int] = 12 , _lowerCAmelCase: Optional[int] = 16 , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[int] = 512 , _lowerCAmelCase: Optional[float] = 0.02 , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[int] = 0 , _lowerCAmelCase: Optional[int] = 2 , _lowerCAmelCase: Optional[int] = 32 , _lowerCAmelCase: Optional[int] = 128 , _lowerCAmelCase: Optional[bool] = False , _lowerCAmelCase: Optional[float] = 0.0 , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[int] = 0 , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: Optional[int] = 2 , **_lowerCAmelCase: str , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =encoder_ffn_dim UpperCAmelCase_ =num_encoder_layers UpperCAmelCase_ =num_encoder_attention_heads UpperCAmelCase_ =decoder_ffn_dim UpperCAmelCase_ =num_decoder_layers UpperCAmelCase_ =num_decoder_attention_heads UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =init_std # Normal(0, this parameter) UpperCAmelCase_ =activation_function # parameters for xlmprophetnet UpperCAmelCase_ =ngram UpperCAmelCase_ =num_buckets UpperCAmelCase_ =relative_max_distance UpperCAmelCase_ =disable_ngram_loss UpperCAmelCase_ =eps # 3 Types of Dropout UpperCAmelCase_ =attention_dropout UpperCAmelCase_ =activation_dropout UpperCAmelCase_ =dropout UpperCAmelCase_ =use_cache super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] ) -> Tuple: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: Tuple , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = PIL.Image.BICUBIC , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"height": 256, "width": 256} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =resample UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: str , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: PILImageResampling = PIL.Image.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( _lowerCAmelCase , size=(size["height"], size["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: int , ) -> Any: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: str=None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[int] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ =[self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from __future__ import annotations def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0.00 UpperCAmelCase_ =0 for resistor in resistors: if resistor <= 0: UpperCAmelCase_ =F'Resistor at index {index} has a negative or zero value!' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0.00 UpperCAmelCase_ =0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase_ =F'Resistor at index {index} has a negative value!' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowercase : Optional[Any] =TypeVar("""T""") class A ( Generic[T] ): def __init__( self: List[Any] , _lowerCAmelCase: T ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =data UpperCAmelCase_ =None def __str__( self: str ) -> str: '''simple docstring''' return F'{self.data}' class A ( Generic[T] ): def __init__( self: Optional[int] ) -> None: '''simple docstring''' UpperCAmelCase_ =None def __iter__( self: Optional[Any] ) -> Iterator[T]: '''simple docstring''' UpperCAmelCase_ =self.top while node: yield node.data UpperCAmelCase_ =node.next def __str__( self: Union[str, Any] ) -> str: '''simple docstring''' return "->".join([str(_lowerCAmelCase ) for item in self] ) def __len__( self: Union[str, Any] ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def lowerCAmelCase__ ( self: List[Any] ) -> bool: '''simple docstring''' return self.top is None def lowerCAmelCase__ ( self: str , _lowerCAmelCase: T ) -> None: '''simple docstring''' UpperCAmelCase_ =Node(_lowerCAmelCase ) if not self.is_empty(): UpperCAmelCase_ =self.top UpperCAmelCase_ =node def lowerCAmelCase__ ( self: List[str] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _lowerCAmelCase ) UpperCAmelCase_ =self.top UpperCAmelCase_ =self.top.next return pop_node.data def lowerCAmelCase__ ( self: Any ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def lowerCAmelCase__ ( self: Tuple ) -> None: '''simple docstring''' UpperCAmelCase_ =None if __name__ == "__main__": from doctest import testmod testmod()
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
from __future__ import annotations import os from collections.abc import Mapping __lowercase : List[str] =tuple[int, int] class A : def __init__( self: Any , _lowerCAmelCase: set[int] , _lowerCAmelCase: Mapping[EdgeT, int] ) -> None: '''simple docstring''' UpperCAmelCase_ =vertices UpperCAmelCase_ ={ (min(_lowerCAmelCase ), max(_lowerCAmelCase )): weight for edge, weight in edges.items() } def lowerCAmelCase__ ( self: int , _lowerCAmelCase: EdgeT , _lowerCAmelCase: int ) -> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase_ =weight def lowerCAmelCase__ ( self: str ) -> Graph: '''simple docstring''' UpperCAmelCase_ =Graph({min(self.vertices )} , {} ) UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase_ =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase_ =edge UpperCAmelCase_ =weight subgraph.add_edge(_lowerCAmelCase , _lowerCAmelCase ) return subgraph def a__ ( lowercase__ = "p107_network.txt" ): '''simple docstring''' UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) UpperCAmelCase_ ={} UpperCAmelCase_ =42 UpperCAmelCase_ =42 UpperCAmelCase_ =42 with open(lowercase__ ) as f: UpperCAmelCase_ =f.read().strip().split("\n" ) UpperCAmelCase_ =[line.split("," ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase_ =int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase_ =Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) UpperCAmelCase_ =graph.prims_algorithm() UpperCAmelCase_ =sum(graph.edges.values() ) UpperCAmelCase_ =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
from __future__ import annotations class A : def __init__( self: Union[str, Any] , _lowerCAmelCase: int = 0 ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =key def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> list[str]: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCAmelCase ) ^ key ) for ch in content] def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> list[str]: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCAmelCase ) ^ key ) for ch in content] def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: int = 0 ) -> str: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ ="" for ch in content: ans += chr(ord(_lowerCAmelCase ) ^ key ) return ans def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: int = 0 ) -> str: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ ="" for ch in content: ans += chr(ord(_lowerCAmelCase ) ^ key ) return ans def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: str , _lowerCAmelCase: int = 0 ) -> bool: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) try: with open(_lowerCAmelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowerCAmelCase , _lowerCAmelCase ) ) except OSError: return False return True def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: str , _lowerCAmelCase: int ) -> bool: '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(_lowerCAmelCase , _lowerCAmelCase ) try: with open(_lowerCAmelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowerCAmelCase , _lowerCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def a__ ( *lowercase__ ): '''simple docstring''' with open(lowercase__ , "r" ) as fh: fcntl.flock(lowercase__ , fcntl.LOCK_EX ) try: print(*lowercase__ ) finally: fcntl.flock(lowercase__ , fcntl.LOCK_UN ) __lowercase : str =int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) __lowercase : Any =torch.device("""cuda""", local_rank) __lowercase : Optional[Any] =socket.gethostname() __lowercase : Tuple =f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowercase : Optional[Any] =dist.get_rank() __lowercase : Any =dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
def a__ ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = 0 ): '''simple docstring''' UpperCAmelCase_ =right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __lowercase : Optional[int] =random.Random() def a__ ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ =global_rng UpperCAmelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A ( unittest.TestCase ): def __init__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str]=7 , _lowerCAmelCase: Optional[Any]=400 , _lowerCAmelCase: Optional[Any]=2000 , _lowerCAmelCase: List[Any]=1 , _lowerCAmelCase: Optional[int]=0.0 , _lowerCAmelCase: Tuple=1_6000 , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: Union[str, Any]=80 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: List[Any]=64 , _lowerCAmelCase: Union[str, Any]="hann_window" , _lowerCAmelCase: Union[str, Any]=80 , _lowerCAmelCase: int=7600 , _lowerCAmelCase: Dict=1e-10 , _lowerCAmelCase: Optional[Any]=True , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =min_seq_length UpperCAmelCase_ =max_seq_length UpperCAmelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ =feature_size UpperCAmelCase_ =padding_value UpperCAmelCase_ =sampling_rate UpperCAmelCase_ =do_normalize UpperCAmelCase_ =num_mel_bins UpperCAmelCase_ =hop_length UpperCAmelCase_ =win_length UpperCAmelCase_ =win_function UpperCAmelCase_ =fmin UpperCAmelCase_ =fmax UpperCAmelCase_ =mel_floor UpperCAmelCase_ =return_attention_mask def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Any=False , _lowerCAmelCase: Optional[Any]=False ) -> Any: '''simple docstring''' def _flatten(_lowerCAmelCase: Union[str, Any] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: UpperCAmelCase_ =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase_ =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: str=False ) -> Optional[int]: '''simple docstring''' if equal_length: UpperCAmelCase_ =[floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ =[ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class A ( __lowercase , unittest.TestCase ): _snake_case =SpeechTaFeatureExtractor def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' UpperCAmelCase_ =SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] ) -> Any: '''simple docstring''' self.assertTrue(np.all(np.mean(_lowerCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_ =feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCAmelCase_ =feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test batched UpperCAmelCase_ =feat_extract(_lowerCAmelCase , return_tensors="np" ).input_values UpperCAmelCase_ =feat_extract(_lowerCAmelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =["longest", "max_length", "do_not_pad"] UpperCAmelCase_ =[None, 1600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =feat_extract(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors="np" ) UpperCAmelCase_ =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =range(800 , 1400 , 200 ) UpperCAmelCase_ =[floats_list((1, x) )[0] for x in lengths] UpperCAmelCase_ =["longest", "max_length", "do_not_pad"] UpperCAmelCase_ =[None, 1600, None] for max_length, padding in zip(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =feat_extract(_lowerCAmelCase , max_length=_lowerCAmelCase , padding=_lowerCAmelCase ) UpperCAmelCase_ =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) UpperCAmelCase_ =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=1000 , padding="longest" , return_tensors="np" ) UpperCAmelCase_ =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =feat_extract( _lowerCAmelCase , truncation=_lowerCAmelCase , max_length=2000 , padding="longest" , return_tensors="np" ) UpperCAmelCase_ =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ =np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase_ =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase_ =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_ =feature_extractor(audio_target=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase_ =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values UpperCAmelCase_ =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test batched UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_values UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ =np.asarray(_lowerCAmelCase ) UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_values UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ =feat_extract.model_input_names[0] UpperCAmelCase_ =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCAmelCase ) == len(_lowerCAmelCase ) for x, y in zip(_lowerCAmelCase , processed_features[input_name] ) ) ) UpperCAmelCase_ =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) UpperCAmelCase_ =BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCAmelCase_ =processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_ =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase__ ( self: Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.feat_extract_tester.prepare_inputs_for_target(equal_length=_lowerCAmelCase ) UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ =feat_extract.model_input_names[0] UpperCAmelCase_ =BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCAmelCase_ =processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_ =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ =self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ =feat_extract.model_input_names[0] UpperCAmelCase_ =BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_ =feat_extract.num_mel_bins # hack! UpperCAmelCase_ =feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase_ =feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.feat_extract_dict UpperCAmelCase_ =True UpperCAmelCase_ =self.feature_extraction_class(**_lowerCAmelCase ) UpperCAmelCase_ =self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ =[len(_lowerCAmelCase ) for x in speech_inputs] UpperCAmelCase_ =feat_extract.model_input_names[0] UpperCAmelCase_ =BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_ =feat_extract.num_mel_bins # hack! UpperCAmelCase_ =feat_extract.pad(_lowerCAmelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.feat_extract_dict UpperCAmelCase_ =True UpperCAmelCase_ =self.feature_extraction_class(**_lowerCAmelCase ) UpperCAmelCase_ =self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ =[len(_lowerCAmelCase ) for x in speech_inputs] UpperCAmelCase_ =feat_extract.model_input_names[0] UpperCAmelCase_ =BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_ =min(_lowerCAmelCase ) UpperCAmelCase_ =feat_extract.num_mel_bins # hack! UpperCAmelCase_ =feat_extract.pad( _lowerCAmelCase , padding="max_length" , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="np" ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> str: '''simple docstring''' from datasets import load_dataset UpperCAmelCase_ =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCAmelCase_ =ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =torch.tensor( [2.3_804e-03, 2.0_752e-03, 1.9_836e-03, 2.1_057e-03, 1.6_174e-03, 3.0_518e-04, 9.1_553e-05, 3.3_569e-04, 9.7_656e-04, 1.8_311e-03, 2.0_142e-03, 2.1_057e-03, 1.7_395e-03, 4.5_776e-04, -3.9_673e-04, 4.5_776e-04, 1.0_071e-03, 9.1_553e-05, 4.8_828e-04, 1.1_597e-03, 7.3_242e-04, 9.4_604e-04, 1.8_005e-03, 1.8_311e-03, 8.8_501e-04, 4.2_725e-04, 4.8_828e-04, 7.3_242e-04, 1.0_986e-03, 2.1_057e-03] ) # fmt: on UpperCAmelCase_ =self._load_datasamples(1 ) UpperCAmelCase_ =SpeechTaFeatureExtractor() UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _lowerCAmelCase , atol=1e-6 ) ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on UpperCAmelCase_ =self._load_datasamples(1 ) UpperCAmelCase_ =SpeechTaFeatureExtractor() UpperCAmelCase_ =feature_extractor(audio_target=_lowerCAmelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCAmelCase , atol=1e-4 ) )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __lowercase : Tuple =random.Random() def a__ ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ =global_rng UpperCAmelCase_ =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A ( unittest.TestCase ): def __init__( self: str , _lowerCAmelCase: str , _lowerCAmelCase: Tuple=7 , _lowerCAmelCase: Dict=400 , _lowerCAmelCase: List[Any]=2000 , _lowerCAmelCase: Any=2048 , _lowerCAmelCase: str=128 , _lowerCAmelCase: List[str]=1 , _lowerCAmelCase: Any=512 , _lowerCAmelCase: Union[str, Any]=30 , _lowerCAmelCase: Any=4_4100 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =min_seq_length UpperCAmelCase_ =max_seq_length UpperCAmelCase_ =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ =spectrogram_length UpperCAmelCase_ =feature_size UpperCAmelCase_ =num_audio_channels UpperCAmelCase_ =hop_length UpperCAmelCase_ =chunk_length UpperCAmelCase_ =sampling_rate def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: str=False , _lowerCAmelCase: Optional[int]=False ) -> Any: '''simple docstring''' def _flatten(_lowerCAmelCase: Dict ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: UpperCAmelCase_ =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( __lowercase , unittest.TestCase ): _snake_case =TvltFeatureExtractor def lowerCAmelCase__ ( self: int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "spectrogram_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "feature_size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "num_audio_channels" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "hop_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "chunk_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "sampling_rate" ) ) def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ =feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) UpperCAmelCase_ =self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =feat_extract_first.to_dict() UpperCAmelCase_ =feat_extract_second.to_dict() UpperCAmelCase_ =dict_first.pop("mel_filters" ) UpperCAmelCase_ =dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ =os.path.join(_lowerCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(_lowerCAmelCase ) UpperCAmelCase_ =self.feature_extraction_class.from_json_file(_lowerCAmelCase ) UpperCAmelCase_ =feat_extract_first.to_dict() UpperCAmelCase_ =feat_extract_second.to_dict() UpperCAmelCase_ =dict_first.pop("mel_filters" ) UpperCAmelCase_ =dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase_ =[np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_ =feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCAmelCase_ =feature_extractor( _lowerCAmelCase , return_tensors="np" , sampling_rate=4_4100 , mask_audio=_lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ =[floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ =np.asarray(_lowerCAmelCase ) UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCAmelCase_ =ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self: str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self._load_datasamples(1 ) UpperCAmelCase_ =TvltFeatureExtractor() UpperCAmelCase_ =feature_extractor(_lowerCAmelCase , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) UpperCAmelCase_ =torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _lowerCAmelCase , atol=1e-4 ) )
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
class A : def __init__( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ={} def lowerCAmelCase__ ( self: str ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , " -> " , " -> ".join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: int , _lowerCAmelCase: int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex UpperCAmelCase_ =[to_vertex] def lowerCAmelCase__ ( self: Optional[Any] ) -> None: '''simple docstring''' UpperCAmelCase_ =[False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: list ) -> None: '''simple docstring''' UpperCAmelCase_ =True print(_lowerCAmelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": __lowercase : Dict =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
def a__ ( lowercase__ = 1 , lowercase__ = 1_0_0_0 ): '''simple docstring''' UpperCAmelCase_ =1 UpperCAmelCase_ =0 for divide_by_number in range(lowercase__ , digit + 1 ): UpperCAmelCase_ =[] UpperCAmelCase_ =numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =divide_by_number else: has_been_divided.append(lowercase__ ) UpperCAmelCase_ =now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase_ =1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase_ =min(lowercase__ , lowercase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
def a__ ( ): '''simple docstring''' for n in range(1 , 1_0_0_0_0_0_0 ): yield n * (n + 1) // 2 def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =1 UpperCAmelCase_ =2 while i * i <= n: UpperCAmelCase_ =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def a__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(lowercase__ ) > 5_0_0 ) if __name__ == "__main__": print(solution())
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[Any] =logging.get_logger(__name__) __lowercase : Dict ={ """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class A ( __lowercase ): _snake_case ='''altclip_text_model''' def __init__( self: List[Any] , _lowerCAmelCase: Union[str, Any]=25_0002 , _lowerCAmelCase: List[str]=1024 , _lowerCAmelCase: Union[str, Any]=24 , _lowerCAmelCase: Dict=16 , _lowerCAmelCase: Optional[int]=4096 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Any=514 , _lowerCAmelCase: Tuple=1 , _lowerCAmelCase: Optional[Any]=0.02 , _lowerCAmelCase: int=0.02 , _lowerCAmelCase: Optional[Any]=1e-05 , _lowerCAmelCase: List[Any]=1 , _lowerCAmelCase: List[Any]=0 , _lowerCAmelCase: int=2 , _lowerCAmelCase: Dict="absolute" , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Any=768 , **_lowerCAmelCase: List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_act UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =initializer_factor UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =position_embedding_type UpperCAmelCase_ =use_cache UpperCAmelCase_ =project_dim class A ( __lowercase ): _snake_case ='''altclip_vision_model''' def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int]=768 , _lowerCAmelCase: int=3072 , _lowerCAmelCase: int=512 , _lowerCAmelCase: List[Any]=12 , _lowerCAmelCase: Tuple=12 , _lowerCAmelCase: Any=3 , _lowerCAmelCase: Optional[Any]=224 , _lowerCAmelCase: Dict=32 , _lowerCAmelCase: Any="quick_gelu" , _lowerCAmelCase: Optional[Any]=1e-5 , _lowerCAmelCase: Optional[int]=0.0 , _lowerCAmelCase: int=0.02 , _lowerCAmelCase: Any=1.0 , **_lowerCAmelCase: Dict , ) -> List[str]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =hidden_size UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =projection_dim UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =num_channels UpperCAmelCase_ =patch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =initializer_factor UpperCAmelCase_ =attention_dropout UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =hidden_act @classmethod def lowerCAmelCase__ ( cls: List[Any] , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: str ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ =cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": UpperCAmelCase_ =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class A ( __lowercase ): _snake_case ='''altclip''' _snake_case =True def __init__( self: Optional[int] , _lowerCAmelCase: str=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: int=768 , _lowerCAmelCase: Optional[Any]=2.65_92 , **_lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =kwargs.pop("text_config_dict" , _lowerCAmelCase ) UpperCAmelCase_ =kwargs.pop("vision_config_dict" , _lowerCAmelCase ) super().__init__(**_lowerCAmelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: UpperCAmelCase_ ={} # This is the complete result when using `text_config_dict`. UpperCAmelCase_ =AltCLIPTextConfig(**_lowerCAmelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: UpperCAmelCase_ =( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: UpperCAmelCase_ =( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(_lowerCAmelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: UpperCAmelCase_ ={} # This is the complete result when using `vision_config_dict`. UpperCAmelCase_ =AltCLIPVisionConfig(**_lowerCAmelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: UpperCAmelCase_ ={ str(_lowerCAmelCase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: UpperCAmelCase_ =( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: UpperCAmelCase_ =( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(_lowerCAmelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: UpperCAmelCase_ ={} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: UpperCAmelCase_ ={} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) UpperCAmelCase_ =AltCLIPTextConfig(**_lowerCAmelCase ) UpperCAmelCase_ =AltCLIPVisionConfig(**_lowerCAmelCase ) UpperCAmelCase_ =projection_dim UpperCAmelCase_ =logit_scale_init_value UpperCAmelCase_ =1.0 @classmethod def lowerCAmelCase__ ( cls: str , _lowerCAmelCase: AltCLIPTextConfig , _lowerCAmelCase: AltCLIPVisionConfig , **_lowerCAmelCase: int ) -> Dict: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =copy.deepcopy(self.__dict__ ) UpperCAmelCase_ =self.text_config.to_dict() UpperCAmelCase_ =self.vision_config.to_dict() UpperCAmelCase_ =self.__class__.model_type return output
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[int(lowercase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase__ ) == 4 and all(0 <= int(lowercase__ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": __lowercase : str =input().strip() __lowercase : Union[str, Any] ="""valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
from math import ceil def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =list(range(0 , lowercase__ ) ) UpperCAmelCase_ =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCAmelCase_ =[] for i in device_map_blocks: if device_map_blocks.count(lowercase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase__ ) # Missing blocks UpperCAmelCase_ =[i for i in blocks if i not in device_map_blocks] UpperCAmelCase_ =[i for i in device_map_blocks if i not in blocks] if len(lowercase__ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(lowercase__ ) ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =list(range(lowercase__ ) ) UpperCAmelCase_ =int(ceil(n_layers / len(lowercase__ ) ) ) UpperCAmelCase_ =[layers[i : i + n_blocks] for i in range(0 , lowercase__ , lowercase__ )] return dict(zip(lowercase__ , lowercase__ ) )
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( __lowercase ): def __init__( self: int , *_lowerCAmelCase: List[Any] , _lowerCAmelCase: Any=None , _lowerCAmelCase: Union[str, Any]=None , **_lowerCAmelCase: Any ) -> List[str]: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =eval_examples UpperCAmelCase_ =post_process_function def lowerCAmelCase__ ( self: str , _lowerCAmelCase: Optional[Dataset] = None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[List[str]] = None , _lowerCAmelCase: str = "eval" , **_lowerCAmelCase: Any , ) -> Dict[str, float]: '''simple docstring''' UpperCAmelCase_ =gen_kwargs.copy() UpperCAmelCase_ =( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) UpperCAmelCase_ =( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) UpperCAmelCase_ =gen_kwargs UpperCAmelCase_ =self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_ =self.get_eval_dataloader(_lowerCAmelCase ) UpperCAmelCase_ =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ =self.compute_metrics UpperCAmelCase_ =None UpperCAmelCase_ =time.time() UpperCAmelCase_ =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_ =eval_loop( _lowerCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: UpperCAmelCase_ =compute_metrics UpperCAmelCase_ =self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_ =self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): UpperCAmelCase_ =metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) else: UpperCAmelCase_ =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_ =self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: str = "test" , **_lowerCAmelCase: Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ =gen_kwargs.copy() UpperCAmelCase_ =self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ =self.compute_metrics UpperCAmelCase_ =None UpperCAmelCase_ =time.time() UpperCAmelCase_ =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_ =eval_loop( _lowerCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: UpperCAmelCase_ =compute_metrics UpperCAmelCase_ =self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_ =self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , "predict" ) UpperCAmelCase_ =self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): UpperCAmelCase_ =metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase )
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class A ( nn.Module ): def __init__( self: Dict , _lowerCAmelCase: int = 16 , _lowerCAmelCase: int = 88 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: str = "geglu" , _lowerCAmelCase: Optional[int] = None , ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.ModuleList( [ TransformeraDModel( num_attention_heads=_lowerCAmelCase , attention_head_dim=_lowerCAmelCase , in_channels=_lowerCAmelCase , num_layers=_lowerCAmelCase , dropout=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , attention_bias=_lowerCAmelCase , sample_size=_lowerCAmelCase , num_vector_embeds=_lowerCAmelCase , activation_fn=_lowerCAmelCase , num_embeds_ada_norm=_lowerCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase_ =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase_ =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase_ =[1, 0] def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Optional[int]=None , _lowerCAmelCase: Dict=None , _lowerCAmelCase: bool = True , ) -> Dict: '''simple docstring''' UpperCAmelCase_ =hidden_states UpperCAmelCase_ =[] UpperCAmelCase_ =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase_ =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase_ =self.transformer_index_for_condition[i] UpperCAmelCase_ =self.transformers[transformer_index]( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase_ =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase_ =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_lowerCAmelCase )
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase_ =_modexpt(lowercase__ , exponent // 2 , lowercase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase__ , exponent - 1 , lowercase__ )) % modulo_value def a__ ( lowercase__ = 1_7_7_7 , lowercase__ = 1_8_5_5 , lowercase__ = 8 ): '''simple docstring''' UpperCAmelCase_ =base for _ in range(1 , lowercase__ ): UpperCAmelCase_ =_modexpt(lowercase__ , lowercase__ , 1_0**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) __lowercase : List[Any] =torch.device("""cpu""") def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im def a__ ( lowercase__ ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =dct.pop(lowercase__ ) UpperCAmelCase_ =val def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] for k in state_dict.keys(): UpperCAmelCase_ =k if ".pwconv" in k: UpperCAmelCase_ =k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ =k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ =k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ =k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ =k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ ="swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ =k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ =1_0_0_0 UpperCAmelCase_ ="huggingface/label-files" UpperCAmelCase_ ="imagenet-1k-id2label.json" UpperCAmelCase_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ ={int(lowercase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ =idalabel UpperCAmelCase_ ={v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ =[3, 3, 6, 4] UpperCAmelCase_ =[4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ =[3, 3, 9, 6] UpperCAmelCase_ =[4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ =[4, 3, 1_0, 5] UpperCAmelCase_ =[4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ =[4, 4, 1_2, 6] UpperCAmelCase_ =[6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ =torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" , check_hash=lowercase__ ) else: UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) UpperCAmelCase_ =checkpoint UpperCAmelCase_ =create_rename_keys(lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model UpperCAmelCase_ =SwiftFormerForImageClassification(lowercase__ ).eval() hf_model.load_state_dict(lowercase__ ) # prepare test inputs UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ =processor(images=lowercase__ , return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ =get_expected_output(lowercase__ ) UpperCAmelCase_ =hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase__ , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") __lowercase : List[Any] =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =model.config UpperCAmelCase_ =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) UpperCAmelCase_ =MBartConfig( is_decoder=lowercase__ , is_encoder_decoder=lowercase__ , add_cross_attention=lowercase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase__ , add_final_layer_norm=lowercase__ , ) return encoder_config, decoder_config def a__ ( lowercase__ ): '''simple docstring''' if "encoder.model" in name: UpperCAmelCase_ =name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: UpperCAmelCase_ =name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: UpperCAmelCase_ =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCAmelCase_ =name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: UpperCAmelCase_ ="encoder." + name if "attn.proj" in name: UpperCAmelCase_ =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: UpperCAmelCase_ =name.replace("attn" , "attention.self" ) if "norm1" in name: UpperCAmelCase_ =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCAmelCase_ =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCAmelCase_ =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCAmelCase_ =name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": UpperCAmelCase_ ="encoder.layernorm.weight" if name == "encoder.norm.bias": UpperCAmelCase_ ="encoder.layernorm.bias" return name def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ =orig_state_dict.pop(lowercase__ ) if "qkv" in key: UpperCAmelCase_ =key.split("." ) UpperCAmelCase_ =int(key_split[3] ) UpperCAmelCase_ =int(key_split[5] ) UpperCAmelCase_ =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ =val[:dim, :] UpperCAmelCase_ =val[dim : dim * 2, :] UpperCAmelCase_ =val[-dim:, :] else: UpperCAmelCase_ =val[:dim] UpperCAmelCase_ =val[dim : dim * 2] UpperCAmelCase_ =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCAmelCase_ =val return orig_state_dict def a__ ( lowercase__ , lowercase__=None , lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =DonutModel.from_pretrained(lowercase__ ).eval() # load HuggingFace model UpperCAmelCase_ , UpperCAmelCase_ =get_configs(lowercase__ ) UpperCAmelCase_ =DonutSwinModel(lowercase__ ) UpperCAmelCase_ =MBartForCausalLM(lowercase__ ) UpperCAmelCase_ =VisionEncoderDecoderModel(encoder=lowercase__ , decoder=lowercase__ ) model.eval() UpperCAmelCase_ =original_model.state_dict() UpperCAmelCase_ =convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) # verify results on scanned document UpperCAmelCase_ =load_dataset("hf-internal-testing/example-documents" ) UpperCAmelCase_ =dataset["test"][0]["image"].convert("RGB" ) UpperCAmelCase_ =XLMRobertaTokenizerFast.from_pretrained(lowercase__ , from_slow=lowercase__ ) UpperCAmelCase_ =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCAmelCase_ =DonutProcessor(lowercase__ , lowercase__ ) UpperCAmelCase_ =processor(lowercase__ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCAmelCase_ ="<s_docvqa><s_question>{user_input}</s_question><s_answer>" UpperCAmelCase_ ="When is the coffee break?" UpperCAmelCase_ =task_prompt.replace("{user_input}" , lowercase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCAmelCase_ ="<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCAmelCase_ ="<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCAmelCase_ ="s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCAmelCase_ ="<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCAmelCase_ ="hello world" else: raise ValueError("Model name not supported" ) UpperCAmelCase_ =original_model.decoder.tokenizer(lowercase__ , add_special_tokens=lowercase__ , return_tensors="pt" )[ "input_ids" ] UpperCAmelCase_ =original_model.encoder.model.patch_embed(lowercase__ ) UpperCAmelCase_ , UpperCAmelCase_ =model.encoder.embeddings(lowercase__ ) assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) # verify encoder hidden states UpperCAmelCase_ =original_model.encoder(lowercase__ ) UpperCAmelCase_ =model.encoder(lowercase__ ).last_hidden_state assert torch.allclose(lowercase__ , lowercase__ , atol=1E-2 ) # verify decoder hidden states UpperCAmelCase_ =original_model(lowercase__ , lowercase__ , lowercase__ ).logits UpperCAmelCase_ =model(lowercase__ , decoder_input_ids=lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": __lowercase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""naver-clova-ix/donut-base-finetuned-docvqa""", required=False, type=str, help="""Name of the original model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, required=False, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub.""", ) __lowercase : str =parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Tuple =logging.get_logger(__name__) __lowercase : str ={ """microsoft/swinv2-tiny-patch4-window8-256""": ( """https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json""" ), } class A ( __lowercase ): _snake_case ='''swinv2''' _snake_case ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self: Any , _lowerCAmelCase: List[str]=224 , _lowerCAmelCase: Union[str, Any]=4 , _lowerCAmelCase: Tuple=3 , _lowerCAmelCase: Optional[int]=96 , _lowerCAmelCase: str=[2, 2, 6, 2] , _lowerCAmelCase: List[str]=[3, 6, 12, 24] , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Dict=4.0 , _lowerCAmelCase: str=True , _lowerCAmelCase: int=0.0 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: int="gelu" , _lowerCAmelCase: int=False , _lowerCAmelCase: Optional[Any]=0.02 , _lowerCAmelCase: Union[str, Any]=1e-5 , _lowerCAmelCase: str=32 , **_lowerCAmelCase: int , ) -> int: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =embed_dim UpperCAmelCase_ =depths UpperCAmelCase_ =len(_lowerCAmelCase ) UpperCAmelCase_ =num_heads UpperCAmelCase_ =window_size UpperCAmelCase_ =mlp_ratio UpperCAmelCase_ =qkv_bias UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =drop_path_rate UpperCAmelCase_ =hidden_act UpperCAmelCase_ =use_absolute_embeddings UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =initializer_range UpperCAmelCase_ =encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ =int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) UpperCAmelCase_ =(0, 0, 0, 0)
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) UpperCAmelCase_ =re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , lowercase__ ) if matches: UpperCAmelCase_ =float(matches[1] ) UpperCAmelCase_ =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase_ =1_0_0_1 UpperCAmelCase_ ="imagenet-1k-id2label.json" UpperCAmelCase_ ="huggingface/label-files" UpperCAmelCase_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ ={int(lowercase__ ) + 1: v for k, v in idalabel.items()} UpperCAmelCase_ ="background" UpperCAmelCase_ =idalabel UpperCAmelCase_ ={v: k for k, v in idalabel.items()} return config def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =get_mobilenet_va_config(lowercase__ ) # Load 🤗 model UpperCAmelCase_ =MobileNetVaForImageClassification(lowercase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase__ , lowercase__ , lowercase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase_ =MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) UpperCAmelCase_ =image_processor(images=prepare_img() , return_tensors="pt" ) UpperCAmelCase_ =model(**lowercase__ ) UpperCAmelCase_ =outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase_ =torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase_ =torch.tensor([-3.9440, -2.3141, -0.3333] ) else: UpperCAmelCase_ =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print("Pushing to the hub..." ) UpperCAmelCase_ ="google/" + model_name image_processor.push_to_hub(lowercase__ ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __lowercase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowercase : Tuple =parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
from math import sqrt def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for i in range(1 , int(sqrt(lowercase__ ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase__ ): total += i + n // i elif i == sqrt(lowercase__ ): total += i return total - n def a__ ( lowercase__ = 1_0_0_0_0 ): '''simple docstring''' UpperCAmelCase_ =sum( i for i in range(1 , lowercase__ ) if sum_of_divisors(sum_of_divisors(lowercase__ ) ) == i and sum_of_divisors(lowercase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A ( __lowercase ): _snake_case ='''Wav2Vec2FeatureExtractor''' _snake_case ='''AutoTokenizer''' def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Any ) -> List[str]: '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self.feature_extractor UpperCAmelCase_ =False @classmethod def lowerCAmelCase__ ( cls: List[Any] , _lowerCAmelCase: int , **_lowerCAmelCase: int ) -> int: '''simple docstring''' try: return super().from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) except OSError: warnings.warn( F'Loading a tokenizer inside {cls.__name__} from a config that does not' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _lowerCAmelCase , ) UpperCAmelCase_ =WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =WavaVecaCTCTokenizer.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) return cls(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) def __call__( self: Dict , *_lowerCAmelCase: List[str] , **_lowerCAmelCase: Union[str, Any] ) -> List[Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ =kwargs.pop("raw_speech" ) else: UpperCAmelCase_ =kwargs.pop("audio" , _lowerCAmelCase ) UpperCAmelCase_ =kwargs.pop("sampling_rate" , _lowerCAmelCase ) UpperCAmelCase_ =kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase_ =args[0] UpperCAmelCase_ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ =self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None: UpperCAmelCase_ =self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ =encodings["input_ids"] return inputs def lowerCAmelCase__ ( self: str , *_lowerCAmelCase: str , **_lowerCAmelCase: Optional[int] ) -> Union[str, Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase_ =kwargs.pop("input_features" , _lowerCAmelCase ) UpperCAmelCase_ =kwargs.pop("labels" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase_ =args[0] UpperCAmelCase_ =args[1:] if input_features is not None: UpperCAmelCase_ =self.feature_extractor.pad(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if labels is not None: UpperCAmelCase_ =self.tokenizer.pad(_lowerCAmelCase , **_lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ =labels["input_ids"] return input_features def lowerCAmelCase__ ( self: List[Any] , *_lowerCAmelCase: Optional[int] , **_lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: str ) -> str: '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @contextmanager def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ =True UpperCAmelCase_ =self.tokenizer yield UpperCAmelCase_ =self.feature_extractor UpperCAmelCase_ =False
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase_ =0 print(lowercase__ , end="," ) # Consider rest of the activities for j in range(lowercase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase__ , end="," ) UpperCAmelCase_ =j if __name__ == "__main__": import doctest doctest.testmod() __lowercase : Dict =[1, 3, 0, 5, 8, 5] __lowercase : List[str] =[2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( __lowercase ): _snake_case =['''image_processor''', '''tokenizer'''] _snake_case ='''AutoImageProcessor''' _snake_case ='''AutoTokenizer''' def __init__( self: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: str ) -> Optional[Any]: '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =self.image_processor def __call__( self: Union[str, Any] , _lowerCAmelCase: Tuple=None , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Union[str, Any]=None , **_lowerCAmelCase: Optional[int] ) -> Tuple: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ =self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if images is not None: UpperCAmelCase_ =self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and images is not None: UpperCAmelCase_ =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , *_lowerCAmelCase: Dict , **_lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , *_lowerCAmelCase: Dict , **_lowerCAmelCase: Any ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowercase : Optional[Any] =subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowercase : List[str] =subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() __lowercase : Optional[Any] ="""|""".join(sys.argv[1:]) __lowercase : str =re.compile(Rf"""^({joined_dirs}).*?\.py$""") __lowercase : Dict =[x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =os.path.join(args.tf_model_dir , "parameters.json" ) UpperCAmelCase_ =json.loads(open(lowercase__ ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(".pt" ): UpperCAmelCase_ =args.output + ".pt" UpperCAmelCase_ =OrderedDict() with tf.device("/CPU:0" ): UpperCAmelCase_ =tf.train.load_checkpoint(args.tf_model_dir ) UpperCAmelCase_ =reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCAmelCase_ =reader.get_tensor(lowercase__ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): UpperCAmelCase_ =int(key_name[9] ) elif key_name.startswith("pasts/out" ): UpperCAmelCase_ =8 UpperCAmelCase_ ="model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/moe" ): UpperCAmelCase_ =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/softmlp/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): UpperCAmelCase_ =key_name[-9:-7] for i in range(1_6 ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) UpperCAmelCase_ =( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/mlp" ): UpperCAmelCase_ =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wi.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/p1/bias" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wi.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/p2/kernel" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wo.weight" % player UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/p2/bias" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.mlp.wo.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/ln" ): UpperCAmelCase_ =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.norm.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/g" ): UpperCAmelCase_ ="model.blocks.%d.feed_forward.norm.weight" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/att" ): UpperCAmelCase_ =int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): UpperCAmelCase_ =vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCAmelCase_ =state[:, 0, :, :] UpperCAmelCase_ =state[:, 1, :, :] UpperCAmelCase_ =state[:, 2, :, :] UpperCAmelCase_ =( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.q_proj.weight" % player UpperCAmelCase_ =torch.tensor(lowercase__ ) UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.k_proj.weight" % player UpperCAmelCase_ =torch.tensor(lowercase__ ) UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.v_proj.weight" % player UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/o/kernel" ): UpperCAmelCase_ ="model.blocks.%d.self_attn.self_attn.out_proj.weight" % player UpperCAmelCase_ =( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/an" ): UpperCAmelCase_ =int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): UpperCAmelCase_ ="model.blocks.%d.self_attn.norm.bias" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.endswith("/g" ): UpperCAmelCase_ ="model.blocks.%d.self_attn.norm.weight" % player UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): UpperCAmelCase_ ={"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] UpperCAmelCase_ ="model.%s.weight" % nlayer UpperCAmelCase_ =vnp.copy() # same in embedded UpperCAmelCase_ =torch.tensor(lowercase__ ) if key_name.startswith("model/wte" ): UpperCAmelCase_ ="lm_head.weight" UpperCAmelCase_ =vnp.copy() # same in embedded UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name.startswith("model/wob" ): UpperCAmelCase_ ="final_logits_bias" UpperCAmelCase_ =vnp.copy() # same in embedded UpperCAmelCase_ =state.reshape((1, -1) ) UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name == "model/dense/kernel": UpperCAmelCase_ ="model.last_project.weight" UpperCAmelCase_ =vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ =torch.tensor(lowercase__ ) elif key_name == "model/dense_1/bias": UpperCAmelCase_ ="model.last_project.bias" UpperCAmelCase_ =vnp.copy() # same because it is one dimensional UpperCAmelCase_ =torch.tensor(lowercase__ ) torch.save(lowercase__ , args.output ) if __name__ == "__main__": __lowercase : Optional[int] =argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") __lowercase : List[str] =parser.parse_args() convert_tf_gptsan_to_pt(args)
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
from scipy.stats import spearmanr import datasets __lowercase : str =""" The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ __lowercase : Optional[Any] =""" Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ __lowercase : Dict =R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Any , _lowerCAmelCase: int=False ) -> str: '''simple docstring''' UpperCAmelCase_ =spearmanr(_lowerCAmelCase , _lowerCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] for line in lines: UpperCAmelCase_ =re.sub(R"#.*" , "" , lowercase__ ) # remove comments if line: filtered_lines.append(lowercase__ ) UpperCAmelCase_ ="\n".join(lowercase__ ) # Make a hash from all this code UpperCAmelCase_ =full_str.encode("utf-8" ) return shaaaa(lowercase__ ).hexdigest() # get importable module names and hash for caching __lowercase : Tuple ={ """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __lowercase : Optional[int] ={ """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __lowercase : Dict ={"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __lowercase : Dict[str, List[str]] ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
import argparse import os import re import packaging.version __lowercase : Tuple ="""examples/""" __lowercase : Optional[Any] ={ """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } __lowercase : Union[str, Any] ={ """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } __lowercase : Any ="""README.md""" def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ =f.read() UpperCAmelCase_ , UpperCAmelCase_ =REPLACE_PATTERNS[pattern] UpperCAmelCase_ =replace.replace("VERSION" , lowercase__ ) UpperCAmelCase_ =re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="examples" ) def a__ ( lowercase__ , lowercase__=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ ="🤗 Transformers currently provides the following architectures" UpperCAmelCase_ ="1. Want to contribute a new model?" with open(lowercase__ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ =f.readlines() # Find the start of the list. UpperCAmelCase_ =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase_ =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCAmelCase_ =lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(lowercase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase__ ) def a__ ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: UpperCAmelCase_ =f.read() UpperCAmelCase_ =REPLACE_PATTERNS["init"][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def a__ ( lowercase__=False ): '''simple docstring''' UpperCAmelCase_ =get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCAmelCase_ =default_version.base_version elif patch: UpperCAmelCase_ =F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCAmelCase_ =F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCAmelCase_ =input(F'Which version are you releasing? [{default_version}]' ) if len(lowercase__ ) == 0: UpperCAmelCase_ =default_version print(F'Updating version to {version}.' ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def a__ ( ): '''simple docstring''' UpperCAmelCase_ =get_version() UpperCAmelCase_ =F'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCAmelCase_ =current_version.base_version # Check with the user we got that right. UpperCAmelCase_ =input(F'Which version are we developing now? [{dev_version}]' ) if len(lowercase__ ) == 0: UpperCAmelCase_ =dev_version print(F'Updating version to {version}.' ) global_version_update(lowercase__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowercase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") __lowercase : List[Any] =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowercase : Dict =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __lowercase : str ={ # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names __lowercase : List[Any] ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowercase : Dict ="""facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __lowercase : Any ="""allenai""" def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =dict((re.sub(R"@@$" , "" , lowercase__ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , lowercase__ ), v) for k, v in d.items() ) UpperCAmelCase_ ="<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] UpperCAmelCase_ =d[k] # restore return da def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert os.path.exists(lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models UpperCAmelCase_ =basename(lowercase__ ) UpperCAmelCase_ =dirname(lowercase__ ) UpperCAmelCase_ =fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase_ =cls.hub_models() UpperCAmelCase_ ={"bpe": "fastbpe", "tokenizer": "moses"} UpperCAmelCase_ ="." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'using checkpoint {checkpoint_file}' ) UpperCAmelCase_ =hub_utils.from_pretrained( lowercase__ , lowercase__ , lowercase__ , archive_map=lowercase__ , **lowercase__ ) UpperCAmelCase_ =vars(chkpt["args"]["model"] ) UpperCAmelCase_ =args["source_lang"] UpperCAmelCase_ =args["target_lang"] UpperCAmelCase_ =dirname(lowercase__ ) UpperCAmelCase_ =basename(lowercase__ ) # dicts UpperCAmelCase_ =os.path.join(lowercase__ , F'dict.{src_lang}.txt' ) UpperCAmelCase_ =os.path.join(lowercase__ , F'dict.{tgt_lang}.txt' ) UpperCAmelCase_ =Dictionary.load(lowercase__ ) UpperCAmelCase_ =rewrite_dict_keys(src_dict.indices ) UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =os.path.join(lowercase__ , "vocab-src.json" ) print(F'Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records' ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase__ , ensure_ascii=lowercase__ , indent=lowercase__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase_ =True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase_ =False break UpperCAmelCase_ =Dictionary.load(lowercase__ ) UpperCAmelCase_ =rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =os.path.join(lowercase__ , "vocab-tgt.json" ) print(F'Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records' ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase__ , ensure_ascii=lowercase__ , indent=lowercase__ ) ) # merges_file (bpecodes) UpperCAmelCase_ =os.path.join(lowercase__ , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) if os.path.exists(lowercase__ ): break with open(lowercase__ , encoding="utf-8" ) as fin: UpperCAmelCase_ =fin.read() UpperCAmelCase_ =re.sub(R" \d+$" , "" , lowercase__ , 0 , re.M ) # remove frequency number print(F'Generating {merges_file}' ) with open(lowercase__ , "w" , encoding="utf-8" ) as fout: fout.write(lowercase__ ) # model config UpperCAmelCase_ =os.path.join(lowercase__ , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'need to extend tokenizer to support bpe={args["bpe"]}' assert args["tokenizer"] == "moses", F'need to extend tokenizer to support bpe={args["tokenizer"]}' UpperCAmelCase_ ={ "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with UpperCAmelCase_ =5 UpperCAmelCase_ =False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase_ =best_score_hparams[model_dir]["length_penalty"] else: UpperCAmelCase_ =1.0 print(F'Generating {fsmt_model_config_file}' ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase__ , ensure_ascii=lowercase__ , indent=lowercase__ ) ) # tokenizer config UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) UpperCAmelCase_ ={ "langs": [src_lang, tgt_lang], "model_max_length": 1_0_2_4, "do_lower_case": do_lower_case, } print(F'Generating {fsmt_tokenizer_config_file}' ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(lowercase__ , ensure_ascii=lowercase__ , indent=lowercase__ ) ) # model UpperCAmelCase_ =chkpt["models"][0] UpperCAmelCase_ =model.state_dict() # rename keys to start with 'model.' UpperCAmelCase_ =OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase_ =[ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(lowercase__ , lowercase__ ) UpperCAmelCase_ =FSMTConfig.from_pretrained(lowercase__ ) UpperCAmelCase_ =FSMTForConditionalGeneration(lowercase__ ) # check that it loads ok model_new.load_state_dict(lowercase__ , strict=lowercase__ ) # save UpperCAmelCase_ =os.path.join(lowercase__ , lowercase__ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase__ , lowercase__ ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F'cd {data_root}' ) print(F'transformers-cli upload {model_dir}' ) if __name__ == "__main__": __lowercase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowercase : Dict =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
def a__ ( lowercase__ ): '''simple docstring''' if len(lowercase__ ) <= 1: return [tuple(lowercase__ )] UpperCAmelCase_ =[] def generate(lowercase__ , lowercase__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowercase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase_ , UpperCAmelCase_ =arr[k - 1], arr[i] else: # k is odd UpperCAmelCase_ , UpperCAmelCase_ =arr[k - 1], arr[0] generate(k - 1 , lowercase__ ) generate(len(lowercase__ ) , lowercase__ ) return res if __name__ == "__main__": __lowercase : Dict =input("""Enter numbers separated by a comma:\n""").strip() __lowercase : List[str] =[int(item) for item in user_input.split(""",""")] print(heaps(arr))
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
import operator def a__ ( lowercase__ , lowercase__ = False , lowercase__ = None ): '''simple docstring''' UpperCAmelCase_ =operator.lt if reverse else operator.gt UpperCAmelCase_ =solution or [] if not arr: return solution UpperCAmelCase_ =[arr.pop(0 )] for i, item in enumerate(lowercase__ ): if _operator(lowercase__ , sublist[-1] ): sublist.append(lowercase__ ) arr.pop(lowercase__ ) # merging sublist into solution list if not solution: solution.extend(lowercase__ ) else: while sublist: UpperCAmelCase_ =sublist.pop(0 ) for i, xx in enumerate(lowercase__ ): if not _operator(lowercase__ , lowercase__ ): solution.insert(lowercase__ , lowercase__ ) break else: solution.append(lowercase__ ) strand_sort(lowercase__ , lowercase__ , lowercase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =BlipImageProcessor() UpperCAmelCase_ =GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) UpperCAmelCase_ =BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) UpperCAmelCase_ =InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: str , **_lowerCAmelCase: str ) -> int: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def lowerCAmelCase__ ( self: Tuple , **_lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def lowerCAmelCase__ ( self: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def lowerCAmelCase__ ( self: List[str] ) -> Union[str, Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_ =[Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ =self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase_ =InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =self.get_qformer_tokenizer() UpperCAmelCase_ =InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) UpperCAmelCase_ =self.prepare_image_inputs() UpperCAmelCase_ =image_processor(_lowerCAmelCase , return_tensors="np" ) UpperCAmelCase_ =processor(images=_lowerCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =self.get_qformer_tokenizer() UpperCAmelCase_ =InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) UpperCAmelCase_ ="lower newer" UpperCAmelCase_ =processor(text=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) UpperCAmelCase_ =qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =self.get_qformer_tokenizer() UpperCAmelCase_ =InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) UpperCAmelCase_ ="lower newer" UpperCAmelCase_ =self.prepare_image_inputs() UpperCAmelCase_ =processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =self.get_qformer_tokenizer() UpperCAmelCase_ =InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) UpperCAmelCase_ =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ =processor.batch_decode(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.get_image_processor() UpperCAmelCase_ =self.get_tokenizer() UpperCAmelCase_ =self.get_qformer_tokenizer() UpperCAmelCase_ =InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) UpperCAmelCase_ ="lower newer" UpperCAmelCase_ =self.prepare_image_inputs() UpperCAmelCase_ =processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
import numpy as np class A : def __init__( self: Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ =(0, 0) UpperCAmelCase_ =None UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 def __eq__( self: List[Any] , _lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.position == cell.position def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' print(self.position ) class A : def __init__( self: Dict , _lowerCAmelCase: Optional[int]=(5, 5) ) -> Dict: '''simple docstring''' UpperCAmelCase_ =np.zeros(_lowerCAmelCase ) UpperCAmelCase_ =world_size[0] UpperCAmelCase_ =world_size[1] def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' print(self.w ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ =cell.position[0] UpperCAmelCase_ =cell.position[1] UpperCAmelCase_ =[] for n in neughbour_cord: UpperCAmelCase_ =current_x + n[0] UpperCAmelCase_ =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ =Cell() UpperCAmelCase_ =(x, y) UpperCAmelCase_ =cell neighbours.append(_lowerCAmelCase ) return neighbours def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ =[] _open.append(lowercase__ ) while _open: UpperCAmelCase_ =np.argmin([n.f for n in _open] ) UpperCAmelCase_ =_open[min_f] _closed.append(_open.pop(lowercase__ ) ) if current == goal: break for n in world.get_neigbours(lowercase__ ): for c in _closed: if c == n: continue UpperCAmelCase_ =current.g + 1 UpperCAmelCase_ , UpperCAmelCase_ =n.position UpperCAmelCase_ , UpperCAmelCase_ =goal.position UpperCAmelCase_ =(ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase__ ) UpperCAmelCase_ =[] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __lowercase : List[Any] =Gridworld() # Start position and goal __lowercase : List[Any] =Cell() __lowercase : List[Any] =(0, 0) __lowercase : str =Cell() __lowercase : Tuple =(4, 4) print(f"""path from {start.position} to {goal.position}""") __lowercase : str =astar(world, start, goal) # Just for visual reasons. for i in s: __lowercase : Optional[int] =1 print(world.w)
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
import re from filelock import FileLock try: import nltk __lowercase : str =True except (ImportError, ModuleNotFoundError): __lowercase : Optional[Any] =False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def a__ ( lowercase__ ): '''simple docstring''' re.sub("<n>" , "" , lowercase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase__ ) )
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase : Tuple =logging.get_logger(__name__) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCAmelCase_ =os.path.abspath(lowercase__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCAmelCase_ =convert_pytorch_state_dict_to_flax(lowercase__ , lowercase__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase_ =convert_pytorch_sharded_state_dict_to_flax(lowercase__ , lowercase__ ) return flax_state_dict def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(lowercase__ ) -> bool: return len(set(lowercase__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase_ =pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowercase__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase_ =pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowercase__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase_ =pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowercase__ ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase_ =pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowercase__ ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowercase__ ): UpperCAmelCase_ =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowercase__ ): UpperCAmelCase_ =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ =pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ =pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase_ =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase_ =pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase_ =pt_tuple_key[-2] + "_v" if name is not None: UpperCAmelCase_ =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase_ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase_ =flax_model.params["params"] else: UpperCAmelCase_ =flax_model.params UpperCAmelCase_ =flatten_dict(lowercase__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase_ =flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(lowercase__ ) UpperCAmelCase_ ={} UpperCAmelCase_ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase_ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ =tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCAmelCase_ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ =pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ =rename_key_and_reshape_tensor( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # add model prefix if necessary UpperCAmelCase_ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase_ =jnp.asarray(lowercase__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowercase__ , lowercase__ ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase_ =jnp.asarray(lowercase__ ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase_ =jnp.asarray(lowercase__ ) return unflatten_dict(lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' import torch # Load the index UpperCAmelCase_ ={} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase_ =torch.load(lowercase__ ) UpperCAmelCase_ ={k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase_ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase_ =flax_model.params["params"] UpperCAmelCase_ =flatten_dict(lowercase__ ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCAmelCase_ =flax_model.params UpperCAmelCase_ =flatten_dict(lowercase__ ) UpperCAmelCase_ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase_ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ =tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCAmelCase_ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ =pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ =rename_key_and_reshape_tensor( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # add model prefix if necessary UpperCAmelCase_ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase_ =jnp.asarray(lowercase__ ) continue if "var" in flax_key[-1]: UpperCAmelCase_ =jnp.asarray(lowercase__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowercase__ , lowercase__ ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase_ =jnp.asarray(lowercase__ ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase_ =jnp.asarray(lowercase__ ) return unflatten_dict(lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =os.path.abspath(lowercase__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCAmelCase_ =getattr(lowercase__ , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(lowercase__ , "rb" ) as state_f: try: UpperCAmelCase_ =from_bytes(lowercase__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowercase__ , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCAmelCase_ =flatten_dict(jax.tree_util.tree_map(lambda lowercase__ : x.dtype == jnp.bfloataa , lowercase__ ) ).values() if any(lowercase__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCAmelCase_ =jax.tree_util.tree_map( lambda lowercase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowercase__ ) UpperCAmelCase_ =flatten_dict(lowercase__ ) UpperCAmelCase_ =pt_model.state_dict() UpperCAmelCase_ =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase_ =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase_ =[] UpperCAmelCase_ =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase_ =flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase_ =".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase_ =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase_ =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowercase__ ) not in pt_model_dict: # conv layer UpperCAmelCase_ =flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ =jnp.transpose(lowercase__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase__ ) not in pt_model_dict: # linear layer UpperCAmelCase_ =flax_key_tuple[:-1] + ("weight",) UpperCAmelCase_ =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase_ =flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase_ =flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCAmelCase_ =flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCAmelCase_ =".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase_ =".".join(lowercase__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase_ ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase_ =key.split("." ) UpperCAmelCase_ =None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase_ =key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase_ =key_components[-2] + "_v" if name is not None: UpperCAmelCase_ =key_components[:-3] + [name] UpperCAmelCase_ =".".join(lowercase__ ) UpperCAmelCase_ =key if flax_key in special_pt_names: UpperCAmelCase_ =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCAmelCase_ =np.asarray(lowercase__ ) if not isinstance(lowercase__ , np.ndarray ) else flax_tensor UpperCAmelCase_ =torch.from_numpy(lowercase__ ) # remove from missing keys missing_keys.remove(lowercase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase__ ) pt_model.load_state_dict(lowercase__ ) # re-transform missing_keys to list UpperCAmelCase_ =list(lowercase__ ) if len(lowercase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(lowercase__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from manim import * class A ( __lowercase ): def lowerCAmelCase__ ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ =Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase_ =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ =[mem.copy() for i in range(6 )] UpperCAmelCase_ =[mem.copy() for i in range(6 )] UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =Text("CPU" , font_size=24 ) UpperCAmelCase_ =Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) UpperCAmelCase_ =[mem.copy() for i in range(4 )] UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =Text("GPU" , font_size=24 ) UpperCAmelCase_ =Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) UpperCAmelCase_ =[mem.copy() for i in range(6 )] UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =Text("Model" , font_size=24 ) UpperCAmelCase_ =Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) UpperCAmelCase_ =[] UpperCAmelCase_ =[] UpperCAmelCase_ =[] for i, rect in enumerate(_lowerCAmelCase ): rect.set_stroke(_lowerCAmelCase ) UpperCAmelCase_ =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_lowerCAmelCase , buff=0.0 ) self.add(_lowerCAmelCase ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase , *_lowerCAmelCase ) UpperCAmelCase_ =[mem.copy() for i in range(6 )] UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase_ =Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(_lowerCAmelCase ) UpperCAmelCase_ =[] UpperCAmelCase_ =[] for i, rect in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =fill.copy().set_fill(_lowerCAmelCase , opacity=0.7 ) target.move_to(_lowerCAmelCase ) ckpt_arr.append(_lowerCAmelCase ) UpperCAmelCase_ =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) UpperCAmelCase_ =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ =MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) UpperCAmelCase_ =MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCAmelCase_ =[meta_mem.copy() for i in range(6 )] UpperCAmelCase_ =[meta_mem.copy() for i in range(6 )] UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) UpperCAmelCase_ =Text("Disk" , font_size=24 ) UpperCAmelCase_ =Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , Write(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) ) UpperCAmelCase_ =[] for i, rect in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_lowerCAmelCase , run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(FadeOut(_lowerCAmelCase ) ) UpperCAmelCase_ =MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) self.play( FadeOut(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , *_lowerCAmelCase ) , ) self.wait()
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self: List[str] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict=13 , _lowerCAmelCase: Optional[Any]=32 , _lowerCAmelCase: Optional[int]=3 , _lowerCAmelCase: List[str]=4 , _lowerCAmelCase: Any=[10, 20, 30, 40] , _lowerCAmelCase: Tuple=[2, 2, 3, 2] , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: Any=True , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: Optional[Any]=0.02 , _lowerCAmelCase: List[str]=["stage2", "stage3", "stage4"] , _lowerCAmelCase: List[Any]=[2, 3, 4] , _lowerCAmelCase: Any=None , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =num_stages UpperCAmelCase_ =hidden_sizes UpperCAmelCase_ =depths UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =num_labels UpperCAmelCase_ =initializer_range UpperCAmelCase_ =out_features UpperCAmelCase_ =out_indices UpperCAmelCase_ =scope def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =ConvNextModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =ConvNextForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: List[str] , _lowerCAmelCase: Dict , _lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase_ =None UpperCAmelCase_ =ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase_ =model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase__ ( self: Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _snake_case =( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _snake_case =True _snake_case =False _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =ConvNextModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Any: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int ): UpperCAmelCase_ =model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ =model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase_ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ =self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ =True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ =ConvNextModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Tuple ) -> List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(_lowerCAmelCase ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @require_torch class A ( unittest.TestCase , __lowercase ): _snake_case =(ConvNextBackbone,) if is_torch_available() else () _snake_case =ConvNextConfig _snake_case =False def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =ConvNextModelTester(self )
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
import random from .binary_exp_mod import bin_exp_mod def a__ ( lowercase__ , lowercase__=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase_ =n - 1 UpperCAmelCase_ =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase_ =0 while count < prec: UpperCAmelCase_ =random.randint(2 , n - 1 ) UpperCAmelCase_ =bin_exp_mod(lowercase__ , lowercase__ , lowercase__ ) if b != 1: UpperCAmelCase_ =True for _ in range(lowercase__ ): if b == n - 1: UpperCAmelCase_ =False break UpperCAmelCase_ =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __lowercase : str =abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
class A : def __init__( self: Optional[Any] , _lowerCAmelCase: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =val UpperCAmelCase_ =None UpperCAmelCase_ =None def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Tuple ) -> List[str]: '''simple docstring''' if self.val: if val < self.val: if self.left is None: UpperCAmelCase_ =Node(_lowerCAmelCase ) else: self.left.insert(_lowerCAmelCase ) elif val > self.val: if self.right is None: UpperCAmelCase_ =Node(_lowerCAmelCase ) else: self.right.insert(_lowerCAmelCase ) else: UpperCAmelCase_ =val def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if root: inorder(root.left , lowercase__ ) res.append(root.val ) inorder(root.right , lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return arr UpperCAmelCase_ =Node(arr[0] ) for i in range(1 , len(lowercase__ ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCAmelCase_ =[] inorder(lowercase__ , lowercase__ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
import csv import tweepy # Twitter API credentials __lowercase : Any ="""""" __lowercase : int ="""""" __lowercase : Dict ="""""" __lowercase : List[Any] ="""""" def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =tweepy.OAuthHandler(lowercase__ , lowercase__ ) auth.set_access_token(lowercase__ , lowercase__ ) UpperCAmelCase_ =tweepy.API(lowercase__ ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase_ =[] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase_ =api.user_timeline(screen_name=lowercase__ , count=2_0_0 ) # save most recent tweets alltweets.extend(lowercase__ ) # save the id of the oldest tweet less one UpperCAmelCase_ =alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase__ ) > 0: print(F'getting tweets before {oldest}' ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase_ =api.user_timeline( screen_name=lowercase__ , count=2_0_0 , max_id=lowercase__ ) # save most recent tweets alltweets.extend(lowercase__ ) # update the id of the oldest tweet less one UpperCAmelCase_ =alltweets[-1].id - 1 print(F'...{len(lowercase__ )} tweets downloaded so far' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase_ =[[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'new_{screen_name}_tweets.csv' , "w" ) as f: UpperCAmelCase_ =csv.writer(lowercase__ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowercase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def a__ ( lowercase__ ): '''simple docstring''' return np.dot(lowercase__ , lowercase__ ) class A : def __init__( self: List[Any] , *, _lowerCAmelCase: float = np.inf , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: float = 0.0 , ) -> None: '''simple docstring''' UpperCAmelCase_ =regularization UpperCAmelCase_ =gamma if kernel == "linear": UpperCAmelCase_ =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) UpperCAmelCase_ =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase_ =F'Unknown kernel: {kernel}' raise ValueError(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: ndarray , _lowerCAmelCase: ndarray ) -> float: '''simple docstring''' return np.dot(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: ndarray , _lowerCAmelCase: ndarray ) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: list[ndarray] , _lowerCAmelCase: ndarray ) -> None: '''simple docstring''' UpperCAmelCase_ =observations UpperCAmelCase_ =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase_) , ) =np.shape(_lowerCAmelCase ) def to_minimize(_lowerCAmelCase: ndarray ) -> float: UpperCAmelCase_ =0 ((UpperCAmelCase_) , ) =np.shape(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCAmelCase ) UpperCAmelCase_ =LinearConstraint(_lowerCAmelCase , 0 , 0 ) UpperCAmelCase_ =Bounds(0 , self.regularization ) UpperCAmelCase_ =minimize( _lowerCAmelCase , np.ones(_lowerCAmelCase ) , bounds=_lowerCAmelCase , constraints=[ly_contraint] ).x UpperCAmelCase_ =l_star # calculating mean offset of separation plane to points UpperCAmelCase_ =0 for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCAmelCase_ =s / n def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: ndarray ) -> int: '''simple docstring''' UpperCAmelCase_ =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase : Optional[int] =get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class A ( __lowercase , unittest.TestCase ): _snake_case =PegasusTokenizer _snake_case =PegasusTokenizerFast _snake_case =True _snake_case =True def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ =PegasusTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def lowerCAmelCase__ ( self: Dict , **_lowerCAmelCase: int ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' return ("This is a test", "This is a test") def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ ="</s>" UpperCAmelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(_lowerCAmelCase ) , 1103 ) def lowerCAmelCase__ ( self: Any ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase_ =( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) UpperCAmelCase_ =rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] UpperCAmelCase_ =py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase_ ="<mask_1> To ensure a <mask_2> flow of bank resolutions." UpperCAmelCase_ =[2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] UpperCAmelCase_ =tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase_ ="To ensure a smooth flow of bank resolutions." UpperCAmelCase_ =[413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] UpperCAmelCase_ =tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =["This is going to be way too long." * 150, "short example"] UpperCAmelCase_ =["not super long but more than 5 tokens", "tiny"] UpperCAmelCase_ =self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ =self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ ={"input_ids": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class A ( __lowercase , unittest.TestCase ): _snake_case =PegasusTokenizer _snake_case =PegasusTokenizerFast _snake_case =True _snake_case =True def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ =PegasusTokenizer(_lowerCAmelCase , offset=0 , mask_token_sent=_lowerCAmelCase , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> List[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def lowerCAmelCase__ ( self: List[str] , **_lowerCAmelCase: Tuple ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Any ) -> List[str]: '''simple docstring''' return ("This is a test", "This is a test") def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase_ =( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) UpperCAmelCase_ =rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] UpperCAmelCase_ =py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =["This is going to be way too long." * 1000, "short example"] UpperCAmelCase_ =["not super long but more than 5 tokens", "tiny"] UpperCAmelCase_ =self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ =self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) UpperCAmelCase_ =self._large_tokenizer(_lowerCAmelCase ).input_ids self.assertListEqual( _lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def a__ ( lowercase__ ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class A ( __lowercase ): @staticmethod def lowerCAmelCase__ ( _lowerCAmelCase: ArgumentParser ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=_lowerCAmelCase , help="Name of the model to download" ) download_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: str , _lowerCAmelCase: bool , _lowerCAmelCase: bool ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =model UpperCAmelCase_ =cache UpperCAmelCase_ =force UpperCAmelCase_ =trust_remote_code def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
54
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : List[Any] =logging.get_logger(__name__) __lowercase : Optional[Any] ={ """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class A ( __lowercase ): _snake_case ='''bridgetower_vision_model''' def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int]=768 , _lowerCAmelCase: Tuple=12 , _lowerCAmelCase: Tuple=3 , _lowerCAmelCase: Optional[int]=16 , _lowerCAmelCase: List[Any]=288 , _lowerCAmelCase: int=1 , _lowerCAmelCase: List[Any]=1e-05 , _lowerCAmelCase: int=False , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: List[str]=False , **_lowerCAmelCase: Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_channels UpperCAmelCase_ =patch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =initializer_factor UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =stop_gradient UpperCAmelCase_ =share_layernorm UpperCAmelCase_ =remove_last_layer @classmethod def lowerCAmelCase__ ( cls: str , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: Dict ) -> "PretrainedConfig": '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) if config_dict.get("model_type" ) == "bridgetower": UpperCAmelCase_ =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class A ( __lowercase ): _snake_case ='''bridgetower_text_model''' def __init__( self: List[str] , _lowerCAmelCase: List[str]=5_0265 , _lowerCAmelCase: List[Any]=768 , _lowerCAmelCase: Optional[int]=12 , _lowerCAmelCase: Tuple=12 , _lowerCAmelCase: List[Any]=1 , _lowerCAmelCase: List[str]=3072 , _lowerCAmelCase: int="gelu" , _lowerCAmelCase: Optional[int]=0.1 , _lowerCAmelCase: str=0.1 , _lowerCAmelCase: int=514 , _lowerCAmelCase: Tuple=1 , _lowerCAmelCase: Optional[Any]=1e-05 , _lowerCAmelCase: str=1 , _lowerCAmelCase: Optional[int]=0 , _lowerCAmelCase: Dict=2 , _lowerCAmelCase: int="absolute" , _lowerCAmelCase: Tuple=True , **_lowerCAmelCase: Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_act UpperCAmelCase_ =initializer_factor UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =position_embedding_type UpperCAmelCase_ =use_cache UpperCAmelCase_ =pad_token_id UpperCAmelCase_ =bos_token_id UpperCAmelCase_ =eos_token_id @classmethod def lowerCAmelCase__ ( cls: Dict , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: str ) -> "PretrainedConfig": '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) if config_dict.get("model_type" ) == "bridgetower": UpperCAmelCase_ =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class A ( __lowercase ): _snake_case ='''bridgetower''' def __init__( self: List[Any] , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: Tuple=768 , _lowerCAmelCase: Optional[Any]=1 , _lowerCAmelCase: Optional[int]=1e-05 , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: Union[str, Any]="add" , _lowerCAmelCase: int=12 , _lowerCAmelCase: Optional[Any]=6 , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Union[str, Any]=None , **_lowerCAmelCase: Dict , ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =kwargs.pop("text_config_dict" , _lowerCAmelCase ) UpperCAmelCase_ =kwargs.pop("vision_config_dict" , _lowerCAmelCase ) super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =share_cross_modal_transformer_layers UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_size UpperCAmelCase_ =initializer_factor UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =share_link_tower_layers UpperCAmelCase_ =link_tower_type UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =tie_word_embeddings UpperCAmelCase_ =init_layernorm_from_vision_encoder if text_config is None: UpperCAmelCase_ ={} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: UpperCAmelCase_ ={} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) UpperCAmelCase_ =BridgeTowerTextConfig(**_lowerCAmelCase ) UpperCAmelCase_ =BridgeTowerVisionConfig(**_lowerCAmelCase ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , _lowerCAmelCase: BridgeTowerTextConfig , _lowerCAmelCase: BridgeTowerVisionConfig , **_lowerCAmelCase: int ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> Any: '''simple docstring''' UpperCAmelCase_ =copy.deepcopy(self.__dict__ ) UpperCAmelCase_ =self.text_config.to_dict() UpperCAmelCase_ =self.vision_config.to_dict() UpperCAmelCase_ =self.__class__.model_type return output
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowercase : str =[ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] __lowercase : Any =[ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] __lowercase : Tuple =( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) __lowercase : Dict =( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) __lowercase : Tuple =[ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' for tf_name, hf_name in patterns: UpperCAmelCase_ =k.replace(lowercase__ , lowercase__ ) return k def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =BigBirdPegasusConfig(**lowercase__ ) UpperCAmelCase_ =BigBirdPegasusForConditionalGeneration(lowercase__ ) UpperCAmelCase_ =torch_model.state_dict() UpperCAmelCase_ ={} # separating decoder weights UpperCAmelCase_ ={k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} UpperCAmelCase_ ={k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): UpperCAmelCase_ =[k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE] if any(lowercase__ ): continue UpperCAmelCase_ =DECODER_PATTERNS UpperCAmelCase_ =rename_state_dict_key(lowercase__ , lowercase__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): UpperCAmelCase_ =v.T UpperCAmelCase_ =torch.from_numpy(lowercase__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): UpperCAmelCase_ =[k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE] if any(lowercase__ ): continue UpperCAmelCase_ =REMAINING_PATTERNS UpperCAmelCase_ =rename_state_dict_key(lowercase__ , lowercase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): UpperCAmelCase_ =v.T UpperCAmelCase_ =torch.from_numpy(lowercase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCAmelCase_ =mapping["model.embed_positions.weight"] UpperCAmelCase_ =mapping.pop("model.embed_positions.weight" ) UpperCAmelCase_ , UpperCAmelCase_ =torch_model.load_state_dict(lowercase__ , strict=lowercase__ ) UpperCAmelCase_ =[ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =tf.train.list_variables(lowercase__ ) UpperCAmelCase_ ={} UpperCAmelCase_ =["global_step"] for name, shape in tqdm(lowercase__ , desc="converting tf checkpoint to dict" ): UpperCAmelCase_ =any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase_ =tf.train.load_variable(lowercase__ , lowercase__ ) UpperCAmelCase_ =array return tf_weights def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =get_tf_weights_as_numpy(lowercase__ ) UpperCAmelCase_ =convert_bigbird_pegasus(lowercase__ , lowercase__ ) torch_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") __lowercase : Dict =parser.parse_args() __lowercase : List[str] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
1
__lowercase : Tuple =8.314_4598 def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowercase : Any =300 __lowercase : Optional[int] =28 __lowercase : str =rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] =logging.get_logger(__name__) __lowercase : Tuple ={ """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A ( __lowercase ): _snake_case ='''data2vec-audio''' def __init__( self: str , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Tuple=12 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: Optional[int]=3072 , _lowerCAmelCase: List[Any]="gelu" , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: int=0.0 , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.02 , _lowerCAmelCase: Optional[int]=1e-5 , _lowerCAmelCase: Union[str, Any]="gelu" , _lowerCAmelCase: Dict=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase: int=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase: Any=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[Any]=16 , _lowerCAmelCase: Tuple=19 , _lowerCAmelCase: int=5 , _lowerCAmelCase: List[str]=0.05 , _lowerCAmelCase: List[str]=10 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=0 , _lowerCAmelCase: Optional[int]="sum" , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Dict=256 , _lowerCAmelCase: Union[str, Any]=(512, 512, 512, 512, 1500) , _lowerCAmelCase: List[Any]=(5, 3, 3, 1, 1) , _lowerCAmelCase: Any=(1, 2, 3, 1, 1) , _lowerCAmelCase: Optional[int]=512 , _lowerCAmelCase: List[Any]=0 , _lowerCAmelCase: int=1 , _lowerCAmelCase: Optional[Any]=2 , _lowerCAmelCase: Union[str, Any]=False , _lowerCAmelCase: Union[str, Any]=3 , _lowerCAmelCase: Optional[int]=2 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=None , **_lowerCAmelCase: List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =hidden_size UpperCAmelCase_ =feat_extract_activation UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =conv_bias UpperCAmelCase_ =num_conv_pos_embeddings UpperCAmelCase_ =num_conv_pos_embedding_groups UpperCAmelCase_ =conv_pos_kernel_size UpperCAmelCase_ =len(self.conv_dim ) UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_dropout UpperCAmelCase_ =attention_dropout UpperCAmelCase_ =activation_dropout UpperCAmelCase_ =feat_proj_dropout UpperCAmelCase_ =final_dropout UpperCAmelCase_ =layerdrop UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =initializer_range UpperCAmelCase_ =vocab_size UpperCAmelCase_ =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ =mask_time_prob UpperCAmelCase_ =mask_time_length UpperCAmelCase_ =mask_time_min_masks UpperCAmelCase_ =mask_feature_prob UpperCAmelCase_ =mask_feature_length UpperCAmelCase_ =mask_feature_min_masks # ctc loss UpperCAmelCase_ =ctc_loss_reduction UpperCAmelCase_ =ctc_zero_infinity # adapter UpperCAmelCase_ =add_adapter UpperCAmelCase_ =adapter_kernel_size UpperCAmelCase_ =adapter_stride UpperCAmelCase_ =num_adapter_layers UpperCAmelCase_ =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =xvector_output_dim @property def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' return math.prod(self.conv_stride )
54
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( __lowercase ): _snake_case =['''image_processor''', '''tokenizer'''] _snake_case ='''Pix2StructImageProcessor''' _snake_case =('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self: Tuple , _lowerCAmelCase: str=None , _lowerCAmelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase: Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[int] = 2048 , _lowerCAmelCase: int = 0 , _lowerCAmelCase: Optional[int] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = False , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , **_lowerCAmelCase: int , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: UpperCAmelCase_ =self.tokenizer UpperCAmelCase_ =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values UpperCAmelCase_ =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , max_patches=_lowerCAmelCase , **_lowerCAmelCase ) else: # add pixel_values and bbox UpperCAmelCase_ =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , max_patches=_lowerCAmelCase , header_text=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and not self.image_processor.is_vqa: UpperCAmelCase_ =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) if "attention_mask" in text_encoding: UpperCAmelCase_ =text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: UpperCAmelCase_ =text_encoding.pop("input_ids" ) else: UpperCAmelCase_ =None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def lowerCAmelCase__ ( self: Optional[int] , *_lowerCAmelCase: Any , **_lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: str , *_lowerCAmelCase: List[str] , **_lowerCAmelCase: List[str] ) -> int: '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.tokenizer.model_input_names UpperCAmelCase_ =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __lowercase ): _snake_case =42 _snake_case =42 def __init__( self: int , _lowerCAmelCase: UNetaDModel , _lowerCAmelCase: KarrasVeScheduler ) -> int: '''simple docstring''' super().__init__() self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) @torch.no_grad() def __call__( self: int , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 50 , _lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase: Optional[str] = "pil" , _lowerCAmelCase: bool = True , **_lowerCAmelCase: Union[str, Any] , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' UpperCAmelCase_ =self.unet.config.sample_size UpperCAmelCase_ =(batch_size, 3, img_size, img_size) UpperCAmelCase_ =self.unet # sample x_0 ~ N(0, sigma_0^2 * I) UpperCAmelCase_ =randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper UpperCAmelCase_ =self.scheduler.schedule[t] UpperCAmelCase_ =self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat UpperCAmelCase_ , UpperCAmelCase_ =self.scheduler.add_noise_to_input(_lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase_ =(sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev UpperCAmelCase_ =self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. UpperCAmelCase_ =(sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample UpperCAmelCase_ =self.scheduler.step_correct( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , step_output.prev_sample , step_output["derivative"] , ) UpperCAmelCase_ =step_output.prev_sample UpperCAmelCase_ =(sample / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ =self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCAmelCase )
54
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowercase : List[Any] =datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): _snake_case =10000 _snake_case =None _snake_case =None class A ( datasets.ArrowBasedBuilder ): _snake_case =ParquetConfig def lowerCAmelCase__ ( self: Optional[int] ) -> Dict: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) UpperCAmelCase_ =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): UpperCAmelCase_ =data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase_ =[] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowerCAmelCase ): with open(_lowerCAmelCase , "rb" ) as f: UpperCAmelCase_ =datasets.Features.from_arrow_schema(pq.read_schema(_lowerCAmelCase ) ) break splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: pa.Table ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ =table_cast(_lowerCAmelCase , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , "rb" ) as f: UpperCAmelCase_ =pq.ParquetFile(_lowerCAmelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase_ =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'{file_idx}_{batch_idx}', self._cast_table(_lowerCAmelCase ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}' ) raise
54
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class A ( __lowercase ): def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =8 # DPR tok UpperCAmelCase_ =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ =os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase_ =os.path.join(_lowerCAmelCase , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok UpperCAmelCase_ =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase_ =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ ={"unk_token": "<unk>"} UpperCAmelCase_ =os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase_ =os.path.join(_lowerCAmelCase , BART_VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ =os.path.join(_lowerCAmelCase , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) def lowerCAmelCase__ ( self: Optional[Any] ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowerCAmelCase__ ( self: List[str] ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowerCAmelCase__ ( self: str ) -> int: '''simple docstring''' UpperCAmelCase_ =os.path.join(self.tmpdirname , "rag_tokenizer" ) UpperCAmelCase_ =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) UpperCAmelCase_ =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_lowerCAmelCase ) rag_tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =RagTokenizer.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _lowerCAmelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _lowerCAmelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowerCAmelCase__ ( self: Any ) -> Dict: '''simple docstring''' UpperCAmelCase_ =RagTokenizer.from_pretrained("facebook/rag-token-nq" ) UpperCAmelCase_ =[ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] UpperCAmelCase_ =tokenizer(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ =RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) UpperCAmelCase_ =[ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] UpperCAmelCase_ =tokenizer(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
54
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
1
def a__ ( lowercase__ ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ =head.next, head while fast and fast.next: UpperCAmelCase_ =fast.next.next UpperCAmelCase_ =slow.next UpperCAmelCase_ =slow.next UpperCAmelCase_ =None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ =None while second: UpperCAmelCase_ =second.next UpperCAmelCase_ =node UpperCAmelCase_ =second UpperCAmelCase_ =nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ =node.next UpperCAmelCase_ =head.next return True def a__ ( lowercase__ ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ =UpperCAmelCase_ =UpperCAmelCase_ =head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ =fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ =[slow.val] while slow.next: UpperCAmelCase_ =slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ =cur.next return True def a__ ( lowercase__ ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ ={} UpperCAmelCase_ =0 while head: if head.val in d: d[head.val].append(lowercase__ ) else: UpperCAmelCase_ =[pos] UpperCAmelCase_ =head.next pos += 1 UpperCAmelCase_ =pos - 1 UpperCAmelCase_ =0 for v in d.values(): if len(lowercase__ ) % 2 != 0: middle += 1 else: UpperCAmelCase_ =0 for i in range(0 , len(lowercase__ ) ): if v[i] + v[len(lowercase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
54
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
1
import math def a__ ( lowercase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowercase__ = 1_0_0_0_1 ): '''simple docstring''' try: UpperCAmelCase_ =int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase_ =[] UpperCAmelCase_ =2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
54
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Union[str, Any] ={ """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] =["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] =[ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =[ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowercase : List[str] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
1
from __future__ import annotations def a__ ( lowercase__ , lowercase__ = None ): '''simple docstring''' UpperCAmelCase_ =word_bank or [] # create a table UpperCAmelCase_ =len(lowercase__ ) + 1 UpperCAmelCase_ =[] for _ in range(lowercase__ ): table.append([] ) # seed value UpperCAmelCase_ =[[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase__ )] == word: UpperCAmelCase_ =[ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase__ )]: combination.reverse() return table[len(lowercase__ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
54
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
1
def a__ ( lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be an 'int' type" ) UpperCAmelCase_ =0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
54
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : str =logging.get_logger(__name__) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =os.path.abspath(lowercase__ ) logger.info(F'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model UpperCAmelCase_ =tf.train.list_variables(lowercase__ ) UpperCAmelCase_ =[] UpperCAmelCase_ =[] UpperCAmelCase_ =[] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") UpperCAmelCase_ =full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(F'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' UpperCAmelCase_ =name[1:] # figure out how many levels deep the name is UpperCAmelCase_ =0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(lowercase__ ) # read data UpperCAmelCase_ =tf.train.load_variable(lowercase__ , lowercase__ ) names.append("/".join(lowercase__ ) ) arrays.append(lowercase__ ) logger.info(F'Read a total of {len(lowercase__ ):,} layers' ) # Sanity check if len(set(lowercase__ ) ) != 1: raise ValueError(F'Found layer names with different depths (layer depth {list(set(lowercase__ ) )})' ) UpperCAmelCase_ =list(set(lowercase__ ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(lowercase__ , lowercase__ ): UpperCAmelCase_ =full_name.split("/" ) UpperCAmelCase_ =model UpperCAmelCase_ =[] for i, m_name in enumerate(lowercase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): UpperCAmelCase_ =int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) UpperCAmelCase_ =getattr(lowercase__ , "embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) UpperCAmelCase_ =getattr(lowercase__ , "encoder" ) UpperCAmelCase_ =getattr(lowercase__ , "layer" ) UpperCAmelCase_ =pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "pooler" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) UpperCAmelCase_ =getattr(lowercase__ , "token_type_embeddings" ) else: raise ValueError(F'Unknown embedding layer with name {full_name}' ) trace.append("weight" ) UpperCAmelCase_ =getattr(lowercase__ , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) UpperCAmelCase_ =getattr(lowercase__ , "attention" ) UpperCAmelCase_ =getattr(lowercase__ , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) UpperCAmelCase_ =getattr(lowercase__ , "attention" ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "attention" ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) UpperCAmelCase_ =getattr(lowercase__ , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) UpperCAmelCase_ =getattr(lowercase__ , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) UpperCAmelCase_ =getattr(lowercase__ , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) UpperCAmelCase_ =getattr(lowercase__ , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) UpperCAmelCase_ =getattr(lowercase__ , "intermediate" ) UpperCAmelCase_ =getattr(lowercase__ , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) UpperCAmelCase_ =getattr(lowercase__ , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) UpperCAmelCase_ =getattr(lowercase__ , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) UpperCAmelCase_ =getattr(lowercase__ , "weight" ) else: logger.warning(F'Ignored {m_name}' ) # for certain layers reshape is necessary UpperCAmelCase_ =".".join(lowercase__ ) if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , lowercase__ ) or re.match( R"(\S+)\.attention\.output\.dense\.weight" , lowercase__ ): UpperCAmelCase_ =array.reshape(pointer.data.shape ) if "kernel" in full_name: UpperCAmelCase_ =array.transpose() if pointer.shape == array.shape: UpperCAmelCase_ =torch.from_numpy(lowercase__ ) else: raise ValueError( F'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' F' {array.shape}' ) logger.info(F'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' logger.info(F'Loading model based on config from {config_path}...' ) UpperCAmelCase_ =BertConfig.from_json_file(lowercase__ ) UpperCAmelCase_ =BertModel(lowercase__ ) # Load weights from checkpoint logger.info(F'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model logger.info(F'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __lowercase : Dict =argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) __lowercase : int =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
54
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
1
from datetime import datetime as dt import os from github import Github __lowercase : Optional[int] =[ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ =g.get_repo("huggingface/transformers" ) UpperCAmelCase_ =repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ =sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) UpperCAmelCase_ =comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
54
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
1